An Innovative Approach to Nonlinear Fractional Shock Wave Equations Using Two Numerical Methods
Abstract
:1. Introduction
2. Basic Definitions
3. General Methodology of the HPTM
4. General Methodology of the YTDM
5. Applications
Example
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order; Academic Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Mofarreh, F.; Khan, A.; Shah, R. A Comparative Analysis of Fractional-Order Fokker-Planck Equation. Symmetry 2023, 15, 430. [Google Scholar] [CrossRef]
- Naeem, M.; Yasmin, H.; Shah, N.A.; Nonlaopon, K. Investigation of Fractional Nonlinear Regularized Long-Wave Models via Novel Techniques. Symmetry 2023, 15, 220. [Google Scholar] [CrossRef]
- Alshehry, A.S.; Shah, N.A.; Shah, R.; Nonlaopon, K. Implementation of Yang residual power series method to solve fractional non-linear systems. AIMS Math. 2023, 8, 8294–8309. [Google Scholar] [CrossRef]
- Alderremy, A.A.; Shah, R.; Aly, S.; Nonlaopon, K. Comparison of two modified analytical approaches for the systems of time fractional partial differential equations. AIMS Math. 2023, 8, 7142–7162. [Google Scholar] [CrossRef]
- Machado, J.A.; Tenreiro, C. An Introduction to the Numerical Solution of Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Xie, Z.; Feng, X.; Chen, X. Partial Least Trimmed Squares Regression. Chemom. Intell. Lab. Syst. 2022, 221, 104486. [Google Scholar] [CrossRef]
- Li, X.; Dong, Z.; Wang, L.; Niu, X.; Yamaguchi, H.; Li, D.; Yu, P. A Magnetic Field Coupling Fractional Step Lattice Boltzmann Model for the Complex Interfacial Behavior in Magnetic Multiphase Flows. Appl. Math. Model. 2023, 117, 219–250. [Google Scholar] [CrossRef]
- Xu, S.; Dai, H.; Feng, L.; Chen, H.; Chai, Y.; Zheng, W.X. Fault Estimation for Switched Interconnected Nonlinear Systems with External Disturbances via Variable Weighted Iterative Learning. IEEE Trans. Circuits Syst. II Express Briefs 2023. [Google Scholar] [CrossRef]
- Sun, L.; Hou, J.; Xing, C.; Fang, Z. A Robust Hammerstein-Wiener Model Identification Method for Highly Nonlinear Systems. Processes 2022, 10, 2664. [Google Scholar] [CrossRef]
- Wang, L.; Liu, G.; Xue, J.; Wong, K. Channel Prediction Using Ordinary Differential Equations for MIMO Systems. IEEE Trans. Veh. Technol. 2022, 72, 2111–2119. [Google Scholar] [CrossRef]
- Burgers, J.M. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1939, 1, 171–199. [Google Scholar]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR 1941, 30, 299–303. [Google Scholar]
- Courant, R.; Friedrichs, K.; Lewy, H. On the partial difference equations of mathematical physics. IBM J. Res. Dev. 1952, 11, 215–234. [Google Scholar] [CrossRef]
- Bona, J.L.; Chen, M.; Saut, J.C. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II: Nonlinear theory. Nonlinearity 2002, 15, 1–44. [Google Scholar] [CrossRef] [Green Version]
- Kirane, M.; Abdeljabbar, A. Nonexistence of Global Solutions of Systems of Time Fractional Differential equations posed on the Heisenberg group. Math. Methods Appl. Sci. 2022, 45, 7336–7345. [Google Scholar] [CrossRef]
- Rahman, Z.; Abdeljabbar, A.; Ali, M.Z. Novel Precise Solitary Wave Solutions of Two Time Fractional Nonlinear Evolution Models via the MSE Scheme. Fractal Fract. 2022, 6, 444. [Google Scholar] [CrossRef]
- Xie, X.; Wang, T.; Zhang, W. Existence of Solutions for the (p,q)-Laplacian Equation with Nonlocal Choquard Reaction. Appl. Math. Lett. 2023, 135, 108418. [Google Scholar] [CrossRef]
- Xu, K.; Guo, Y.; Liu, Y.; Deng, X.; Chen, Q.; Ma, Z. 60-GHz Compact Dual-Mode On-Chip Bandpass Filter Using GaAs Technology. IEEE Electron Device Lett. 2021, 42, 1120–1123. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, K.; Li, J.; Guo, Y.; Zhang, A.; Chen, Q. Millimeter-Wave E-Plane Waveguide Bandpass Filters Based on Spoof Surface Plasmon Polaritons. IEEE Trans. Microw. Theory Tech. 2022, 70, 4399–4409. [Google Scholar] [CrossRef]
- Liu, K.; Yang, Z.; Wei, W.; Gao, B.; Xin, D.; Sun, C.; Wu, G. Novel Detection Approach for Thermal Defects: Study on Its Feasibility and Application to Vehicle Cables. High Voltage 2022, 1–10. [Google Scholar] [CrossRef]
- Lu, S.; Yang, B.; Xiao, Y.; Liu, S.; Liu, M.; Yin, L.; Zheng, W. Iterative Reconstruction of Low-Dose CT Based on Differential Sparse. Biomed. Signal Process. Control 2023, 79, 104204. [Google Scholar] [CrossRef]
- Shen, M.; Li, Y.; Li, X.; Zhang, X. The analytical solutions and numerical simulations of the Burgers equation with variable coefficients. Symmetry 2019, 11, 1267. [Google Scholar] [CrossRef]
- Alesemi, M.; Shahrani, J.S.A.; Iqbal, N.; Shah, R.; Nonlaopon, K. Analysis and Numerical Simulation of System of Fractional Partial Differential Equations with Non-Singular Kernel Operators. Symmetry 2023, 15, 233. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.; Kim, J. The numerical solutions of the nonlinear shock wave equation with boundary conditions. J. Comput. Phys. 2019, 396, 490–526. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Y.; Sun, L. The comparison of finite difference and finite volume methods for the numerical solutions of the nonlinear shock wave equation. Appl. Math. Comput. 2020, 365, 180–194. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Xu, Y. The analysis of the stability of the shock wave solutions of the nonlinear wave equation. J. Math. Anal. Appl. 2020, 489, 326–341. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Y. Numerical Solutions of the Fractional Nonlinear Shock Wave Equation. Mathematics 2021, 9, 23. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J. Analytical solutions for the fractional nonlinear shock wave equation. J. Appl. Math. Phys. 2020, 8, 2662–2668. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y. A numerical solution for fractional nonlinear shock wave equation by Adomian decomposition method. J. Appl. Math. Phys. 2019, 7, 2057–2064. [Google Scholar] [CrossRef]
- Lyu, W.; Wang, Z. Logistic damping effect in chemotaxis models with density-suppressed motility. Adv. Nonlinear Anal. 2023, 12. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Y. Study on the fractional nonlinear shock wave equation by the Adomian decomposition method. J. Appl. Math. Phys. 2017, 5, 2682–2687. [Google Scholar] [CrossRef]
- He, J.H. A new perturbation method. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- Elzaki, T.M. A novel nonlinear transform method for solving linear and nonlinear partial differential equations. J. Math. Anal. Appl. 2010, 365, 397–407. [Google Scholar]
- Chen, Y. Applications of homotopy perturbation method to nonlinear problems. Nonlinear Sci. Lett. A 2015, 6, 259–263. [Google Scholar]
- Lu, J.Y.; Chen, G.R. The combination of homotopy perturbation method and Elzaki transform for solving nonlinear problems. J. Math. Anal. Appl. 2016, 433, 738–747. [Google Scholar]
- Elzaki, T.M.; Mustafa, M.M. New method for solving nonlinear differential equations. J. Appl. Math. 2011. [Google Scholar]
- Khodaei, S.; Aligholi, M.; Niroom, F. Application of the Adomian decomposition method and Elzaki transform for solving nonlinear differential equations. J. Appl. Math. Phys. 2015, 3, 757–764. [Google Scholar]
- Elzaki, T.M. The new integral transform Elzaki transform. Glob. J. Pure Appl. Math. 2011, 7, 57–64. [Google Scholar]
- Elzaki, T.M.; Hilal, E.M.; Arabia, J.S.; Arabia, J.S. Homotopy perturbation and Elzaki transform for solving nonlinear partial differential equations. Math. Theory Model. 2012, 2, 33–42. [Google Scholar]
℘ | ||||||
---|---|---|---|---|---|---|
0.2 | 0.000004490 | 0.000004487 | 0.000004483 | 0.000004483 | 0.000004479 | |
0.4 | 0.000005481 | 0.000005479 | 0.000005476 | 0.000005476 | 0.000005470 | |
0.01 | 0.6 | 0.000006693 | 0.000006691 | 0.000006688 | 0.000006688 | 0.000006681 |
0.8 | 0.000008171 | 0.000008171 | 0.000008169 | 0.000008169 | 0.000008161 | |
1 | 0.000009982 | 0.000009980 | 0.000009978 | 0.000009978 | 0.000009968 | |
0.2 | 0.000004490 | 0.000004487 | 0.000004483 | 0.000004483 | 0.000004474 | |
0.4 | 0.000005482 | 0.000005478 | 0.000005476 | 0.000005476 | 0.000005465 | |
0.02 | 0.6 | 0.000006693 | 0.000006690 | 0.000006688 | 0.000006688 | 0.000006675 |
0.8 | 0.000008177 | 0.000008172 | 0.000008169 | 0.000008169 | 0.000008153 | |
1 | 0.000009987 | 0.000009982 | 0.000009978 | 0.000009978 | 0.000009958 | |
0.2 | 0.000004489 | 0.000004485 | 0.000004483 | 0.000004483 | 0.000004470 | |
0.4 | 0.000005489 | 0.00000583 | 0.000005476 | 0.000005476 | 0.000005459 | |
0.03 | 0.6 | 0.000006693 | 0.000006690 | 0.000006688 | 0.000006688 | 0.000006668 |
0.8 | 0.000008179 | 0.000008174 | 0.000008169 | 0.000008169 | 0.000008145 | |
1 | 0.000009989 | 0.000009982 | 0.000009978 | 0.000009978 | 0.000009948 | |
0.2 | 0.000004492 | 0.000004487 | 0.000004483 | 0.000004483 | 0.000004465 | |
0.4 | 0.000005487 | 0.000005481 | 0.000005476 | 0.000005476 | 0.000005454 | |
0.04 | 0.6 | 0.000006699 | 0.000006691 | 0.000006688 | 0.000006688 | 0.000006661 |
0.8 | 0.000008183 | 0.000008177 | 0.000008169 | 0.000008169 | 0.000008136 | |
1 | 0.000009999 | 0.000009983 | 0.000009978 | 0.000009978 | 0.000009938 | |
0.2 | 0.000004497 | 0.000004489 | 0.000004483 | 0.000004483 | 0.000004461 | |
0.4 | 0.000005490 | 0.000005479 | 0.000005476 | 0.000005476 | 0.000005448 | |
0.05 | 0.6 | 0.000006697 | 0.000006691 | 0.000006688 | 0.000006688 | 0.000006655 |
0.8 | 0.000008191 | 0.000008185 | 0.000008169 | 0.000008169 | 0.000008128 | |
1 | 0.000009997 | 0.000009988 | 0.000009978 | 0.000009978 | 0.000009928 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alesemi, M. An Innovative Approach to Nonlinear Fractional Shock Wave Equations Using Two Numerical Methods. Mathematics 2023, 11, 1253. https://doi.org/10.3390/math11051253
Alesemi M. An Innovative Approach to Nonlinear Fractional Shock Wave Equations Using Two Numerical Methods. Mathematics. 2023; 11(5):1253. https://doi.org/10.3390/math11051253
Chicago/Turabian StyleAlesemi, Meshari. 2023. "An Innovative Approach to Nonlinear Fractional Shock Wave Equations Using Two Numerical Methods" Mathematics 11, no. 5: 1253. https://doi.org/10.3390/math11051253
APA StyleAlesemi, M. (2023). An Innovative Approach to Nonlinear Fractional Shock Wave Equations Using Two Numerical Methods. Mathematics, 11(5), 1253. https://doi.org/10.3390/math11051253