Multi-Class Hypersphere Anomaly Detection Based on Edge Outlier Exposure Set and Margin
Abstract
:1. Introduction
- We design an innovative multi-class AD method, the multi-class hypersphere algorithm grounded in edge OE sets and margin optimization. In the proposed model, we use neural networks to learn the distribution changes of normal class and edge OE sets, alleviate the problem of inter-class boundary overlap, and greatly improve the performance of the classifier on typical databases.
- In addition, we use data enhancement to constrain outliers or control the boundaries of positive feature regions, and we summarize a set of innovative steps to construct and optimize OE sets in open set identification or AD, reduce the risk of existing AD methods mapping abnormal sample features into normal sample feature domains, and improve the generalization ability of anomaly detectors.
- By setting margin parameters to create a clear boundary between representations of different categories, the model is motivated to map outliers or potential data points that do not meet expectations far enough from the center of the category to improve classification performance.
- We propose new extreme values for decision making. The decision threshold of most other AD methods is artificially set according to experience.
2. Related Work
2.1. AD
2.2. Integrated with Data Augmentation
3. Proposed Model
3.1. DMSVDD
3.2. Our Model
4. Experiment
4.1. Datasets
4.2. Evaluation Metrics
4.3. Benchmark Model
4.4. Environment and Configuration
4.5. Results and Analysis
4.6. Category Quantity Analysis
4.7. Ablation Experiment
4.8. Hyperparameter Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baccari, S.; Haddad, M.; Ghazzai, H.; Touati, H.; Elhadef, M. Anomaly Detection in Connected and Autonomous Vehicles: A Survey, Analysis, and Research Challenges. IEEE Access 2024, 12, 19250–19276. [Google Scholar] [CrossRef]
- Fernando, T.; Gammulle, H.; Denman, S.; Sridharan, S.; Fookes, C. Deep Learning for Medical Anomaly Detection—A Survey. ACM Comput. Surv. 2021, 54, 1–37. [Google Scholar] [CrossRef]
- Tao, X.; Gong, X.; Zhang, X.; Yan, S.; Adak, C. Deep Learning for Unsupervised Anomaly Localization in Industrial Images: A Survey. IEEE Trans. Instrum. Meas. 2022, 71, 1–21. [Google Scholar] [CrossRef]
- Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep Learning for Anomaly Detection: A Review. ACM Comput. Surv. 2022, 54, 1–38. [Google Scholar] [CrossRef]
- Munir, M.; Chattha, M.A.; Dengel, A.; Ahmed, S. A Comparative Analysis of Traditional and Deep Learning-Based Anomaly Detection Methods for Streaming Data. In Proceedings of the 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; pp. 561–566. [Google Scholar]
- Ma, X.; Wu, J.; Xue, S.; Yang, J.; Zhou, C.; Sheng, Q.Z.; Xiong, H.; Akoglu, L. A Comprehensive Survey on Graph Anomaly Detection with Deep Learning. IEEE Trans. Knowl. Data Eng. 2023, 35, 12012–12038. [Google Scholar] [CrossRef]
- Hojjati, H.; Ho, T.K.K.; Armanfard, N. Self-supervised anomaly detection in computer vision and beyond: A survey and outlook. Neural Netw. 2024, 170, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, U.; Kumar, D.K.; Thangavel, S.K.; Parameswaran, L. An Extensive Study and Comparison of the Various Approaches to Object Detection using Deep Learning. In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020; pp. 1018–1030. [Google Scholar]
- Ruff, L.; Kauffmann, J.R.; Vandermeulen, R.A.; Montavon, G.; Samek, W.; Kloft, M.; Dietterich, T.G.; Müller, K. A Unifying Review of Deep and Shallow Anomaly Detection. Proc. IEEE 2021, 109, 756–795. [Google Scholar] [CrossRef]
- Defard, T.; Setkov, A.; Loesch, A.; Audigier, R. Padim: A patch distribution modeling framework for anomaly detection and localization. In Proceedings of the International Conference on Pattern Recognition (ICPR 2021), Milan, Italy, 10–15 January 2021; pp. 475–489. [Google Scholar]
- Yang, G.; Zhou, S.; Wan, M. Open-Set Recognition Model Based on Negative-Class Sample Feature Enhancement Learning Algorithm. Mathematics 2022, 10, 4725. [Google Scholar] [CrossRef]
- Yann, Y.; Yoshua, B.; Geoffrey, H. Deep learning. Nature 2015, 521, 436–444. [Google Scholar]
- Amarasinghe, K.; Kenney, K.; Manic, M. Toward Explainable Deep Neural Network Based Anomaly Detection. In Proceedings of the 2018 11th International Conference on Human System Interaction (HSI), Gdansk, Poland, 4–6 July 2018; pp. 311–317. [Google Scholar]
- Hendricks, D.; Mazeika, M.; Dietterich, T. Deep anomaly detection with outlier exposure. arXiv 2018, arXiv:1812.04606. [Google Scholar]
- Schölkopf, B.; Platt, J.C.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the Support of a High-Dimensional Distribution. Neural Comput. 2001, 13, 1443–1471. [Google Scholar] [CrossRef]
- Cheng, G.; Tong, X. Fuzzy Clustering Multiple Kernel Support Vector Machine. In Proceedings of the 2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), Chengdu, China, 15–18 July 2018; pp. 7–12. [Google Scholar]
- Tax, D.M.; Duin, R.P. Support Vector Data Description. Mach. Learn. 2004, 54, 45–66. [Google Scholar] [CrossRef]
- Ruff, L.; Vandermeulen, R.; Goernitz, N.; Deecke, L.; Siddiqui, S.A.; Binder, A.; Müller, E.; Kloft, M. Deep one-class classification. In Proceedings of the International Conference on Machine Learning (PMLR), Stockholm, Sweden, 10–15 July 2018; pp. 4393–4402. [Google Scholar]
- Ruff, L.; Vandermeulen, R.A.; Grnitz, N. Deep Semi-Supervised Anomaly Detection, International Conference on Learning Representations. arXiv 2019, arXiv:1906.02694. [Google Scholar]
- Park, J.; Moon, J.; Ahn, N.; Sohn, K. What is Wrong with One-Class Anomaly Detection? arXiv 2021, arXiv:2104.09793. [Google Scholar]
- Chong, P.; Ruff, L.; Kloft, M.; Binder, A. Simple and Effective Prevention of Mode Collapse in Deep One-Class Classification. In Proceedings of the 2020 International Joint Conference on Neural Networks(IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–9. [Google Scholar]
- Ghafoori, Z.; Leckie, C. Deep multi-sphere support vector data description. In Proceedings of the 2020 SIAM International Conference on Data Mining (SDM 2020), Cincinnati, OH, USA, 7–9 May 2020; pp. 109–117. [Google Scholar]
- Goyal, S.; Raghunathan, A.; Jain, M.; Simhadri, H.V.; Jain, P. Drocc: Deep robust one-class classification. In Proceedings of the 37th International Conference on Machine Learning(ICML’20), Virtual, 13–18 July 2020; pp. 3711–3721. [Google Scholar]
- Hojjati, H.; Armanfard, N. DASVDD: Deep autoencoding support vector data descriptor for anomaly detection. arXiv 2021, arXiv:2106.05410. [Google Scholar] [CrossRef]
- Hu, W.; Wang, M.; Qin, Q.; Ma, J.; Liu, B. HRN: A Holistic Approach to One Class Learning. Adv. Neural Inf. Process. Syst. 2020, 33, 19111–19124. [Google Scholar]
- Zhang, Z.; Deng, X. Anomaly detection using improved deep SVDD model with data structure preservation. Pattern Recognit. Lett. 2021, 148, 1–6. [Google Scholar] [CrossRef]
- Zhou, Y.; Liang, X.; Zhang, W.; Zhang, L.; Song, X. VAE-based Deep SVDD for anomaly detection. Neurocomputing 2021, 453, 131–140. [Google Scholar] [CrossRef]
- You, Z.; Yang, K.; Luo, W.; Cui, L.; Zheng, Y.; Le, X. ADTR: Anomaly detection transformer with feature reconstruction. In Proceedings of the Neural Information Processing: 29th International Conference, Berlin/Heidelberg, Germany, 22–26 November 2023; pp. 298–310. [Google Scholar]
- You, Z.; Cui, L.; Shen, Y.; Yang, K.; Lu, X.; Zheng, Y.; Le, X. A Unified Model for Multi-class Anomaly Detection. Adv. Neural Inf. Process. Syst. 2022, 35, 4571–4584. [Google Scholar]
- Singh, S.; Luo, M.; Li, Y. Multi-Class Anomaly Detection. In Proceedings of the Neural Information Processing: 29th International Conference, Berlin/Heidelberg, Germany, 22–26 November 2023; pp. 359–371. [Google Scholar]
- Shi, Y.; Yang, J.; Qi, Z. Unsupervised anomaly segmentation via deep feature reconstruction. Neurocomputing 2021, 424, 9–22. [Google Scholar] [CrossRef]
- Li, C.-L.; Sohn, K.; Yoon, J.; Pfister, T. CutPaste: Self-Supervised Learning for Anomaly Detection and Localization. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 9659–9669. [Google Scholar]
- Zaheer, M.Z.; Lee, J.-H.; Astrid, M.; Lee, S.-I. Old Is Gold: Redefining the Adversarially Learned One-Class Classifier Training Paradigm. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 14171–14181. [Google Scholar]
- Abati, D.; Porrello, A.; Calderara, S.; Cucchiara, R. Latent Space Autoregression for Novelty Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 481–490. [Google Scholar]
- Yi, J.; Yoon, S. Patch SVDD: Patch-level SVDD for anomaly detection and segmentation. In Proceedings of the Computer Vision—ACCV 2020: 15th Asian Conference on Computer Vision, Kyoto, Japan, 30 November–4 December 2020; pp. 375–390. [Google Scholar]
- Liznerski, P.; Ruff, L.; Vandermeulen, R.A.; Franks, B.J.; Kloft, M.; Müller, K.-R. Explainable deep one-class classification. arXiv 2020, arXiv:2007.01760. [Google Scholar]
- Ruff, L.; Vandermeulen, R.A.; Franks, B.J.; Müller, K.; Kloft, M. Rethinking Assumptions in Deep Anomaly Detection. arXiv 2020, arXiv:2006.00339. [Google Scholar]
- Kirchheim, K.; Filax, M.; Ortmeier, F. Multi-class hypersphere anomaly detection. In Proceedings of the 26th International Conference on Pattern Recognition(ICPV), Montreal, QC, Canada, 21–25 August 2022; pp. 2636–2642. [Google Scholar]
- Cevikalp, H.; Uzun, B.; Salk, Y.; Saribas, H.; Köpüklü, O. From anomaly detection to open set recognition: Bridging the gap. Pattern Recognit. 2023, 138, 109385. [Google Scholar] [CrossRef]
- Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017, arXiv:1708.07747. [Google Scholar]
- Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. Master’s Thesis, Department of Computer Science, University of Toronto, Toronto, ON, USA, 2009. [Google Scholar]
- Suresh, S.; Minwei, L.; Yu, L. Generalized Anomaly Detection. arXiv 2021, arXiv:2110.15108. [Google Scholar]
Methods | Two in, Eight out | Five in, Five out | Nine in, One out |
---|---|---|---|
DROCC | 0.4728 ± 0.0119 ↔ 0.7252 ± 0.0081 | 0.4316 ± 0.0257 ↔ 0.7219 ± 0.0039 | 0.4107 ± 0.0454 ↔ 0.7146 ± 0.0079 |
Mean | 0.5990 | 0.5753 | 0.5627 |
DROCC (m) | 0.4216 ± 0.0424 ↔ 0.6912 ± 0.0188 | 0.3806 ± 0.0047 ↔ 0.7023 ± 0.0648 | 0.3439 ± 0.1034 ↔ 0.6896 ± 0.0453 |
Mean | 0.5564 | 0.5415 | 0.5168 |
DSVDD | 0.4216 ± 0.0424 ↔ 0.6912 ± 0.0188 | 0.3806 ± 0.0047 ↔ 0.7023 ± 0.0648 | 0.3439 ± 0.0134 ↔ 0.6896 ± 0.0453 |
Mean | 0.5990 | 0.5753 | 0.5627 |
DSVDD (m) | 0.4147 ± 0.0129 ↔ 0.7516 ± 0.0093 | 0.3482 ± 0.0123 ↔ 0.6909 ± 0.0133 | 0.3580 ± 0.0166 ↔ 0.5864 ± 0.0167 |
Mean | 0.5832 | 0.5196 | 0.4722 |
DMAD | 0.5396 ± 0.0031 ↔ 0.7647 ± 0.0014 | 0.4929 ± 0.0046 ↔ 0.7738 ± 0.0022 | 0.5437 ± 0.0028 ↔ 0.7230 ± 0.0084 |
Mean | 0.6522 | 0.6334 | 0.6359 |
Ours | 0.8384 ± 0.0139 ↔ 0.9863 ± 0.0104 | 0.5020 ± 0.0081 ↔ 0.9291 ± 0.0194 | 0.8049 ± 0.0128 ↔ 0.8687 ± 0.0075 |
Mean | 0.9124 | 0.7156 | 0.8368 |
Methods | Two in, Eight out | Five in, Five out | Nine in, One out |
---|---|---|---|
DROCC | 0.6873 ± 0.0937 ↔ 0.9774 ± 0.0049 | 0.5738 ± 0.0397 ↔ 0.9260 ± 0.0307 | 0.5408 ± 0.0961 ↔ 0.8247 ± 0.0507 |
Mean | 0.8161 | 0.7448 | 0.6992 |
DSVDD | 0.6622 ± 0.0502 ↔ 0.9871 ± 0.0033 | 0.5438 ± 0.0274 ↔ 0.9279 ± 0.0325 | 0.4551 ± 0.0285 ↔ 0.8825 ± 0.0137 |
Mean | 0.8538 | 0.7269 | 0.6523 |
DMAD | 0.6434 ± 0.0640 ↔ 0.9714 ± 0.0011 | 0.5732 ± 0.0485 ↔ 0.8832 ± 0.0137 | 0.4860 ± 0.0267 ↔ 0.9395 ± 0.3466 |
Mean | 0.8329 | 0.7739 | 0.7613 |
Ours | 0.9651 ± 0.0030 ↔ 0.9993 ± 0.0004 | 0.7955 ± 0.0179 ↔ 0.9914 ± 0.0009 | 0.9510 ± 0.0175 ↔ 0.9896 ± 0.0071 |
Mean | 0.9807 | 0.8935 | 0.9703 |
CIFAR-100 | RECYCLE | |
---|---|---|
Method | Two in, Eighteen out | Four in, One out |
DROCC | ||
Mean | 0.5638 | 0.6128 |
DSVDD | ||
Mean | 0.5559 | 0.5791 |
DMAD | ||
Mean | 0.6580 | 6966 |
MMHAD | ||
Mean | 0.8323 | 0.9169 |
Datasets | Case | AUPR | FPR95 | ACCURACY |
---|---|---|---|---|
CIFAR-10 | 2/8 | 0.9508 ↔ 0.9962 | 0.5642 ↔ 0.6410 | 0.8348 ↔ 0.9610 |
5/5 | 0.5047 ↔ 0.9069 | 0.9358 ↔ 0.4392 | 0.5002 ↔ 0.8705 | |
9/1 | 0.5518 ↔ 0.6243 | 0.4100 ↔ 0.3440 | 0.8997 ↔ 0.9313 | |
F-MNIST | 2/8 | 0.9883 ↔ 0.9998 | 0.1941 ↔ 0.2600 | 0.9327 ↔ 0.9914 |
5/5 | 0.7832 ↔ 0.9869 | 0.6912 ↔ 0.0286 | 0.4999 ↔ 0.9620 | |
9/1 | 0.7002 ↔ 0.9440 | 0.3040 ↔ 0.6300 | 0.9227 ↔ 0.9773 | |
CIFAR-100 | 2/18 | 0.9538 ↔ 0.9884 | 0.7793 ↔ 0.4130 | 0.9046 ↔ 0.9459 |
RECYCLE | 4/1 | 0.8666 ↔ 0.6887 | 0.5167 ↔ 0.2433 | 0.8360 ↔ 0.9187 |
Methods | Total | Median | Standard | Statistic | p | Cohen’s f |
---|---|---|---|---|---|---|
DROCC | 45 | 0.595 | 0.080 | 122.947 | 0.000 *** | 1.902 |
DSVDD | 45 | 0.573 | 0.093 | |||
DMAD | 45 | 0.669 | 0.050 | |||
MMHAD | 45 | 0.897 | 0.039 |
m | AUROC | AUPR | FPR95 | ACCURACY | |
---|---|---|---|---|---|
× | × | 0.5384 ↔ 0.8213 | 0.8805 ↔ 0.9405 | 0.9411 ↔ 0.8777 | 0.9000 ↔ 0.9008 |
✓ | × | 0.6613 ↔ 0.9068 | 0.9397 ↔ 0.9837 | 0.6913 ↔ 0.4808 | 0.9001 ↔ 0.9388 |
✓ | ✓ | 0.7366 ↔ 0.9279 | 0.9538 ↔ 0.9884 | 0.7793 ↔ 0.4130 | 0.9046 ↔ 0.9459 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Liu, X.; Xu, D.; Yang, G. Multi-Class Hypersphere Anomaly Detection Based on Edge Outlier Exposure Set and Margin. Mathematics 2024, 12, 2340. https://doi.org/10.3390/math12152340
Gao M, Liu X, Xu D, Yang G. Multi-Class Hypersphere Anomaly Detection Based on Edge Outlier Exposure Set and Margin. Mathematics. 2024; 12(15):2340. https://doi.org/10.3390/math12152340
Chicago/Turabian StyleGao, Min, Xuan Liu, Di Xu, and Guowei Yang. 2024. "Multi-Class Hypersphere Anomaly Detection Based on Edge Outlier Exposure Set and Margin" Mathematics 12, no. 15: 2340. https://doi.org/10.3390/math12152340
APA StyleGao, M., Liu, X., Xu, D., & Yang, G. (2024). Multi-Class Hypersphere Anomaly Detection Based on Edge Outlier Exposure Set and Margin. Mathematics, 12(15), 2340. https://doi.org/10.3390/math12152340