A Novel Approach to Solving Fractional-Order Kolmogorov and Rosenau–Hyman Models through the q-Homotopy Analysis Transform Method
Abstract
:1. Introduction
2. Preliminaries
3. Methodology
4. Numerical Problems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Yu, L.; Jiang, J.; Wu, Y.; Cui, Y. Solutions for a singular Hadamard-type fractional differential equation by the spectral construct analysis. J. Funct. Spaces 2020, 2020, 8392397. [Google Scholar] [CrossRef]
- He, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. A singular fractional Kelvin–Voigt model involving a nonlinear operator and their convergence properties. Bound. Value Probl. 2019, 2019, 112. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Oldham, K.B.; Spanier, J. The Fractional Calculus. In Integrations and Differentiations of Arbitrary Order; Descartes Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Xie, Z.; Feng, X.; Chen, X. Partial Least Trimmed Squares Regression. Chemom. Intell. Lab. Syst. 2022, 221, 104486. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Abu Arqub, O.; Hadid, S. An attractive analytical technique for coupled system of fractional partial differential equations in shallow water waves with conformable derivative. Commun. Theor. Phys. 2020, 72, 085001. [Google Scholar] [CrossRef]
- Jleli, M.; Kumar, S.; Kumar, R.; Samet, B. Analytical approach for time fractional wave equations in the sense of Yang-Abdel-Aty-Cattani via the homotopy perturbation transform method. Alex. Eng. J. 2020, 59, 2859–2863. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Meng, L.; Chen, X.; Yuan, L.; Cai, Q.; Huang, G. Non-parametric Partial Least Squares-Discriminant Analysis Model Based on Sum of Ranking Difference Algorithm for Tea Grade Identification Using Electronic Tongue Data. Sensors Actuators Chem. 2020, 311, 127924. [Google Scholar] [CrossRef]
- Hasan, S.; El-Ajou, A.; Hadid, S.; Al-Smadi, M.; Momani, S. Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system. Chaos Solitons Fractals 2020, 133, 109624. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Abu Arqub, O.; Momani, S. A computational method for two-point boundary value problems of fourth-order mixed integrodifferential equations. Math. Probl. Eng. 2013, 2013, 832074. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Dutta, H.; Hasan, S.; Momani, S. On numerical approximation of Atangana-Baleanu-Caputo fractional integrodifferential equations under uncertainty in Hilbert Space. Math. Model. Nat. Phenom. 2021, 16, 41. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, L.; Yang, L.; Cao, S. Heuristics to Sift Extraneous Factors in Dixon Resultants. J. Symb. Comput. 2022, 112, 105–121. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Abu Arqub, O.; Gaith, M. Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive reproducing kernel framework. Math. Methods Appl. Sci. 2021, 44, 8472–8489. [Google Scholar] [CrossRef]
- Li, X.; Dong, Z.; Wang, L.; Niu, X.; Yamaguchi, H.; Li, D.; Yu, P. A Magnetic Field Coupling Fractional Step Lattice Boltzmann Model for the Complex Interfacial Behavior in Magnetic Multiphase Flows. Appl. Math. Model. 2023, 117, 219–250. [Google Scholar] [CrossRef]
- Odibat, Z.; Momani, S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 2006, 7, 27–34. [Google Scholar] [CrossRef]
- Sun, L.; Hou, J.; Xing, C.; Fang, Z. A Robust Hammerstein-Wiener Model Identification Method for Highly Nonlinear Systems. Processes 2022, 10, 2664. [Google Scholar] [CrossRef]
- Hasan, S.; Al-Smadi, M.; El-Ajou, A.; Momani, S.; Hadid, S.; Al-Zhour, Z. Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system. Chaos Solitons Fractals 2021, 143, 110506. [Google Scholar] [CrossRef]
- Liu, K.; Yang, Z.; Wei, W.; Gao, B.; Xin, D.; Sun, C.; Wu, G. Novel Detection Approach for Thermal Defects: Study on Its Feasibility and Application to Vehicle Cables. High Volt. 2022, 1–10. [Google Scholar] [CrossRef]
- Kumar, S. A new fractional modeling arising in engineering sciences and its analytical approximate solution. Alex. Eng. J. 2013, 52, 813–819. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Guo, Y.; Liu, Y.; Deng, X.; Chen, Q.; Ma, Z. 60-GHz Compact Dual-Mode On-Chip Bandpass Filter Using GaAs Technology. IEEE Electron Device Lett. 2021, 42, 1120–1123. [Google Scholar] [CrossRef]
- Mofarreh, F.; Khan, A.; Abdeljabbar, A. A Comparative Analysis of Fractional-Order Fokker-Planck Equation. Symmetry 2023, 15, 430. [Google Scholar] [CrossRef]
- Naeem, M.; Yasmin, H.; Shah, N.A.; Nonlaopon, K. Investigation of Fractional Nonlinear Regularized Long-Wave Models via Novel Techniques. Symmetry 2023, 15, 220. [Google Scholar] [CrossRef]
- Alshehry, A.S.; Ullah, R.; Shah, N.A.; Nonlaopon, K. Implementation of Yang residual power series method to solve fractional non-linear systems. AIMS Math. 2023, 8, 8294–8309. [Google Scholar] [CrossRef]
- Alderremy, A.A.; Shah, R.; Aly, S.; Nonlaopon, K. Comparison of two modified analytical approaches for the systems of time fractional partial differential equations. AIMS Math. 2023, 8, 7142–7162. [Google Scholar] [CrossRef]
- Alyobi, S.; Khan, A.; Shah, N.A.; Nonlaopon, K. Fractional Analysis of Nonlinear Boussinesq Equation under Atangana-Baleanu-Caputo Operator. Symmetry 2022, 14, 2417. [Google Scholar] [CrossRef]
- Alshehry, A.S.; Shah, R.; Dassios, I. A reliable technique for solving fractional partial differential equation. Axioms 2022, 11, 574. [Google Scholar] [CrossRef]
- Sukhinov, A.; Chistyakov, A.; Nikitina, E.T.E.A.; Belova, Y. The Construction and Research of the Modified Upwind Leapfrog Difference Scheme with Improved Dispersion Properties for the Korteweg-de Vries Equation. Mathematics 2022, 10, 2922. [Google Scholar] [CrossRef]
- Sukhinov, A.; Chistyakov, A.; Kuznetsova, I.; Belova, Y.; Rahimbaeva, E. Development and Research of a Modified Upwind Leapfrog Scheme for Solving Transport Problems. Mathematics 2022, 10, 3564. [Google Scholar] [CrossRef]
- Salnikov, N.N. Construction of Weight Functions of the Petrov-Galerkin Method for Convection-Diffusion-Reaction Equations in the Three-Dimensional Case. Cybern. Syst. Anal. 2014, 50, 805–814. [Google Scholar] [CrossRef]
- Siryk, S.V.; Salnikov, N.N. Numerical solution of Burgers’ equation by Petrov-Galerkin method with adaptive weighting functions. J. Autom. Inf. Sci. 2012, 44, 50–67. [Google Scholar] [CrossRef]
- Salnikov, N.N.; Siryk, S.V.; Tereshchenko, I.A. On construction of finite-dimensional mathematical model of convection-diffusion process with usage of the Petrov-Galerkin method. J. Autom. Inf. Sci. 2010, 42, 67–83. [Google Scholar] [CrossRef]
- AbdulRidha, M.W.; Kashkool, H.A. Space-Time Petrov-Discontinuous Galerkin Finite Element Method for Solving Linear ConvectionDiffusion Problems. J. Phys. Conf. Ser. 2022, 2322, 012007. [Google Scholar] [CrossRef]
- Saadoon, J.J.; Kashkool, H.A. hp-discontinuous Galerkin Finite Element Method for Incompressible Miscible Displacement in Porous Media. J. Phys. Conf. Ser. 2020, 1530, 012001. [Google Scholar]
- Singh, J.; Kumar, D.; Swroop, R. Numerical solution of time- and space-fractional coupled Burgers’ equations via homotopy algorithm. Alex. Eng. J. 2016, 55, 1753–1763. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, K.; Li, J.; Guo, Y.; Zhang, A.; Chen, Q. Millimeter-Wave E-Plane Waveguide Bandpass Filters Based on Spoof Surface Plasmon Polaritons. IEEE Trans. Microw. Theory Tech. 2022, 70, 4399–4409. [Google Scholar] [CrossRef]
- Jin, H.; Wang, Z. Boundedness, Blowup and Critical Mass Phenomenon in Competing Chemotaxis. J. Differ. Equations 2016, 260, 162–196. [Google Scholar] [CrossRef]
- Jin, H.Y.; Wang, Z. Asymptotic Dynamics of the One-Dimensional Attraction-Repulsion Keller-Segel Model. Math. Methods Appl. Sci. 2015, 38, 444–457. [Google Scholar] [CrossRef]
- Ciancio, A. Analysis of time series with wavelets. Int. J. Wavelets Multiresolut. Inf. Process. 2007, 5, 241–256. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. arXiv 2016, arXiv:1602.03408. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Kumar, D.; Singh, J. An efficient analytical technique for fractional model of vibration equation. Appl. Math. Model. 2017, 45, 192–204. [Google Scholar] [CrossRef]
- Liao, S.J. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 1992. [Google Scholar]
- Liao, S.J. Homotopy analysis method and its applications in mathematics. J. Basic Sci. Eng. 1997, 5, 111–125. [Google Scholar]
- Liao, S. Beyond Perturbation: Introduction to Homotopy Analysis Method; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Liao, S.J. Notes on the homotopy analysis method: Some definitions and theorems. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 83–97. [Google Scholar] [CrossRef]
Exact | AE | |||
---|---|---|---|---|
0.1 | 0 | 1.105166667 | 1.105170918 | 4.251 × |
0.3 | 1.326200000 | 1.326205102 | 5.102 × | |
0.5 | 1.547233333 | 1.547239285 | 5.952 × | |
0.7 | 1.547239285 | 1.768273469 | 6.802 × | |
0.9 | 1.989300000 | 1.989307652 | 7.652 × | |
1 | 2.210333333 | 2.210341836 | 8.503 × | |
0.3 | 0 | 1.221333333 | 1.221402758 | 6.9425 × |
0.3 | 1.465600000 | 1.465683310 | 8.3310 × | |
0.5 | 1.709866667 | 1.709963861 | 9.7194 × | |
0.7 | 1.954133333 | 1.954244413 | 1.11080 × | |
0.9 | 2.198400000 | 2.198524964 | 1.24964 × | |
1 | 2.442666667 | 2.442805516 | 1.38849 × |
Exact | AE | |||
---|---|---|---|---|
0.1 | 0 | 10.56035556 | 10.56035508 | 4.8 × |
0.3 | 10.64002126 | 10.64002221 | 9.5 × | |
0.5 | 10.66666431 | 10.66666667 | 2.36 × | |
0.7 | 10.64001846 | 10.64002221 | 3.75 × | |
0.9 | 10.56034998 | 10.56035508 | 5.10 × | |
1 | 10.42845487 | 10.40846247 | 6.400 × | |
0.2 | 0 | 10.24568889 | 10.24565863 | 3.026 × |
0.3 | 10.42833314 | 10.48246127 | 1.616 × | |
0.5 | 10.45689126 | 10.56035508 | 7.043 × | |
0.7 | 10.63991712 | 10.64002221 | 1.0408 × | |
0.9 | 10.66651797 | 10.66666667 | 1.3770 × | |
1 | 10.63983139 | 10.46003331 | 1.8972 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seddek, L.F.; El-Zahar, E.R.; Chung, J.D.; Shah, N.A. A Novel Approach to Solving Fractional-Order Kolmogorov and Rosenau–Hyman Models through the q-Homotopy Analysis Transform Method. Mathematics 2023, 11, 1321. https://doi.org/10.3390/math11061321
Seddek LF, El-Zahar ER, Chung JD, Shah NA. A Novel Approach to Solving Fractional-Order Kolmogorov and Rosenau–Hyman Models through the q-Homotopy Analysis Transform Method. Mathematics. 2023; 11(6):1321. https://doi.org/10.3390/math11061321
Chicago/Turabian StyleSeddek, Laila F., Essam R. El-Zahar, Jae Dong Chung, and Nehad Ali Shah. 2023. "A Novel Approach to Solving Fractional-Order Kolmogorov and Rosenau–Hyman Models through the q-Homotopy Analysis Transform Method" Mathematics 11, no. 6: 1321. https://doi.org/10.3390/math11061321
APA StyleSeddek, L. F., El-Zahar, E. R., Chung, J. D., & Shah, N. A. (2023). A Novel Approach to Solving Fractional-Order Kolmogorov and Rosenau–Hyman Models through the q-Homotopy Analysis Transform Method. Mathematics, 11(6), 1321. https://doi.org/10.3390/math11061321