Design of Polynomial Observer-Based Control of Fractional-Order Power Systems
Abstract
:1. Introduction
- (i)
- presenting an initial attempt to develop an O-BC for a fractional-order power (F-OP) system.
- (ii)
- using an SOS method for a fractional-order power (F-OP) system.
2. Preliminaries
3. Practical Observer-Based Controller for an F-Op System
4. Illustrative Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kundur, P. Power System Stability and Control; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Yang, F.; Shao, X.; Muyeen, S.M.; Li, D.; Lin, S.; Fang, C. Disturbance Observer based Fractional-order Integral Sliding Mode Frequency Control Strategy for Interconnected Power System. IEEE Trans. Power Syst. 2021, 36, 5922–5932. [Google Scholar]
- Wang, H.O.; Tanaka, K.; Griffin, M.F. An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Trans. Fuzzy Syst. 1996, 4, 14–23. [Google Scholar] [CrossRef]
- Zhao, D.; Lam, H.K.; Li, Y.; Ding, S.X.; Liu, S. A novel approach to state and unknown input estimation for Takagi–Sugeno fuzzy models with applications to fault detection. IEEE Trans. Circuits Syst. 2020, 67, 2053–2063. [Google Scholar] [CrossRef]
- El Youssfi, N.; El Bachtiri, T.; Zoulagh, T.; El Aiss, H. Unknown input observer design for vehicle lateral dynamics described by Takagi–Sugeno fuzzy systems. Optim. Control. Appl. Methods 2022, 43, 354–368. [Google Scholar]
- Zhang, H.; Mu, Y.; Gao, Z.; Wang, W. Observer-based fault reconstruction and fault-tolerant control for nonlinear systems subject to simultaneous actuator and sensor faults. IEEE Trans. Fuzzy Syst. 2022, 30, 2971–2980. [Google Scholar]
- Salah, R.B.; Kahouli, O.; Hadjabdallah, H. A nonlinear Takagi-Sugeno fuzzy logic control for single machine power system. Int. J. Adv. Manuf. Technol. 2017, 90, 575–590. [Google Scholar]
- Ouassaid, M.; Maaroufi, M.; Cherkaoui, M. Observer-based nonlinear control of power system using sliding mode control strategy. Electr. Power Syst. Res. 2012, 84, 135–143. [Google Scholar]
- Gassara, H.; El Hajjaji, A.; Chaabane, M. Observer-based robust H∞ reliable control for uncertain T-S fuzzy systems with state time delay. IEEE Trans. Fuzzy Syst. 2010, 18, 1027–1040. [Google Scholar] [CrossRef]
- Kchaou, M.; Gassara, H.; El Hajjaji, A. Robust observer-based control design for uncertain singular systems with time-delay. Int. J. Adapt. Control. Signal Process. 2014, 28, 169–183. [Google Scholar] [CrossRef]
- Gassara, H.; El Hajjaji, A.; Kchaou, M.; Chaabane, M. Observer based (Q,V,R)-α dissipative control for TS fuzzy descriptor systems with time delay. J. Frankl. Inst. 2014, 351, 187–206. [Google Scholar]
- Sun, H.; Han, H.-G.; Qiao, J.-F. Observer-based control for networked Takagi-Sugeno fuzzy systems with stochastic packet losses. Inf. Sci. 2023, 644, 119275. [Google Scholar] [CrossRef]
- Prajna, S.; Papachristodoulou, A.; Seiler, P.; Parrilo, P.A. SOSTOOLS and its control applications. In Positive Polynomials in Control (Part of the Lecture Notes in Control and Information Science); Henrion, D., Garulli, A., Eds.; Springer: Cham, Switzerland, 2015; Volume 312, pp. 273–292. [Google Scholar]
- Ting, C.-S.; Chang, Y.-N.; Chiu, T.-Y. An SOS Observer-Based Sensorless Control for PMLSM Drive System. J. Control. Autom. Electr. Syst. 2020, 31, 760–776. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and applications of fractional differential equations. In North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Ahmad, I.; Ahmad, H.; Thounthong, P.; Chu, Y.M.; Cesarano, C. Solution of Multi-Term Time-Fractional PDE Models Arising in Mathematical Biology and Physics by Local Meshless Method. Symmetry 2022, 12, 1195. [Google Scholar] [CrossRef]
- Mohamed, E.A.; Aly, M.; Watanabe, M. New Tilt Fractional-Order Integral Derivative with Fractional Filter (TFOIDFF) Controller with Artificial Hummingbird Optimizer for LFC in Renewable Energy Power Grids. Mathematics 2022, 10, 3006. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Y.Q.; Domański, P.D.; Zhang, X. A Novel Method for Control Performance Assessment with Fractional Order Signal Processing and Its Application to Semiconductor Manufacturing. Algorithms 2018, 11, 90. [Google Scholar] [CrossRef]
- Williams, W.K.; Vijayakumar, V.; Udhayakumar, R.; Panda, S.K.; Nisar, K.S. Existence and controllability of nonlocal mixed Volterra-Fredholm type fractional delay integro-differential equations of order 1 < r < 2. Numer. Methods Partial. Differ. Equ. 2020, 2020, 1–18. [Google Scholar]
- Chen, L.; Chai, Y.; Wu, R.; Yang, J. Stability and Stabilization of a Class of Nonlinear Fractional-Order Systems with Caputo Derivative. IEEE Trans. Circuits Syst. II: Express Briefs 2012, 59, 602–606. [Google Scholar] [CrossRef]
- Baleanu, D.; Machado, J.A.T.; Luo, A.C.J. Fractional Dynamics and Control; Springer: New York, NY, USA, 2011. [Google Scholar]
- Abdeljawad, T.; Madjidi, F.; Jarad, F.; Sene, N. On Dynamic Systems in the Frame of Singular Function Dependent Kernel Fractional Derivatives. Mathematics 2019, 7, 946. [Google Scholar] [CrossRef]
- Ben Makhlouf, A. Partial practical stability for fractional-order nonlinear systems. Math. Methods Appl. Sci. 2022, 45, 5135–5148. [Google Scholar] [CrossRef]
- Chen, L.; Huang, T.; Machado, J.T.; Lopes, A.M.; Chai, Y.; Wu, R. Delay-dependent criterion for asymptotic stability of a class of fractional-order memristive neural networks with time-varying delays. Neural Netw. 2019, 118, 289–299. [Google Scholar] [CrossRef]
- Ben Makhlouf, A.; Hammami, M.A.; Sioud, K. Stability of fractional-order nonlinear systems depending on a parameter. Bull. Korean Math. Soc. 2017, 54, 1309–1321. [Google Scholar]
- Matignon, D. Stability results on fractional differential equations to control processing. In Proceedings of the Computational Engineering in Syatems and Application Multiconference, Lille, France, 9–12 July 1996; IMACS, IEEE-SMC: Lille, France, 1996; Volume 2, pp. 963–968. [Google Scholar]
- Zhou, Y.; Ionescu, C.; Tenreiro Machado, J.A. Fractional dynamics and its applications. Nonlinear Dyn. 2015, 80, 1661–1664. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, Y.; Dai, X.; Ye, Z. Stability analysis of interconnected nonlinear fractional-order systems via a single-state variable control. Int. J. Robust Nonlinear Control 2019, 29, 6374–6397. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, Y.; Dai, X. Stability and Stabilization of the Fractional-Order Power System with Time Delay. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3446–3450. [Google Scholar] [CrossRef]
- Gassara, H.; Kharrat, D.; Makhlouf, A.B.; Mchiri, L.; Rhaima, M. SOS Approach for Practical Stabilization of Tempered Fractional-Order Power System. Mathematics 2023, 11, 3024. [Google Scholar] [CrossRef]
- Ahmed, H.; Jmal, A.; Ben Makhlouf, A. A practical observer for state and sensor fault reconstruction of a class of fractional-order nonlinear systems. Eur. Phys. J. Spec. Top. 2023. [Google Scholar] [CrossRef]
- Tanaka, K.; Yosihida, H.; Ohtake, H.; Wang, H. A sum of squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems. IEEE Trans. Fuzzy Syst. 2009, 17, 911–922. [Google Scholar] [CrossRef]
- Petersen, I.R. A stabilization algorithm for a class of uncertain linear systems. Syst. Control Lett. 1987, 8, 351–357. [Google Scholar] [CrossRef]
- Tanaka, K.; Wang, H.O. Fuzzy Control Systems Design and Analysis. A Linear Matrix Inequality Approach; John Wiley: New York, NY, USA, 2001. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gassara, H.; Iben Ammar, I.; Ben Makhlouf, A.; Mchiri, L.; Rhaima, M. Design of Polynomial Observer-Based Control of Fractional-Order Power Systems. Mathematics 2023, 11, 4450. https://doi.org/10.3390/math11214450
Gassara H, Iben Ammar I, Ben Makhlouf A, Mchiri L, Rhaima M. Design of Polynomial Observer-Based Control of Fractional-Order Power Systems. Mathematics. 2023; 11(21):4450. https://doi.org/10.3390/math11214450
Chicago/Turabian StyleGassara, Hamdi, Imen Iben Ammar, Abdellatif Ben Makhlouf, Lassaad Mchiri, and Mohamed Rhaima. 2023. "Design of Polynomial Observer-Based Control of Fractional-Order Power Systems" Mathematics 11, no. 21: 4450. https://doi.org/10.3390/math11214450
APA StyleGassara, H., Iben Ammar, I., Ben Makhlouf, A., Mchiri, L., & Rhaima, M. (2023). Design of Polynomial Observer-Based Control of Fractional-Order Power Systems. Mathematics, 11(21), 4450. https://doi.org/10.3390/math11214450