Hybrid Deep Learning and Sensitivity Operator-Based Algorithm for Identification of Localized Emission Sources
Abstract
:1. Introduction
2. Methods
2.1. Problem Statements
2.2. Source Identification Algorithm
2.3. Estimating Reconstruction Results
2.4. Validation Basis
2.5. Deep Learning-Based Refinement of Inverse Modeling Results
- the distortion function is spatially variant (i.e., not a local convolution);
- the distortion operator has a non-empty kernel (i.e., inverse filtering is impossible);
- the high-quality restoration of images of the special “several point-wise source” class is of critical importance.
2.6. Convolutional Neural Networks
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arridge, S.; Maass, P.; Oktem, O.; Schonlieb, C.B. Solving inverse problems using data-driven models. Acta Numer. 2019, 28, 1–174. [Google Scholar] [CrossRef]
- Bonavita, M.; Laloyaux, P. Machine Learning for Model Error Inference and Correction. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002232. [Google Scholar] [CrossRef]
- Yedder, H.B.; Cardoen, B.; Hamarneh, G. Deep learning for biomedical image reconstruction: A survey. Artif. Intell. Rev. 2020, 54, 215–251. [Google Scholar] [CrossRef]
- Amjad, J.; Lyu, Z.; Rodrigues, M.R.D. Deep Learning Model-Aware Regulatization With Applications to Inverse Problems. IEEE Trans. Signal Process. 2021, 69, 6371–6385. [Google Scholar] [CrossRef]
- Kamyab, S.; Azimifar, Z.; Sabzi, R.; Fieguth, P. Deep learning methods for inverse problems. PeerJ Comput. Sci. 2022, 8, e951. [Google Scholar] [CrossRef] [PubMed]
- Markakis, K.; Valari, M.; Perrussel, O.; Sanchez, O.; Honore, C. Climate-forced air-quality modeling at the urban scale: Sensitivity to model resolution, emissions and meteorology. Atmos. Chem. Phys. 2015, 15, 7703–7723. [Google Scholar] [CrossRef]
- Holnicki, P.; Nahorski, Z. Emission Data Uncertainty in Urban Air Quality Modeling—Case Study. Environ. Model. Assess. 2015, 20, 583–597. [Google Scholar] [CrossRef]
- Daubechies, I.; Defrise, M.; Mol, C.D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 2004, 57, 1413–1457. [Google Scholar] [CrossRef]
- Teschke, G.; Ramlau, R. An iterative algorithm for nonlinear inverse problems with joint sparsity constraints in vector-valued regimes and an application to color image inpainting. Inverse Probl. 2007, 23, 1851–1870. [Google Scholar] [CrossRef]
- Jin, B.; Maass, P. Sparsity regularization for parameter identification problems. Inverse Probl. 2012, 28, 123001. [Google Scholar] [CrossRef]
- Badia, A.E.; Ha-Duong, T.; Hamdi, A. Identification of a point source in a linear advection–dispersion–reaction equation: Application to a pollution source problem. Inverse Probl. 2005, 21, 1121–1136. [Google Scholar] [CrossRef]
- Badia, A.E.; Hamdi, A. Inverse source problem in an advection–dispersion–reaction system: Application to water pollution. Inverse Probl. 2007, 23, 2103–2120. [Google Scholar] [CrossRef]
- Mamonov, A.V.; Tsai, Y.H.R. Point source identification in nonlinear advection-diffusion-reaction systems. Inverse Probl. 2013, 29, 035009. [Google Scholar] [CrossRef]
- Desyatkov, B.M.; Lapteva, N.A.; Shabanov, A.N. Mathematical method for searching unknown point sources of gas and aerosol in the atmosphere. Atmos. Ocean. Opt. 2015, 28, 518–521. [Google Scholar] [CrossRef]
- Ren, K.; Zhong, Y. Imaging point sources in heterogeneous environments. Inverse Probl. 2019, 35, 125003. [Google Scholar] [CrossRef]
- Pyatkov, S.G.; Rotko, V.V. Inverse Problems with Pointwise Overdetermination for some Quasilinear Parabolic Systems. Sib. Adv. Math. 2020, 30, 124–142. [Google Scholar] [CrossRef]
- Liao, Q.; Zhu, M.; Wu, L.; Pan, X.; Tang, X.; Wang, Z. Deep Learning for Air Quality Forecasts: A Review. Curr. Pollut. Rep. 2020, 6, 399–409. [Google Scholar] [CrossRef]
- Liu, X.; Lu, D.; Zhang, A.; Liu, Q.; Jiang, G. Data-Driven Machine Learning in Environmental Pollution: Gains and Problems. Environ. Sci. Technol. 2022, 56, 2124–2133. [Google Scholar] [CrossRef]
- Xu, J.; Du, W.; Xu, Q.; Dong, J.; Wang, B. Federated learning based atmospheric source term estimation in urban environments. Comput. Chem. Eng. 2021, 155, 107505. [Google Scholar] [CrossRef]
- Pan, Z.; Lu, W.; Fan, Y.; Li, J. Identification of groundwater contamination sources and hydraulic parameters based on bayesian regularization deep neural network. Environ. Sci. Pollut. Res. 2021, 28, 16867–16879. [Google Scholar] [CrossRef]
- Wan, H.; Xu, R.; Zhang, M.; Cai, Y.; Li, J.; Shen, X. A novel model for water quality prediction caused by non-point sources pollution based on deep learning and feature extraction methods. J. Hydrol. 2022, 612, 128081. [Google Scholar] [CrossRef]
- He, T.L.; Jones, D.B.A.; Miyazaki, K.; Bowman, K.W.; Jiang, Z.; Chen, X.; Li, R.; Zhang, Y.; Li, K. Inverse modelling of Chinese NOx emissions using deep learning: Integrating in situ observations with a satellite-based chemical reanalysis. Atmos. Chem. Phys. 2022, 22, 14059–14074. [Google Scholar] [CrossRef]
- Zhou, Y.; An, Y.; Huang, W.; Chen, C.; You, R. A combined deep learning and physical modelling method for estimating air pollutants’ source location and emission profile in street canyons. Build. Environ. 2022, 219, 109246. [Google Scholar] [CrossRef]
- Lang, Z.; Wang, B.; Wang, Y.; Cao, C.; Peng, X.; Du, W.; Qian, F. A Novel Multi-Sensor Data-Driven Approach to Source Term Estimation of Hazardous Gas Leakages in the Chemical Industry. Processes 2022, 10, 1633. [Google Scholar] [CrossRef]
- Luo, C.; Lu, W.; Pan, Z.; Bai, Y.; Dong, G. Simultaneous identification of groundwater pollution source and important hydrogeological parameters considering the noise uncertainty of observational data. Environ. Sci. Pollut. Res. 2023, 30, 84267–84282. [Google Scholar] [CrossRef] [PubMed]
- Reich, S.; Gomez, D.; Dawidowski, L. Artificial neural network for the identification of unknown air pollution sources. Atmos. Environ. 1999, 33, 3045–3052. [Google Scholar] [CrossRef]
- Zhang, T.H.; You, X.Y. Applying neural networks to solve the inverse problem of indoor environment. Indoor Built Environ. 2013, 23, 1187–1195. [Google Scholar] [CrossRef]
- Penenko, A. Convergence analysis of the adjoint ensemble method in inverse source problems for advection-diffusion-reaction models with image-type measurements. Inverse Probl. Imaging 2020, 14, 757–782. [Google Scholar] [CrossRef]
- Penenko, A.; Penenko, V.; Tsvetova, E.; Gochakov, A.; Pyanova, E.; Konopleva, V. Sensitivity Operator Framework for Analyzing Heterogeneous Air Quality Monitoring Systems. Atmosphere 2021, 12, 1697. [Google Scholar] [CrossRef]
- Marchuk, G.I. Formulation of some converse problems. Sov. Math. Dokl. 1964, 5, 675–678. [Google Scholar]
- Issartel, J.P. Rebuilding sources of linear tracers after atmospheric concentration measurements. Atmos. Chem. Phys. 2003, 3, 2111–2125. [Google Scholar] [CrossRef]
- Issartel, J.P. Emergence of a tracer source from air concentration measurements, a new strategy for linear assimilation. Atmos. Chem. Phys. 2005, 5, 249–273. [Google Scholar] [CrossRef]
- Turbelin, G.; Singh, S.; Issartel, J.P.; Busch, X.; Kumar, P. Computation of Optimal Weights for Solving the Atmospheric Source Term Estimation Problem. J. Atmos. Ocean. Technol. 2019, 36, 1053–1061. [Google Scholar] [CrossRef]
- Penenko, A.; Penenko, V.; Tsvetova, E.; Mukatova, Z. Consistent Discrete-Analytical Schemes for the Solution of the Inverse Source Problems for Atmospheric Chemistry Models with Image-Type Measurement Data. In Finite Difference Methods. Theory and Applications; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2019; pp. 378–386. [Google Scholar] [CrossRef]
- Penenko, V.V.; Penenko, A.V.; Tsvetova, E.A.; Gochakov, A.V. Methods for Studying the Sensitivity of Air Quality Models and Inverse Problems of Geophysical Hydrothermodynamics. J. Appl. Mech. Tech. Phys. 2019, 60, 392–399. [Google Scholar] [CrossRef]
- Menke, W. Geophysical Data Analysis Discrete Inverse Theory; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Cheverda, V.A.; Kostin, V.I. R-pseudoinverses for compact operators in Hilbert spaces: Existence and stability. J. Inverse Ill-Posed Probl. 1995, 3, 131–148. [Google Scholar] [CrossRef]
- Dong, J.; Fu, J.; He, Z. A deep learning reconstruction framework for X-ray computed tomography with incomplete data. PLoS ONE 2019, 14, e0224426. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Zhang, Y.; Liu, J.; Du, C.; Zhang, J.; Luo, S.; Quan, G.; Liu, Q.; Chen, Y.; Luo, L. SPECIAL: Single-Shot Projection Error Correction Integrated Adversarial Learning for Limited-Angle CT. IEEE Trans. Comput. Imaging 2021, 7, 734–746. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, Y.; Liu, J.; Luo, S.; Chen, Y. DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction. IEEE Trans. Med. Imaging 2022, 41, 1778–1790. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, Y.; Li, W.; Zhang, W.; Reddy, K.; Ding, Q.; Zhang, X.; Chen, Y.; Gao, H. SEA-Net: Structure-Enhanced Attention Network for Limited-Angle CBCT Reconstruction of Clinical Projection Data. IEEE Trans. Instrum. Meas. 2023, 72, 4507613. [Google Scholar] [CrossRef]
- Gonzalez, R.; Woods, R. Digital Image Processing; Pearson: London, UK, 2018. [Google Scholar]
- Huihui, Y.; Daoliang, L.; Yingyi, C. A state-of-the-art review of image motion deblurring techniques in precision agriculture. Heliyon 2023, 9, e17332. [Google Scholar] [CrossRef]
- Goodwin, P.C. Chapter 10—Quantitative deconvolution microscopy. In Quantitative Imaging in Cell Biology; Waters, J.C., Wittman, T., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume 123, pp. 177–192. [Google Scholar] [CrossRef]
- Starck, J.L.; Pantin, E.; Murtagh, F. Deconvolution in Astronomy: A Review. Publ. Astron. Soc. Pac. 2002, 114, 1051–1069. [Google Scholar] [CrossRef]
- Wiener, N. Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications; Technology Press Books in Science and Engineering; MIT Press: Cambridge, MA, USA, 1949. [Google Scholar]
- Tikhonov, A.; Leonov, A.; Yagola, A. Nonlinear Ill-Posed Problems; Applied mathematics and mathematical computation; Chapman & Hall: Boca Raton, FL, USA, 1998. [Google Scholar]
- Lucy, L.B. An iterative technique for the rectification of observed distributions. Astron. J. 1974, 79, 745–754. [Google Scholar] [CrossRef]
- Levin, A.; Weiss, Y.; Durand, F.; Freeman, W.T. Understanding and evaluating blind deconvolution algorithms. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1964–1971. [Google Scholar] [CrossRef]
- Shajkofci, A.; Liebling, M. Spatially-Variant CNN-Based Point Spread Function Estimation for Blind Deconvolution and Depth Estimation in Optical Microscopy. IEEE Trans. Image Process. 2020, 29, 5848–5861. [Google Scholar] [CrossRef] [PubMed]
- Penenko, A.; Emelyanov, M.; Tsybenova, E. Deep Learning-based Refinement of the Emission Source Identification Results. In Proceedings of the 2023 19th International Asian School-Seminar on Optimization Problems of Complex Systems (OPCS), Novosibirsk, Russia, 14–22 August 2023. [Google Scholar] [CrossRef]
- Jin, K.H.; McCann, M.T.; Froustey, E.; Unser, M. Deep Convolutional Neural Network for Inverse Problems in Imaging. IEEE Trans. Image Process. 2017, 26, 4509–4522. [Google Scholar] [CrossRef] [PubMed]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Ulku, I.; Akagündüz, E. A Survey on Deep Learning-based Architectures for Semantic Segmentation on 2D Images. Appl. Artif. Intell. 2022, 36, 2032924. [Google Scholar] [CrossRef]
- Kupyn, O.; Budzan, V.; Mykhailych, M.; Mishkin, D.; Matas, J. DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar] [CrossRef]
- Koh, J.; Lee, J.; Yoon, S. Single-image deblurring with neural networks: A comparative survey. Comput. Vis. Image Underst. 2021, 203, 103134. [Google Scholar] [CrossRef]
- Zhang, K.; Ren, W.; Luo, W.; Lai, W.S.; Stenger, B.; Yang, M.H.; Li, H. Deep Image Deblurring: A Survey. Int. J. Comput. Vis. 2022, 130, 2103–2130. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef]
- Zheng, M.; Zhi, K.; Zeng, J.; Tian, C.; You, L. A Hybrid CNN for Image Denoising. J. Artif. Intell. Technol. 2022, 2, 93–99. [Google Scholar] [CrossRef]
- Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef]
- Kumar, N.; Kaur, N.; Gupta, D. Major Convolutional Neural Networks in Image Classification: A Survey. In Lecture Notes in Networks and Systems; Springer: Singapore, 2020; pp. 243–258. [Google Scholar] [CrossRef]
- Koh, B.H.D.; Lim, C.L.P.; Rahimi, H.; Woo, W.L.; Gao, B. Deep Temporal Convolution Network for Time Series Classification. Sensors 2021, 21, 603. [Google Scholar] [CrossRef]
- Lee, X.Y.; Kumar, A.; Vidyaratne, L.; Rao, A.R.; Farahat, A.; Gupta, C. An ensemble of convolution-based methods for fault detection using vibration signals. In Proceedings of the 2023 IEEE International Conference on Prognostics and Health Management (ICPHM), Montreal, QC, Canada, 5–7 June 2023. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
CNN3 | CNN4 | CNN9 | ||||
---|---|---|---|---|---|---|
# | Layer Type | Filters | Kernel Size | Number of Trainable Parameters | ||
1 | Conv2D | 64 | 5248 | 5248 | ||
2 | Conv2D | 32 | 1600 | 100,384 | 100,384 | |
3 | Conv2D | 16 | 12,816 | 12,816 | 12,816 | |
4 | Conv2D | 1 | 145 | 145 | 145 | |
5 | Conv2DTranspose | 1 | 10 | |||
6 | Conv2DTranspose | 16 | 416 | |||
7 | Conv2DTranspose | 32 | 25,120 | |||
8 | Conv2DTranspose | 64 | 165,952 | |||
9 | Conv2DTranspose | 1 | 577 | |||
Total number of trainable parameters | 14,561 | 118,593 | 310,668 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penenko, A.; Emelyanov, M.; Rusin, E.; Tsybenova, E.; Shablyko, V. Hybrid Deep Learning and Sensitivity Operator-Based Algorithm for Identification of Localized Emission Sources. Mathematics 2024, 12, 78. https://doi.org/10.3390/math12010078
Penenko A, Emelyanov M, Rusin E, Tsybenova E, Shablyko V. Hybrid Deep Learning and Sensitivity Operator-Based Algorithm for Identification of Localized Emission Sources. Mathematics. 2024; 12(1):78. https://doi.org/10.3390/math12010078
Chicago/Turabian StylePenenko, Alexey, Mikhail Emelyanov, Evgeny Rusin, Erjena Tsybenova, and Vasily Shablyko. 2024. "Hybrid Deep Learning and Sensitivity Operator-Based Algorithm for Identification of Localized Emission Sources" Mathematics 12, no. 1: 78. https://doi.org/10.3390/math12010078
APA StylePenenko, A., Emelyanov, M., Rusin, E., Tsybenova, E., & Shablyko, V. (2024). Hybrid Deep Learning and Sensitivity Operator-Based Algorithm for Identification of Localized Emission Sources. Mathematics, 12(1), 78. https://doi.org/10.3390/math12010078