Advances in Physical Unclonable Functions Based on New Technologies: A Comprehensive Review
Abstract
:1. Introduction
- Analog/mixed signal PUF: PUF units in this category include analog measurements of electrical or electronic quantities. Analog electronic PUFs mainly include ICID-PUF, Coating PUF, LC-PUF, and Power Grid PUF. Analog electronic PUFs are designed to provide fingerprints to circuits, which makes them more suitable for use as identities.
- Memory-based PUF: This PUF category focuses on memory element mismatches that result in random values in the boot state. These PUFs are based on storage units and are usually available in FPGAs. Memory chips in circuits can be used to generate signatures and identities for those circuits. Static RAM PUF (SRAM PUF) and butterfly PUF are two representative types of memory-based PUFs.
- Delay-based PUF: The main focus of delay-based PUFs is the propagation delay utilizing the circuit path and how quickly the microelectronics circuit can switch the output to 0 or 1. Delay-based PUFs mainly include arbiter PUF, ring oscillator (RO) PUF, glitch PUF, IP-PUF, etc.
1.1. Motivation
1.2. Organization
2. Metrics
- Randomness: randomness denotes the inherent property of unpredictability and absence of patterns in the generated responses to challenges, ensuring that PUF outputs appear statistically random and cannot be easily replicated or predicted. The randomness evaluation of a PUF often involves the calculation of entropy, provided by the formula
- H(X): Entropy, measuring the uncertainty or randomness of the system.
- n: Number of different events in the sample space.
- P(): Probability of event x occurring.
- Reproducibility: reproducibility characterizes a PUF by its consistent behavior, where each challenge generates a unique response that remains constant over time, ensuring that the same challenge consistently yields the same response. The formula for evaluating the reproducibility of a PUF involves calculating the variance, provided by
- Var(X): Variance, a measure of the spread of the PUF responses.
- n: Number of measurements or trials.
- : Individual PUF measurement or response.
- : Mean of the PUF measurements.
- Unclonability: unclonability represents a fundamental quality in a PUF, ensuring that, when a cloned system generates a response to a specific challenge, it is distinctly different from an authentic system’s response, with differences not attributable to noise or environmental factors. The unclonability metric:
- U: Unclonability metric, indicating the resistance against cloning.
- N: Number of pairs of distinct challenges.
- M: Number of responses for each challenge.
- , : Different challenge–response pairs.
- f(·): PUF response function.
- : Delta function, outputting 1 if the inputs are equal, 0 otherwise.
- Reconfigurability: reconfigurability refers to the inherent property of a PUF wherein it possesses the capability to undergo a transformation, rendering the CRPs of the altered PUF entirely unpredictable and uncorrelated with those of the original PUF. The reconfigurability of a PUF can be assessed using the coefficient of variation (CV) calculated as follows:
- CV: Coefficient of Variation, measures the relative variability of the PUF responses under different configurations.
- : Standard deviation of the PUF responses.
- : Mean (average) of the PUF responses.
- Robustness: robustness represents the ability of a PUF to maintain its functionality and produce reliable responses despite variations in operating conditions, environmental factors, or minor manufacturing discrepancies, ensuring its resilience and consistent performance. The robustness of a PUF is often assessed using the bit stability metric, defined as
- Bit Stability: A measure of the stability of individual bits across multiple measurements.
- N: Number of measurements or trials.
- L: Number of bits in a single PUF response.
- (b): Delta function indicating whether the j-th bit in the i-th measurement is stable
- ((b) or not ((b = 0)).
3. PUFs in Various Novel Materials and Methods
3.1. Bionic Optical PUFs
3.2. Biological PUFs
3.2.1. PUFs Utilizing T Cells
3.2.2. PUFs Extract ECG Features
3.3. PUFs Based on Printed Electronics
3.4. Memristor-Based PUFs
4. Performance Evaluation of PUF
5. Potential Shortcomings or Areas for Improvement
6. Application
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.K.; Cho, M.C.Y.; Wang, C.W.; Hsu, C.W.; Chen, C.K.; Shieh, S. IoT security: Ongoing challenges and research opportunities. In Proceedings of the 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications, Matsue, Japan, 17–19 November 2014; IEEE: New York, NY, USA, 2014; pp. 230–234. [Google Scholar]
- Bada, M.; Nurse, J.R. The social and psychological impact of cyberattacks. In Emerging Cyber Threats and Cognitive Vulnerabilities; Elsevier: Amsterdam, The Netherlands, 2020; pp. 73–92. [Google Scholar]
- Goldwasser, S.; Micali, S.; Rivest, R.L. A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 1988, 17, 281–308. [Google Scholar] [CrossRef]
- Schramm, K.; Wollinger, T.; Paar, C. A new class of collision attacks and its application to DES. In Proceedings of the Fast Software Encryption: 10th International Workshop, FSE 2003, Lund, Sweden, 24–26 February 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 206–222. [Google Scholar]
- Pappu, R.; Recht, B.; Taylor, J.; Gershenfeld, N. Physical one-way functions. Science 2002, 297, 2026–2030. [Google Scholar] [CrossRef] [PubMed]
- Ning, H.; Farha, F.; Ullah, A.; Mao, L. Physical unclonable function: Architectures, applications and challenges for dependable security. IET Circuits, Devices Syst. 2020, 14, 407–424. [Google Scholar] [CrossRef]
- Mall, P.; Amin, R.; Das, A.K.; Leung, M.T.; Choo, K.K.R. PUF-based authentication and key agreement protocols for IoT, WSNs, and Smart Grids: A comprehensive survey. IEEE Internet Things J. 2022, 9, 8205–8228. [Google Scholar] [CrossRef]
- Dey, K.; Kule, M.; Rahaman, H. PUF based hardware security: A review. In Proceedings of the 2021 International Symposium on Devices, Circuits and Systems (ISDCS), Higashihiroshima, Japan, 3–5 March 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar]
- Khalafalla, M.; Gebotys, C. PUFs deep attacks: Enhanced modeling attacks using deep learning techniques to break the security of double arbiter PUFs. In Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy, 25–29 March 2019; IEEE: New York, NY, USA, 2019; pp. 204–209. [Google Scholar]
- Wei, S.; Wendt, J.B.; Nahapetian, A.; Potkonjak, M. Reverse engineering and prevention techniques for physical unclonable functions using side channels. In Proceedings of the 51st Annual Design Automation Conference, San Francisco, CA, USA, 1–5 June 2014; pp. 1–6. [Google Scholar]
- Wali, A.; Dodda, A.; Wu, Y.; Pannone, A.; Reddy Usthili, L.K.; Ozdemir, S.K.; Ozbolat, I.T.; Das, S. Biological physically unclonable function. Commun. Phys. 2019, 2, 39. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, P.; Huang, F.; Yuan, J.; Li, D.; Chen, K.; Kang, J.; Li, Q.; Zhang, T.; Sun, S.; et al. Bionic optical physical unclonable functions for authentication and encryption. J. Mater. Chem. C 2021, 9, 13200–13208. [Google Scholar] [CrossRef]
- Scholz, A.; Zimmermann, L.; Gengenbach, U.; Koker, L.; Chen, Z.; Hahn, H.; Sikora, A.; Tahoori, M.B.; Aghassi-Hagmann, J. Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors. Nat. Commun. 2020, 11, 5543. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Bae, C.; Kim, S.J.; Seo, J.s. Designing ECG-based physical unclonable function for security of wearable devices. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; IEEE: New York, NY, USA, 2017; pp. 3509–3512. [Google Scholar]
- Li, Y.; Bidmeshki, M.M.; Kang, T.; Nowak, C.M.; Makris, Y.; Bleris, L. Genetic physical unclonable functions in human cells. Sci. Adv. 2022, 8, eabm4106. [Google Scholar] [CrossRef]
- Zhang, T.; Shu, Z.; Zhang, L.; Chen, Y.; Feng, Z.; Hu, Y.; Huang, F.; Wang, P.; Li, D.; Yao, Y.; et al. Random Nanofracture-Enabled Physical Unclonable Function. Adv. Mater. Technol. 2021, 6, 2001073. [Google Scholar] [CrossRef]
- Hu, Z.; Comeras, J.M.M.L.; Park, H.; Tang, J.; Afzali, A.; Tulevski, G.S.; Hannon, J.B.; Liehr, M.; Han, S.J. Physically unclonable cryptographic primitives using self-assembled carbon nanotubes. Nat. Nanotechnol. 2016, 11, 559–565. [Google Scholar] [CrossRef]
- Park, K.; Jung, K.; Kwon, S.J.; Jang, H.S.; Byun, D.; Han, I.K.; Ko, H. Plasmonic Nanowire-Enhanced Upconversion Luminescence for Anticounterfeit Devices. Adv. Funct. Mater. 2016, 26, 7836–7846. [Google Scholar] [CrossRef]
- Smith, J.D.; Reza, M.A.; Smith, N.L.; Gu, J.; Ibrar, M.; Crandall, D.J.; Skrabalak, S.E. Plasmonic anticounterfeit tags with high encoding capacity rapidly authenticated with deep machine learning. ACS Nano 2021, 15, 2901–2910. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.M.; Kim, W.K.; Jin, I.K.; Lee, S.W.; Choi, Y.K. Multilevel States of Nano-Electromechanical Switch for a PUF-Based Security Device. Small 2019, 15, 1803825. [Google Scholar] [CrossRef] [PubMed]
- Arppe, R.; Sørensen, T.J. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem. 2017, 1, 0031. [Google Scholar] [CrossRef]
- Goorden, S.A.; Horstmann, M.; Mosk, A.P.; Škorić, B.; Pinkse, P.W. Quantum-secure authentication of a physical unclonable key. Optica 2014, 1, 421–424. [Google Scholar] [CrossRef]
- Choi, J.; Hua, M.; Lee, S.Y.; Jo, W.; Lo, C.Y.; Kim, S.H.; Kim, H.T.; He, X. Hydrocipher: Bioinspired dynamic structural color-based cryptographic surface. Adv. Opt. Mater. 2020, 8, 1901259. [Google Scholar] [CrossRef]
- Chen, F.; Li, Q.; Li, M.; Huang, F.; Zhang, H.; Kang, J.; Wang, P. Unclonable fluorescence behaviors of perovskite quantum dots/chaotic metasurfaces hybrid nanostructures for versatile security primitive. Chem. Eng. J. 2021, 411, 128350. [Google Scholar] [CrossRef]
- Jacucci, G.; Schertel, L.; Zhang, Y.; Yang, H.; Vignolini, S. Light management with natural materials: From whiteness to transparency. Adv. Mater. 2021, 33, 2001215. [Google Scholar] [CrossRef]
- Wan, Y.; Qiu, Z.; Hong, Y.; Wang, Y.; Zhang, J.; Liu, Q.; Wu, Z.; Guo, C.F. A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures. Adv. Electron. Mater. 2018, 4, 1700586. [Google Scholar] [CrossRef]
- Qiu, Z.; Wan, Y.; Zhou, W.; Yang, J.; Yang, J.; Huang, J.; Zhang, J.; Liu, Q.; Huang, S.; Bai, N.; et al. Ionic skin with biomimetic dielectric layer templated from calathea zebrine leaf. Adv. Funct. Mater. 2018, 28, 1802343. [Google Scholar] [CrossRef]
- Horstmeyer, R.; Judkewitz, B.; Vellekoop, I.M.; Assawaworrarit, S.; Yang, C. Physical key-protected one-time pad. Sci. Rep. 2013, 3, 3543. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, Z.; Zhu, C.; Niu, X. Robust image hashing based on random Gabor filtering and dithered lattice vector quantization. IEEE Trans. Image Process. 2011, 21, 1963–1980. [Google Scholar] [PubMed]
- De Ru, W.G.; Eloff, J.H. Enhanced password authentication through fuzzy logic. IEEE Expert 1997, 12, 38–45. [Google Scholar] [CrossRef]
- Levisohn, S.; Kleven, S. Avian mycoplasmosis (Mycoplasma gallisepticum). Rev. Sci. Tech. 2000, 19, 425–442. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.; Mamo, G.; Karlsson, E.N. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Factories 2007, 6, 1–23. [Google Scholar] [CrossRef]
- Page, A.; Kulkarni, A.; Mohsenin, T. Utilizing deep neural nets for an embedded ECG-based biometric authentication system. In Proceedings of the 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), Atlanta, GA, USA, 22–24 October 2015; IEEE: New York, NY, USA, 2015; pp. 1–4. [Google Scholar]
- Hussein, A.F.; AlZubaidi, A.K.; Al-Bayaty, A.; Habash, Q.A. An IoT real-time biometric authentication system based on ECG fiducial extracted features using discrete cosine transform. arXiv 2017, arXiv:1708.08189. [Google Scholar]
- Yin, S.; Kim, M.; Kadetotad, D.; Liu, Y.; Bae, C.; Kim, S.J.; Cao, Y.; Seo, J.s. A 1.06 μW Smart ECG Processor in 65-nm CMOS for Real-Time Biometric Authentication and Personal Cardiac Monitoring. IEEE J. Solid-State Circuits 2019, 54, 2316–2326. [Google Scholar] [CrossRef]
- Chang, J.S.; Facchetti, A.F.; Reuss, R. A circuits and systems perspective of organic/printed electronics: Review, challenges, and contemporary and emerging design approaches. IEEE J. Emerg. Sel. Top. Circuits Syst. 2017, 7, 7–26. [Google Scholar] [CrossRef]
- Vines, B.; Rashid, M. Memristors: The fourth fundamental circuit element. In Proceedings of the 2009 International Conference on Electrical and Electronics Engineering—ELECO 2009 Bursa, Turkey, 5–8 November 2009; IEEE: New York, NY, USA, 2009; pp. II–37. [Google Scholar]
- Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Snider, G.S. Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 2007, 18, 365202. [Google Scholar] [CrossRef]
- Gaol, D.; Zhang, G.L.; Yin, X.; Li, B.; Schlichtmann, U.; Zhuo, C. Reliable memristor-based neuromorphic design using variation-and defect-aware training. In Proceedings of the 2021 IEEE/ACM International Conference on Computer Aided Design (ICCAD), Munich, Germany, 1–4 November 2021; IEEE: New York, NY, USA, 2021; pp. 1–9. [Google Scholar]
- Yang, Z.; Liu, K.; Duan, Y.; Fan, M.; Zhang, Q.; Jin, Z. Three Challenges in ReRAM-Based Process-In-Memory for Neural Network. In Proceedings of the 2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS), Hangzhou, China, 11–13 June 2023; IEEE: New York, NY, USA, 2023; pp. 1–5. [Google Scholar]
- Lei, T.; Fu, H.; Zang, H.; Huang, L.; Sun, W. Adomian Decomposition, Firing Change Process Analysis and Synchronous Control of Fractional-Order Hindmarsh–Rose Neurons in Electromagnetic Field. Processes 2023, 11, 2568. [Google Scholar] [CrossRef]
- Chen, W.; Song, L.; Wang, S.; Zhang, Z.; Wang, G.; Hu, G.; Gao, S. Essential Characteristics of Memristors for Neuromorphic Computing. Adv. Electron. Mater. 2023, 9, 2200833. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Zhang, X.; Wang, W.; Yang, R.; Sun, Z.; Feng, W.; Lin, P.; Wang, Z.; Sun, L.; et al. Memristive crossbar arrays for storage and computing applications. Adv. Intell. Syst. 2021, 3, 2100017. [Google Scholar] [CrossRef]
- Liu, X.; Zeng, Z. Memristor crossbar architectures for implementing deep neural networks. Complex Intell. Syst. 2022, 8, 787–802. [Google Scholar] [CrossRef]
- Rajendran, J.; Karri, R.; Wendt, J.B.; Potkonjak, M.; McDonald, N.; Rose, G.S.; Wysocki, B. Nano meets security: Exploring nanoelectronic devices for security applications. Proc. IEEE 2015, 103, 829–849. [Google Scholar] [CrossRef]
- Zeitouni, S.; Stapf, E.; Fereidooni, H.; Sadeghi, A.R. On the security of strong memristor-based physically unclonable functions. In Proceedings of the 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 20–24 July 2020; IEEE: New York, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Koeberl, P.; Kocabaş, Ü.; Sadeghi, A.R. Memristor PUFs: A new generation of memory-based physically unclonable functions. In Proceedings of the 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 18–22 March 2013; IEEE: New York, NY, USA, 2013; pp. 428–431. [Google Scholar]
- Choi, S.; Kim, D.; Choi, Y.; Sun, W.; Shin, H. Multibit-generating pulsewidth-based memristive-puf structure and circuit implementation. Electronics 2020, 9, 1446. [Google Scholar] [CrossRef]
- Sun, W.; Lee, J.; Kim, D.; Choi, Y. A Hardware Security Architecture: PUFs (Physical Unclonable Functions) using memristor. In Proceedings of the 2021 IEEE Region 10 Symposium (TENSYMP), Jeju, Republic of Korea, 23–25 August 2021; IEEE: New York, NY, USA, 2021; pp. 1–4. [Google Scholar]
- Kim, D.; Kim, T.H.; Choi, Y.; Lee, G.H.; Lee, J.; Sun, W.; Park, B.G.; Kim, H.; Shin, H. Selected Bit-Line Current PUF: Implementation of Hardware Security Primitive Based on a Memristor Crossbar Array. IEEE Access 2021, 9, 120901–120910. [Google Scholar] [CrossRef]
- Rose, G.S.; Meade, C.A. Performance analysis of a memristive crossbar PUF design. In Proceedings of the 52nd Annual Design Automation Conference, San Francisco, CA, USA, 8–12 June 2015; pp. 1–6. [Google Scholar]
- Gao, Y.; Ranasinghe, D.C.; Al-Sarawi, S.F.; Kavehei, O.; Abbott, D. mrPUF: A novel memristive device based physical unclonable function. In Proceedings of the Applied Cryptography and Network Security: 13th International Conference, ACNS 2015, New York, NY, USA, 2–5 June 2015; Revised Selected Papers 13. Springer: Berlin/Heidelberg, Germany, 2015; pp. 595–615. [Google Scholar]
- Kavehei, O.; Hosung, C.; Ranasinghe, D.; Skafidas, S. mrPUF: A memristive device based physical unclonable function. arXiv 2013, arXiv:1302.2191. [Google Scholar]
- Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.; Heckert, A.; et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; US Department of Commerce, Technology Administration, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2001.
- Maiti, A.; Gunreddy, V.; Schaumont, P. A systematic method to evaluate and compare the performance of physical unclonable functions. In Embedded Systems Design with FPGAs; Springer: New York, NY, USA, 2013; pp. 245–267. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Carro-Temboury, M.R.; Arppe, R.; Vosch, T.; Sørensen, T.J. An optical authentication system based on imaging of excitation-selected lanthanide luminescence. Sci. Adv. 2018, 4, e1701384. [Google Scholar] [CrossRef] [PubMed]
Category | Type | Scheme |
---|---|---|
Analogue/Mixed | ICID-PUF, SNK-PUF, C-PUF, LC-PUF, PG-PUF, CN- PUF, ULPC-PUF, SHIC PUF, PUF-FSM, NEM-PUF, MV- L-PUF, … | |
Digital | Delay-based | A-PUF, RO-PUF, G-PUF, IP-PUF, Clock PUF, SC-PUF, PE -PUF, MC-PUF, TERO-PUF, … |
Memory-based | S-PUF, B-PUF, SR-L-PUF, FF-PUF, BR-PUF, M-PUF, … |
Bionic Optical PUF | Biological PUF | PUF Utilizing PE | Memristor-Based PUF | |
---|---|---|---|---|
Entropy | High | High | Medium | High |
Uniqueness | Yes | Yes | Yes | Yes |
Randomness | Yes | Yes | Yes | Yes |
Reproducibility | Limited | Yes | Yes | Yes |
CRPS | Exponential | Exponential | Exponential | Linear |
Volatile | Non-volatile | Non-volatile | Non-volatile | Non-volatile |
Weak/Strong PUF | Strong | Strong | Strong | Strong |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Xu, J.; Wu, J.; Wu, S.; Huang, Z.; Zhang, K. Advances in Physical Unclonable Functions Based on New Technologies: A Comprehensive Review. Mathematics 2024, 12, 77. https://doi.org/10.3390/math12010077
Cao Y, Xu J, Wu J, Wu S, Huang Z, Zhang K. Advances in Physical Unclonable Functions Based on New Technologies: A Comprehensive Review. Mathematics. 2024; 12(1):77. https://doi.org/10.3390/math12010077
Chicago/Turabian StyleCao, Yuan, Jianxiang Xu, Jichun Wu, Simeng Wu, Zhao Huang, and Kaizhao Zhang. 2024. "Advances in Physical Unclonable Functions Based on New Technologies: A Comprehensive Review" Mathematics 12, no. 1: 77. https://doi.org/10.3390/math12010077
APA StyleCao, Y., Xu, J., Wu, J., Wu, S., Huang, Z., & Zhang, K. (2024). Advances in Physical Unclonable Functions Based on New Technologies: A Comprehensive Review. Mathematics, 12(1), 77. https://doi.org/10.3390/math12010077