Design and Analysis of a New COVID-19 Model with Comparative Study of Control Strategies
Abstract
:1. Introduction
2. Model Formulation
3. Physical Properties of the Model
3.1. Existence and Uniqueness of the Solution:
Uniqueness
3.2. Boundedness and Positivity
4. Equilibrium Points and Reproduction Number
4.1. Equilibrium Points
4.2. Reproduction Number
5. Stability Analysis
5.1. Local Stability
5.2. Global Stability at DFE
5.3. Global Behavior at EE
6. Sensitivity Analysis
7. Disease Control Strategies
7.1. Effects of Different Isolation Levels
7.2. Optimal Control Problem
7.3. Necessary Conditions
7.4. Solution Algorithm
Algorithm 1 Algorithm to find minimizer of the control problem (24) |
|
7.5. Optimal Solutions and Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and fore casting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 2020, 395, 689–697. [Google Scholar] [CrossRef]
- Liang, T.; Cai, H.; Chen, Y. Handbook of COVID-19 Prevention and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine. Compiled According to Clinical Experience; Zhejiang University School of Medicine: Hangzhou, China, 2020. [Google Scholar]
- Ahmad, W.; Abbas, M.; Rafiq, M.; Baleanu, D. Mathematical analysis for the effect of voluntary vaccination on the propagation of Corona virus pandemic. Results Phys. 2021, 31, 104917. [Google Scholar] [CrossRef]
- Butt, A.I.K.; Imran, M.; Batool, S.; Nuwairan, M.A. Theoretical Analysis of a COVID-19 CF-Fractional Model to Optimally Control the Spread of Pandemic. Symmetry 2023, 15, 380. [Google Scholar] [CrossRef]
- Ali, I.; Khan, S.U. Dynamics and simulations of stochastic COVID-19 epidemic model using Legendre spectral collocation method. AIMS Math. 2023, 8, 4220–4236. [Google Scholar] [CrossRef]
- Butt, A.I.K.; Imran, M.; Chamaleen, D.B.D.; Batool, S. Optimal control strategies for the reliable and competitive mathematical analysis of Covid-19 pandemic model. Math. Methods Appl. Sci. 2022, 46, 1528–1555. [Google Scholar] [CrossRef]
- Butt, A.I.K.; Ahmad, W.; Rafiq, M.; Baleanu, D. Numerical analysis of Atangana-Baleanu fractional model to understand the propagation of a novel corona virus pandemic. Alex. Eng. J. 2022, 61, 7007–7027. [Google Scholar] [CrossRef]
- Bangi, M.S.F.; Kwon, J.S.I. Deep hybrid modeling of chemical process: Application to hydraulic fracturing. Comput. Chem. Eng. 2020, 134, 106696. [Google Scholar] [CrossRef]
- Lee, D.; Jayaraman, A.; Kwon, J.S. Development of a hybrid model for a partially known intracellular signaling pathway through correction term estimation and neural network modeling. PLoS Comput Biol. 2020, 16, e1008472. [Google Scholar] [CrossRef]
- Shah, P.; Sheriff, M.Z.; Bangi, M.S.F.; Kravaris, C.; Kwon, J.S.I.; Botre, C.; Hirota, J. Deep neural network-based hybrid modeling and experimental validation for an industry-scale fermentation process: Identification of time-varying dependencies among parameters. Chem. Eng. J. 2022, 441, 135643. [Google Scholar] [CrossRef]
- Bangi, M.S.F.; Kao, K.; Kwon, J.S.I. Physics-informed neural networks for hybridmodeling of lab-scale batch fermentation for β-carotene production using Saccharomycescerevisiae. Chem. Eng. Res. Des. 2022, 179, 415–423. [Google Scholar] [CrossRef]
- Bangi, M.S.F.; Kwon, J.S.I. Deep hybrid model-based predictive control with guarantees on domain of applicability. AIChE J. 2023, 69, e18012. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative. Chaos Solitons Fractals 2020, 134, 109705. [Google Scholar] [CrossRef]
- Baleanu, D.; Shekari, P.; Torkzadeh, L.; Ranjbar, H.; Jajarmi, A.; Nouri, K. Stability analysis and system properties of Nipah virus transmission: A fractional calculus case study. Chaos Solitons Fractals 2023, 166, 112990. [Google Scholar] [CrossRef]
- Butt, A.I.K.; Aftab, H.; Imran, M.; Ismaeel, T. Mathematical study of lumpy skin disease with optimal control analysis through vaccination. Alex. Eng. J. 2023, 72C, 247–259. [Google Scholar] [CrossRef]
- Baleanu, D.; Ghassabzade, F.A.; Nieto, J.J.; Jajarmi, A. On a new and generalized fractional model for a real cholera outbreak. Alex. Eng. J. 2022, 61, 9175–9186. [Google Scholar] [CrossRef]
- Rafiq, M.; Ahmad, W.; Abbas, M.; Baleanu, D. A reliable and competitive mathematical analysis of Ebola epidemic model. Adv. Differ. Equ. 2020, 1, 540. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, B.; Topcu, U. Control strategies for COVID-19 epidemic with vaccination, shield immunity and quarantine: A metric temporal logic approach. PLoS ONE 2021, 16, 120. [Google Scholar] [CrossRef]
- Yang, W. Modeling COVID-19 pandemic with hierarchical quarantine and time delay. Dyn. Games Appl. 2021, 11, 892–914. [Google Scholar] [CrossRef]
- Tunç, O.; Tunç, C. Solution estimates to Caputo proportional fractional derivative delay integro-differential equations. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2023, 117, 12. [Google Scholar] [CrossRef]
- Rezapour, S.; Etemad, S.; Agarwal, R.P.; Nonlaopon, K. On a Lyapunov-Type Inequality for Control of a ψ-Model Thermostat and the Existence of Its Solutions. Mathematics 2022, 10, 4023. [Google Scholar] [CrossRef]
- Shah, K.; Ali, A.; Zeb, S.; Khan, A.; Alqudah, M.A.; Abdeljawad, T. Study of fractional order dynamics of nonlinear mathematical model. Alex. Eng. J. 2022, 61, 11211–11224. [Google Scholar] [CrossRef]
- Sintunavarat, W.; Turab, A. Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-fractional operator. Math. Comput. Simul. 2022, 198, 65–84. [Google Scholar] [CrossRef]
- Ali, I.; Khan, S.U. Threshold of Stochastic SIRS Epidemic Model from Infectious to Susceptible Class with Saturated Incidence Rate Using Spectral Method. Symmetry 2022, 14, 1838. [Google Scholar] [CrossRef]
- Ali, I.; Khan, S.U. Analysis of stochastic delayed SIRS model with exponential birth and saturated incidence rate. Chaos Solitons Fractals 2020, 138, 110008. [Google Scholar] [CrossRef]
- Khan, H.; Ahmad, F.; Tunç, O.; Idrees, M. On fractal-fractional Covid-19 mathematical model. Chaos Solitons Fractals 2022, 157, 111937. [Google Scholar] [CrossRef] [PubMed]
- Begum, R.; Tunç, O.; Khan, H.; Gulzar, H.; Khan, A. A fractional order Zika virus model with Mittag-Leffler kernel. Chaos Solitons Fractals 2021, 146, 110898. [Google Scholar] [CrossRef]
- Hanif, A.; Butt, A.I.K. Atangana-Baleanu fractional dynamics of dengue fever with optimal control strategies. AIMS Math. 2023. in press. [Google Scholar]
- Deressa, C.T.; Mussa, Y.O.; Duressa, G.F. Optimal control and sensitivity analysis for transmission dynamics of Coronavirus. Results Phys. 2020, 19, 103642. [Google Scholar] [CrossRef]
- Madubueze, C.E.; Dachollom, S.; Onwubuya, I.O. Controlling the spread of COVID-19: Optimal control analysis. Comput. Math. Methods Med. 2020, 2020, 6862516. [Google Scholar] [CrossRef]
- Yan, X.; Zou, Y. Optimal and sub-optimal quarantine and isolation control in SARS epidemics. Math. Comput. Model. 2020, 47, 235–245. [Google Scholar] [CrossRef]
- Ahmad, M.D.; Usman, M.; Khan, A.; Imran, M. Optimal control analysis of Ebola disease with control strategies of quarantine and vaccination. Infect. Disases Poverty. 2016, 5, 72. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Naveed, M.; Dur-E-Ahmad, M.; Imran, M. Estimating the basic reproductive ratio for the Ebola outbreak in Liberia and Sierra Leone. Infect. Dis. Poverty 2015, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Burden, R.L.; Faires, J.D.; Burden, A.M. Numerical Analysis; CENGAGE Learning: Boston, MA, USA, 2014. [Google Scholar]
- Diekmann, O.; Heesterbeek, J.A.P.; Metz, J.A. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 1990, 28, 365–382. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Abbas, M. Effect of quarantine on transmission dynamics of Ebola virus epidemic: A mathematical analysis. Eur. Phys. J. Plus 2021, 136, 355. [Google Scholar] [CrossRef]
- Ahmad, W.; Rafiq, M.; Abbas, M. Mathematical analysis to control the spread of Ebola virus epidemic through voluntary vaccination. Eur. Phys. J. Plus 2020, 135, 775. [Google Scholar] [CrossRef]
- Chowell, G.; Fenimore, P.W.; Castillo-Garsow, M.A.; Castillo-Chavez, C. SARS outbreaks in Ontario, Hong Kong and Singapore: The role of diagnosis and isolation as a control mechanism. J. Theor. Biol. 2003, 224, 1–8. [Google Scholar] [CrossRef]
- Hanif, A.; Butt, A.I.K.; Ahmad, S.; Din, R.U.; Mustafa Inc. A new fuzzy fractional order model of transmission of Covid-19 with quarantine class. Eur. Phys. J. Plus 2021, 136, 1179. [Google Scholar] [CrossRef]
- Castillo-Chavez, C.; Feng, Z.; Huanz, W.; Driessche, P.V.D.; Kirschner, D.E. On the computation of RO and its role in global stability. In Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Van den Driessche, P. Reproduction numbers of infectious disease models. Infect. Dis. Model. 2017, 2, 288–303. [Google Scholar] [CrossRef]
- Lenhart, S.; Workman, J.T. Optimal Control Applied to Biological Models; Chapman & Hall/CRC: Boca Raton, FL, USA, 2007. [Google Scholar]
Parameter | Description | Value | Source |
---|---|---|---|
Recruitment rate | [7] | ||
Contact rate of with A | [4,6] | ||
Contact rate of with A | Assumed | ||
Contact rate of with I | [30] | ||
Contact rate of of with I | Estimated | ||
Contact rate of with H | [30] | ||
Contact rate of with H | Estimated | ||
Infectious rate | [31] | ||
Transfer rate from I to H | [30] | ||
Transfer rate from I to Q | [4,6] | ||
Transfer rate from A to Q | [4,6] | ||
Transfer rate from Q to H | [4,6] | ||
Rate of recovery of A | Assumed | ||
Rate of recovery of I | [30] | ||
Rate of recovery of H | [30]. | ||
Rate of recovery of Q | Assumed | ||
Disease-induced mortality of I | [31] | ||
Disease-induced mortality of H | [30] | ||
Disease-induced mortality of Q | [31] | ||
Natural death rate | Estimated |
Parameter | Sensitivity Value/Index | Parameter | Sensitivity Value/Index |
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butt, A.I.K.; Batool, S.; Imran, M.; Al Nuwairan, M. Design and Analysis of a New COVID-19 Model with Comparative Study of Control Strategies. Mathematics 2023, 11, 1978. https://doi.org/10.3390/math11091978
Butt AIK, Batool S, Imran M, Al Nuwairan M. Design and Analysis of a New COVID-19 Model with Comparative Study of Control Strategies. Mathematics. 2023; 11(9):1978. https://doi.org/10.3390/math11091978
Chicago/Turabian StyleButt, Azhar Iqbal Kashif, Saira Batool, Muhammad Imran, and Muneerah Al Nuwairan. 2023. "Design and Analysis of a New COVID-19 Model with Comparative Study of Control Strategies" Mathematics 11, no. 9: 1978. https://doi.org/10.3390/math11091978
APA StyleButt, A. I. K., Batool, S., Imran, M., & Al Nuwairan, M. (2023). Design and Analysis of a New COVID-19 Model with Comparative Study of Control Strategies. Mathematics, 11(9), 1978. https://doi.org/10.3390/math11091978