Well-Posedness and Stability Results for Lord Shulman Swelling Porous Thermo-Elastic Soils with Microtemperature and Distributed Delay
Abstract
:1. Introduction and Preliminaries
2. Well-Posedness
3. Exponential Decay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eringen, A.C. A continuum theory of swelling porous elastic soils. Int. J. Eng. Sci. 1994, 32, 1337–1349. [Google Scholar] [CrossRef]
- Bedford, A.; Drumheller, D.S. Theories of immiscible and structured mixtures. Int. J. Eng. Sci. 1983, 21, 863–960. [Google Scholar] [CrossRef]
- Apalara, T.A.; Yusuf, M.O.; Mukiawa, S.E.; Almutairi, O.B. Exponential stabilization of swelling porous systems with thermoelastic damping. J. King Saud Univ. Sci. 2023, 35, 102460. [Google Scholar] [CrossRef]
- Bofill, F.; Quintanilla, R. Anti-plane shear deformations of swelling porous elastic soils. Int. J. Eng. Sci. 2003, 41, 801–816. [Google Scholar] [CrossRef]
- Hung, V.Q. Hidden Disaster; University of Saska Techwan: Saskatoon, SK, Canada, 2003. [Google Scholar]
- Iesan, D. On the theory of mixtures of thermoelastic solids. Therm. Stress 1991, 14, 389–408. [Google Scholar] [CrossRef]
- Jones, L.D.; Jefferson, I. Expansive Soils; ICE Publishing: London, UK, 2012; pp. 413–441. [Google Scholar]
- Kalantari, B. Engineering significant of swelling soils. Res. J. Appl. Sci. Eng. Technol. 2012, 4, 2874–2878. [Google Scholar]
- Quintanilla, R. Exponential stability for one-dimensional problem of swelling porous elastic soils with fluid saturation. J. Comput. Appl. Math 2002, 145, 525–533. [Google Scholar] [CrossRef]
- Wang, J.M.; Guo, B.Z. On the stability of swelling porous elastic soils with fluid saturation by one internal damping. IMA J. Appl. Math. 2006, 71, 565–582. [Google Scholar] [CrossRef]
- Apalara, T.A. General stability result of swelling porous elastic soils with a viscoelastic damping. Z. Angew. Math. Phys. 2020, 71, 200. [Google Scholar] [CrossRef]
- Choucha, A.; Boulaaras, S.M.; Ouchenane, D.; Cherif, B.B.; Abdalla, M. Exponential Stability of Swelling Porous Elastic with a Viscoelastic Damping and Distributed Delay Term. J. Funct. Spaces 2021, 2021, 5581634. [Google Scholar] [CrossRef]
- Murad, M.A.; Cushman, J.H. Thermomechanical theories for swelling porous media with microstructure. Int. J. Eng. Sci. 2000, 38, 517–564. [Google Scholar] [CrossRef]
- Quintanilla, R. Existence and exponential decay in the linear theory of viscoelastic mixtures. Euro. J. Mech. A/Solids 2005, 24, 311–324. [Google Scholar] [CrossRef]
- Quintanilla, R. Exponential stability of solutions of swelling porous elastic soils. Meccanica 2004, 39, 139–145. [Google Scholar] [CrossRef]
- Quintanilla, R. On the linear problem of swelling porous elastic soils with incompressible fluid. Int. J. Eng. Sci. 2002, 40, 1485–1494. [Google Scholar] [CrossRef]
- Apalara, T.A. General decay of solution in one-dimensional porous-elastic system with memory. J. Math. Anal. Appl. 2017, 469, 457–471. [Google Scholar] [CrossRef]
- Choucha, A.; Ouchenane, D.; Zennir, K. General decay of solutions in one-dimensional porous-elastic with memory and distributed delay term. Tamkang J. Math. 2021, 52, 479–495. [Google Scholar] [CrossRef]
- Choucha, A.; Boulaaras, S.M.; Ouchenane, D.; Cherif, B.B.; Hidan, M.; Abdalla, M. Exponential Stabilization of a Swelling Porous-Elastic System with Microtemperature Effect and Distributed Delay. J. Funct. Spaces 2021, 2021, 5513981. [Google Scholar] [CrossRef]
- Choucha, A.; Ouchenane, D.; Zennir, K.; Feng, B. Global well-posedness and exponential stability results of a class of Bresse-Timoshenko-type systems with distributed delay term. Math. Methods Appl. Sci. 2020, 2020, 1–26. [Google Scholar] [CrossRef]
- Choucha, A.; Ouchenane, D.; Boulaaras, S.M.; Cherif, B.B.; Abdalla, M. Well-posedness and stability result of the nonlinear thermodiffusion full von Kármán beam with thermal effect and time-varying delay. J. Funct. Spaces 2021, 2021, 9974034. [Google Scholar] [CrossRef]
- Santos, M.J.D.; Feng, B.; Junior, D.S.A.; Santos, M.L. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discret. Contin. Dyn.-Syst.-Ser. B 2021, 26, 2805–2828. [Google Scholar] [CrossRef]
- Nicaise, A.S.; Pignotti, C. Stabilization of the wave equation with boundary or internal distributed delay. Diff. Int. Equ. 2008, 21, 935–958. [Google Scholar] [CrossRef]
- Feng, B.; Apalara, T.A. Optimal decay for a porous elasticity system with memory. J. Math. Anal. Appl. 2019, 470, 1108–1128. [Google Scholar] [CrossRef]
- Feng, B.; Yan, L.; Junior, D.S.A. Stabilization for an inhomogeneous porous-elastic system with temperature and microtemperature. ZAMM-J. Appl. Math. Mech. FüR Angew. Math. Und Mech. 2021, 101, e202000058. [Google Scholar] [CrossRef]
- Handy, R.L. A Stress Path Model for Collapsible Loess. In Genesis and Properties of Collapsible Soils; Springer: Dordrecht, The Netherlands, 1995; pp. 33–47. [Google Scholar]
- Karalis, T.K. On the elastic deformation of non-saturated swelling soils. Acta Mech. 1990, 84, 19–45. [Google Scholar] [CrossRef]
- Leonard, R.L. Expansive Soils Shallow Foundation; Regent Centre, University of Kansas: Lawrence, KS, USA, 1989. [Google Scholar]
- Bazarra, N.; Fernández, J.R.; Quintanilla, R. Lord-Shulman thermoelasticity with microtemperatures. Appl. Math. Optim. 2020, 84, 1667–1685. [Google Scholar] [CrossRef]
- Lord, H.W.; Shulman, Y. A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 1967, 15, 299–309. [Google Scholar] [CrossRef]
- Dridi, H.; Djebabla, A. On the stabilization of linear porous elastic materials by microtemperature effect and porous damping. Ann. Dell Univ. Ferrara 2020, 66, 13–25. [Google Scholar] [CrossRef]
- Iesan, D. Thermoelasticity of bodies wih microstructure and microtemperatures. Int. J. Solids Struct. 2007, 44, 8648–8662. [Google Scholar] [CrossRef]
- Iesan, D. On a theory of micromorphic elastic solids with microtemperatures. J. Therm. Stress. 2001, 24, 737–752. [Google Scholar]
- Iesan, D.; Quintanilla, R. On a theory of thermoelasticity with microtemperature. J. Therm. Stress. 2000, 23, 199–215. [Google Scholar]
- Pazy, A. Semigroups of Linear Operateus and Applications to Partial Differential Equations; Applied Mathematics Sciences; Springer: New York, NY, USA, 1983. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choucha, A.; Boulaaras, S.; Jan, R.; AbaOud, M.; Alrajhi, R. Well-Posedness and Stability Results for Lord Shulman Swelling Porous Thermo-Elastic Soils with Microtemperature and Distributed Delay. Mathematics 2023, 11, 4785. https://doi.org/10.3390/math11234785
Choucha A, Boulaaras S, Jan R, AbaOud M, Alrajhi R. Well-Posedness and Stability Results for Lord Shulman Swelling Porous Thermo-Elastic Soils with Microtemperature and Distributed Delay. Mathematics. 2023; 11(23):4785. https://doi.org/10.3390/math11234785
Chicago/Turabian StyleChoucha, Abdelbaki, Salah Boulaaras, Rashid Jan, Mohammed AbaOud, and Rowaida Alrajhi. 2023. "Well-Posedness and Stability Results for Lord Shulman Swelling Porous Thermo-Elastic Soils with Microtemperature and Distributed Delay" Mathematics 11, no. 23: 4785. https://doi.org/10.3390/math11234785
APA StyleChoucha, A., Boulaaras, S., Jan, R., AbaOud, M., & Alrajhi, R. (2023). Well-Posedness and Stability Results for Lord Shulman Swelling Porous Thermo-Elastic Soils with Microtemperature and Distributed Delay. Mathematics, 11(23), 4785. https://doi.org/10.3390/math11234785