Open AccessArticle A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra by Zhuo-Heng HeZhuo-Heng He SciProfiles Scilit Preprints.org Google Scholar 1, Jie TianJie Tian SciProfiles Scilit Preprints.org Google Scholar 1 and Shao-Wen YuShao-Wen Yu SciProfiles Scilit Preprints.org Google Scholar 2,* 1 Department of Mathematics and Newtouch Center for Mathematics, Shanghai University, Shanghai 200444, China 2 School of Mathematics, East China University of Science and Technology, Shanghai 200237, China * Author to whom correspondence should be addressed. Mathematics 2024, 12(15), 2341; https://doi.org/10.3390/math12152341 Submission received: 20 April 2024 / Revised: 9 July 2024 / Accepted: 24 July 2024 / Published: 26 July 2024 (This article belongs to the Section Computational and Applied Mathematics) Download keyboard_arrow_down Download PDF Download PDF with Cover Download XML Download Epub Browse Figures Versions Notes Abstract: In this paper, we make use of the simultaneous decomposition of eight quaternion matrices to study the solvability conditions and general solutions to a system of two-sided coupled Sylvester-type quaternion matrix equations A i X i C i + B i X i + 1 D i = Ω i , i = 1 , 2 , 3 , 4 . We design an algorithm to compute the general solution to the system and give a numerical example. Additionally, we consider the application of the system in the encryption and decryption of color images. Keywords: quaternion matrix equation; matrix decomposition; solvability; general solution MSC: 15A03; 15A21; 15A23; 15A24 1. Introduction 1.1. BackgroundQuaternions, the decomposition of quaternion matrices and the matrix equations over quaternions, and so on, play important roles in mathematics and have a wide range of applications in various fields, such as color image processing, robotics, physics, aerospace engineering, control systems, and statistic model and graph theory. There are a great number of papers and monographs that investigate quaternion theory and corresponding applications from different aspects [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18].Chen et al. [2] proposed a robust blind watermarking scheme based on quaternion QR decomposition for color image copyright protection. He et al. [19] considered the theory and application of a system of Sylvester-type quaternion matrix equations, the system shown as follows: X 1 A 1 − B 1 X 2 = C 1 , X 3 A 2 − B 2 X 2 = C 2 , X 3 A 3 − B 3 X 4 = C 3 , X 4 A 4 − B 4 X 5 = C 4 , X 6 A 5 − B 5 X 5 = C 5 . Li et al. [11] came up with a quaternion biconjugate gradient method based on a structure-preserving method for solving non-Hermitian quaternion linear systems arising from color image deblurred problems. Took et al. [17] introduced the quaternion least mean square algorithm for the adaptive filtering of the three- and four-dimensional process.There are a good deal of papers from various perspectives using various methods to study quaternion matrix equations, including the solvability conditions, general solutions, the properties of the general solution, the extreme rank of solutions, minimum norm least squares solution, ϕ -Hermitian solution, ϕ -skew-Hermitian solution, η -Hermitian solution, η -skew-Hermitian solution, and their applications [5,20,21,22,23,24,25,26,27,28,29,30,31,32].Kyrchei [23] derived explicit formulas for the determinantal representations of solutions to the systems of the quaternion equations A 1 X = C 1 , X B 2 = C 2 and A 1 X = C 1 , A 2 X = C 2 using the determinantal representations of the Moore–Penrose matrix inverse put forward in [22]. Xu et al. [29] provided some useful necessary and sufficient conditions and a general solution to a constrained system of Sylvester-like matrix equations over the quaternion in terms of ranks and the Moore—Penrose inverse of the coefficient matrices. Xie et al. [33] considered the solvability conditions using ranks and the Moore–Penrose inverse for the system of three Sylvester-type quaternion matrix equations with ten variables A i X i + Y i B i + C i Z i D i + F i Z i + 1 G i = E i ( i = 1 , 2 , 3 ) .To our knowledge, there has been little information on the theory and applications of the following system: A i X i C i + B i X i + 1 D i = Ω i , i = 1 , 2 , 3 , 4 . (1) Motivated by the wide applications of quaternion matrix equations and the needs of their theoretical developments, we, in this paper, consider the solvability conditions, the general solutions and the applications to system (1).The paper is organized as follows. First, we extend the simultaneous decomposition of seven quaternion matrices, which are shown in [21], to the simultaneous decomposition of eight quaternion matrices. Then, we make use of the simultaneous decomposition to prove that system (1) is consistent if and only if 40 rank equalities or 40 block matrix equalities hold. In the meantime, we also prove that these rank equalities as a whole are equivalent to these block matrix equalities as a whole. Next, we show an algorithm which clearly illustrates the steps taken to obtain the general solution to system (1) and we also give a numerical example. Afterwards, we make use of the system of two-sided coupled Sylvester-type quaternion matrix equations to develop a framework that can be used to encrypt and decrypt four color images simultaneously. Finally, we summarize our work. 1.2. NotationLet R and H stand for the real number field and quaternion algebra, respectively. H can be viewed as a four-dimensional linear space over R with the basis: { 1 , i , j , k } , satisfying i 2 = j 2 = k 2 = i j k = − 1 , i j = − j i = k , j k = − k j = i and k i = − i k = j , where i , j , k are called imaginary units.Throughout this paper, we denote H m × n as all m × n matrices over the real quaternions. The rank of a quaternion matrix A over H is defined to be the maximum number of columns of A, which are linearly independent to the right. Quaternion matrix A and P A Q have the same rank if P and Q are invertible quaternion matrices [18]. For convenience, we use r A 11 A 12 ⋯ A 1 n | A 21 A 22 ⋯ A 2 n | A m 1 A m 2 ⋯ A m n to represent the rank of a block quaternion matrix, as follows: A 11 A 12 ⋯ A 1 n A 21 A 22 ⋯ A 2 n ⋮ ⋮ ⋱ ⋮ A m 1 A m 2 ⋯ A m n , (2) and if A i j in the block (2) is a zero matrix, we use “0” to represent it. For instance, r A i Ω i B i , r C i | Ω i | D i and r A i Ω i | 0 D i stand for the ranks of the following block matrices: ( A i , Ω i , B i ) , C i Ω i D i , A i Ω i D i , respectively. 2. The Solvability Conditions of System (1)In this section, we investigate the solvability conditions of the system of quaternion matrix equations as follows: A i X i C i + B i X i + 1 D i = Ω i , i = 1 , 2 , 3 , 4 . Notice that the sizes of the coefficient matrices A i , B i , C i and D i have certain rules. They can be arranged into block matrices as q 1 q 2 q 3 q 4 q 5 p 1 p 2 p 3 p 4 A 1 B 1 A 2 B 2 A 3 B 3 A 4 B 4 (3) and s 1 s 2 s 3 s 4 t 1 t 2 t 3 t 4 t 5 C 1 D 1 C 2 D 2 C 3 D 3 C 4 D 4 (4) Lemma 1 ([19,21]). Considering block matrix (3), there are nonsingular quaternion matrices P i ∈ H p i × p i , Q i ∈ H q i × q i , such that P i A i Q i = S a i , P i B i Q i + 1 = S b i , i = 1 , ⋯ , 4 , (5) where q 1 q 2 q 3 p 1 p 2 S a 1 S b 1 S a 2 S b 2 , denoted by A B 1 ^ , q 3 q 4 q 5 p 3 p 4 S a 3 S b 3 S a 4 S b 4 , denoted by A B 2 ^ , and we have A B 1 ^ = I 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 , A B 2 ^ = I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 , where I and 0 stand for the identity matrix and zero matrix with appropriate size, respectively. Similarly, there are the nonsingular quaternion matrices T i ∈ H t i × t i , S i ∈ H s i × s i , such that T i C i S i = S c i , T i + 1 D i S i = S d i , i = 1 , ⋯ , 4 , (6) where S c 1 S d 1 S c 2 S d 2 S c 3 S d 3 S c 4 S d 4 T = S a 1 S b 1 S a 2 S b 2 S a 3 S b 3 S a 4 S b 4 . He et al. [21] showed the simultaneous decomposition of seven quaternion matrices. Starting from that, and using a similar method as [19], we can reach our conclusion.According to (5) and (6), we have P i − 1 S a i Q i − 1 X i T i − 1 S c i S i − 1 + P i − 1 S b i Q i + 1 − 1 X i + 1 T i + 1 − 1 S d i S i − 1 = Ω i , i = 1 , 2 , 3 , 4 . Multiply P i and S i to the left and right sides of the equations, respectively. Then, we have S a i Q i − 1 X i T i − 1 S c i + S b i Q i + 1 − 1 X i + 1 T i + 1 − 1 S d i = P i Ω i S i , i = 1 , 2 , 3 , 4 . Let Ω i ^ = P i Ω i S i , i = 1 , ⋯ , 4 , X j ^ = Q j − 1 X j T j − 1 , j = 1 , ⋯ , 5 . Hence, we have S a i X i ^ S c i + S b i X i + 1 ^ S d i = Ω i ^ , i = 1 , 2 , 3 , 4 . (7) According to the equivalence canonical forms of (3) and (4) and system (7), we divide X j ^ , j = 1 , ⋯ , 5 and Ω i ^ , i = 1 , 2 , 3 , 4 into the following partitioned matrices: X 1 ^ = ( X i j ( 1 ) ) 9 × 9 , X 2 ^ = ( X i j ( 2 ) ) 21 × 21 , X 3 ^ = ( X i j ( 3 ) ) 25 × 25 , X 4 ^ = ( X i j ( 4 ) ) 21 × 21 , X 5 ^ = ( X i j ( 5 ) ) 9 × 9 , Ω 1 ^ = ( ω i j ( 1 ) ) 16 × 16 , Ω 2 ^ = ( ω i j ( 2 ) ) 24 × 24 , Ω 3 ^ = ( ω i j ( 3 ) ) 24 × 24 , Ω 4 ^ = ( ω i j ( 4 ) ) 16 × 16 . Through computation, we have Ω 1 ^ = ( Φ 1 ( 1 ) , Φ 2 ( 1 ) ) , (8) where Φ 1 ( 1 ) = X 11 ( 1 ) + X 11 ( 2 ) X 12 ( 1 ) + X 12 ( 2 ) X 13 ( 1 ) + X 13 ( 2 ) X 14 ( 1 ) + X 14 ( 2 ) X 15 ( 1 ) + X 15 ( 2 ) X 16 ( 1 ) + X 16 ( 2 ) X 21 ( 1 ) + X 21 ( 2 ) X 22 ( 1 ) + X 22 ( 2 ) X 23 ( 1 ) + X 23 ( 2 ) X 24 ( 1 ) + X 24 ( 2 ) X 25 ( 1 ) + X 25 ( 2 ) X 26 ( 1 ) + X 26 ( 2 ) X 31 ( 1 ) + X 31 ( 2 ) X 32 ( 1 ) + X 32 ( 2 ) X 33 ( 1 ) + X 33 ( 2 ) X 34 ( 1 ) + X 34 ( 2 ) X 35 ( 1 ) + X 35 ( 2 ) X 36 ( 1 ) + X 36 ( 2 ) X 41 ( 1 ) + X 41 ( 2 ) X 42 ( 1 ) + X 42 ( 2 ) X 43 ( 1 ) + X 43 ( 2 ) X 44 ( 1 ) + X 44 ( 2 ) X 45 ( 1 ) + X 45 ( 2 ) X 46 ( 1 ) + X 46 ( 2 ) X 51 ( 1 ) + X 51 ( 2 ) X 52 ( 1 ) + X 52 ( 2 ) X 53 ( 1 ) + X 53 ( 2 ) X 54 ( 1 ) + X 54 ( 2 ) X 55 ( 1 ) + X 55 ( 2 ) X 56 ( 1 ) + X 56 ( 2 ) X 61 ( 1 ) + X 61 ( 2 ) X 62 ( 1 ) + X 62 ( 2 ) X 63 ( 1 ) + X 63 ( 2 ) X 64 ( 1 ) + X 64 ( 2 ) X 65 ( 1 ) + X 65 ( 2 ) X 66 ( 1 ) + X 66 ( 2 ) X 71 ( 1 ) + X 71 ( 2 ) X 72 ( 1 ) + X 72 ( 2 ) X 73 ( 1 ) + X 73 ( 2 ) X 74 ( 1 ) + X 74 ( 2 ) X 75 ( 1 ) + X 75 ( 2 ) X 76 ( 1 ) + X 76 ( 2 ) X 81 ( 1 ) X 82 ( 1 ) X 83 ( 1 ) X 84 ( 1 ) X 85 ( 1 ) X 86 ( 1 ) X 81 ( 2 ) X 82 ( 2 ) X 83 ( 2 ) X 84 ( 2 ) X 85 ( 2 ) X 86 ( 2 ) X 91 ( 2 ) X 92 ( 2 ) X 93 ( 2 ) X 94 ( 2 ) X 95 ( 2 ) X 96 ( 2 ) X 10 , 1 ( 2 ) X 10 , 2 ( 2 ) X 10 , 3 ( 2 ) X 10 , 4 ( 2 ) X 10 , 5 ( 2 ) X 10 , 6 ( 2 ) X 11 , 1 ( 2 ) X 11 , 2 ( 2 ) X 11 , 3 ( 2 ) X 11 , 4 ( 2 ) X 11 , 5 ( 2 ) X 11 , 6 ( 2 ) X 12 , 1 ( 2 ) X 12 , 2 ( 2 ) X 12 , 3 ( 2 ) X 12 , 4 ( 2 ) X 12 , 5 ( 2 ) X 12 , 6 ( 2 ) X 13 , 1 ( 2 ) X 13 , 2 ( 2 ) X 13 , 3 ( 2 ) X 13 , 4 ( 2 ) X 13 , 5 ( 2 ) X 13 , 6 ( 2 ) X 14 , 1 ( 2 ) X 14 , 2 ( 2 ) X 14 , 3 ( 2 ) X 14 , 4 ( 2 ) X 14 , 5 ( 2 ) X 14 , 6 ( 2 ) 0 0 0 0 0 0 , Φ 2 ( 1 ) = X 17 ( 1 ) + X 17 ( 2 ) X 18 ( 1 ) X 18 ( 2 ) X 19 ( 2 ) X 1 , 10 ( 2 ) X 1 , 11 ( 2 ) X 1 , 12 ( 2 ) X 1 , 13 ( 2 ) X 1 , 14 ( 2 ) 0 X 27 ( 1 ) + X 27 ( 2 ) X 28 ( 1 ) X 28 ( 2 ) X 29 ( 2 ) X 2 , 10 ( 2 ) X 2 , 11 ( 2 ) X 2 , 12 ( 2 ) X 2 , 13 ( 2 ) X 2 , 14 ( 2 ) 0 X 37 ( 1 ) + X 37 ( 2 ) X 38 ( 1 ) X 38 ( 2 ) X 39 ( 2 ) X 3 , 10 ( 2 ) X 3 , 11 ( 2 ) X 3 , 12 ( 2 ) X 3 , 13 ( 2 ) X 3 , 14 ( 2 ) 0 X 47 ( 1 ) + X 47 ( 2 ) X 48 ( 1 ) X 48 ( 2 ) X 49 ( 2 ) X 4 , 10 ( 2 ) X 4 , 11 ( 2 ) X 4 , 12 ( 2 ) X 4 , 13 ( 2 ) X 4 , 14 ( 2 ) 0 X 57 ( 1 ) + X 57 ( 2 ) X 58 ( 1 ) X 58 ( 2 ) X 59 ( 2 ) X 5 , 10 ( 2 ) X 5 , 11 ( 2 ) X 5 , 12 ( 2 ) X 5 , 13 ( 2 ) X 5 , 14 ( 2 ) 0 X 67 ( 1 ) + X 67 ( 2 ) X 68 ( 1 ) X 68 ( 2 ) X 69 ( 2 ) X 6 , 10 ( 2 ) X 6 , 11 ( 2 ) X 6 , 12 ( 2 ) X 6 , 13 ( 2 ) X 6 , 14 ( 2 ) 0 X 77 ( 1 ) + X 77 ( 2 ) X 78 ( 1 ) X 78 ( 2 ) X 79 ( 2 ) X 7 , 10 ( 2 ) X 7 , 11 ( 2 ) X 7 , 12 ( 2 ) X 7 , 13 ( 2 ) X 7 , 14 ( 2 ) 0 X 87 ( 1 ) X 88 ( 1 ) 0 0 0 0 0 0 0 0 X 87 ( 2 ) 0 X 88 ( 2 ) X 89 ( 2 ) X 8 , 10 ( 2 ) X 8 , 11 ( 2 ) X 8 , 12 ( 2 ) X 8 , 13 ( 2 ) X 8 , 14 ( 2 ) 0 X 97 ( 2 ) 0 X 98 ( 2 ) X 99 ( 2 ) X 9 , 10 ( 2 ) X 9 , 11 ( 2 ) X 9 , 12 ( 2 ) X 9 , 13 ( 2 ) X 9 , 14 ( 2 ) 0 X 10 , 7 ( 2 ) 0 X 10 , 8 ( 2 ) X 10 , 9 ( 2 ) X 10 , 10 ( 2 ) X 10 , 11 ( 2 ) X 10 , 12 ( 2 ) X 10 , 13 ( 2 ) X 10 , 14 ( 2 ) 0 X 11 , 7 ( 2 ) 0 X 11 , 8 ( 2 ) X 11 , 9 ( 2 ) X 11 , 10 ( 2 ) X 11 , 11 ( 2 ) X 11 , 12 ( 2 ) X 11 , 13 ( 2 ) X 11 , 14 ( 2 ) 0 X 12 , 7 ( 2 ) 0 X 12 , 8 ( 2 ) X 12 , 9 ( 2 ) X 12 , 10 ( 2 ) X 12 , 11 ( 2 ) X 12 , 12 ( 2 ) X 12 , 13 ( 2 ) X 12 , 14 ( 2 ) 0 X 13 , 7 ( 2 ) 0 X 13 , 8 ( 2 ) X 13 , 9 ( 2 ) X 13 , 10 ( 2 ) X 13 , 11 ( 2 ) X 13 , 12 ( 2 ) X 13 , 13 ( 2 ) X 13 , 14 ( 2 ) 0 X 14 , 7 ( 2 ) 0 X 14 , 8 ( 2 ) X 14 , 9 ( 2 ) X 14 , 10 ( 2 ) X 14 , 11 ( 2 ) X 14 , 12 ( 2 ) X 14 , 13 ( 2 ) X 14 , 14 ( 2 ) 0 0 0 0 0 0 0 0 0 0 0 . We have Ω 2 ^ = Φ 11 ( 2 ) Φ 12 ( 2 ) Φ 13 ( 2 ) Φ 21 ( 2 ) Φ 22 ( 2 ) Φ 23 ( 2 ) , (9) where Φ 11 ( 2 ) = X 11 ( 2 ) + X 11 ( 3 ) X 12 ( 2 ) + X 12 ( 3 ) X 13 ( 2 ) + X 13 ( 3 ) X 14 ( 2 ) + X 14 ( 3 ) X 15 ( 2 ) + X 15 ( 3 ) X 16 ( 2 ) X 18 ( 2 ) + X 16 ( 3 ) X 19 ( 2 ) + X 17 ( 3 ) X 21 ( 2 ) + X 21 ( 3 ) X 22 ( 2 ) + X 22 ( 3 ) X 23 ( 2 ) + X 23 ( 3 ) X 24 ( 2 ) + X 24 ( 3 ) X 25 ( 2 ) + X 25 ( 3 ) X 26 ( 2 ) X 28 ( 2 ) + X 26 ( 3 ) X 29 ( 2 ) + X 27 ( 3 ) X 31 ( 2 ) + X 31 ( 3 ) X 32 ( 2 ) + X 32 ( 3 ) X 33 ( 2 ) + X 33 ( 3 ) X 34 ( 2 ) + X 34 ( 3 ) X 35 ( 2 ) + X 35 ( 3 ) X 36 ( 2 ) X 38 ( 2 ) + X 36 ( 3 ) X 39 ( 2 ) + X 37 ( 3 ) X 41 ( 2 ) + X 41 ( 3 ) X 42 ( 2 ) + X 42 ( 3 ) X 43 ( 2 ) + X 43 ( 3 ) X 44 ( 2 ) + X 44 ( 3 ) X 45 ( 2 ) + X 45 ( 3 ) X 46 ( 2 ) X 48 ( 2 ) + X 46 ( 3 ) X 49 ( 2 ) + X 47 ( 3 ) X 51 ( 2 ) + X 51 ( 3 ) X 52 ( 2 ) + X 52 ( 3 ) X 53 ( 2 ) + X 53 ( 3 ) X 54 ( 2 ) + X 54 ( 3 ) X 55 ( 2 ) + X 55 ( 3 ) X 56 ( 2 ) X 58 ( 2 ) + X 56 ( 3 ) X 59 ( 2 ) + X 57 ( 3 ) X 61 ( 2 ) X 62 ( 2 ) X 63 ( 2 ) X 64 ( 2 ) X 65 ( 2 ) X 66 ( 2 ) X 68 ( 2 ) X 69 ( 2 ) X 81 ( 2 ) + X 61 ( 3 ) X 82 ( 2 ) + X 62 ( 3 ) X 83 ( 2 ) + X 63 ( 3 ) X 84 ( 2 ) + X 64 ( 3 ) X 85 ( 2 ) + X 65 ( 3 ) X 86 ( 2 ) X 88 ( 2 ) + X 66 ( 3 ) X 89 ( 2 ) + X 67 ( 3 ) X 91 ( 2 ) + X 71 ( 3 ) X 92 ( 2 ) + X 72 ( 3 ) X 93 ( 2 ) + X 73 ( 3 ) X 94 ( 2 ) + X 74 ( 3 ) X 95 ( 2 ) + X 75 ( 3 ) X 96 ( 2 ) X 98 ( 2 ) + X 76 ( 3 ) X 99 ( 2 ) + X 77 ( 3 ) X 10 , 1 ( 2 ) + X 81 ( 3 ) X 10 , 2 ( 2 ) + X 82 ( 3 ) X 10 , 3 ( 2 ) + X 83 ( 3 ) X 10 , 4 ( 2 ) + X 84 ( 3 ) X 10 , 5 ( 2 ) + X 85 ( 3 ) X 10 , 6 ( 2 ) X 10 , 8 ( 2 ) + X 86 ( 3 ) X 10 , 9 ( 2 ) + X 87 ( 3 ) X 11 , 1 ( 2 ) + X 91 ( 3 ) X 11 , 2 ( 2 ) + X 92 ( 3 ) X 11 , 3 ( 2 ) + X 93 ( 3 ) X 11 , 4 ( 2 ) + X 94 ( 3 ) X 11 , 5 ( 2 ) + X 95 ( 3 ) X 11 , 6 ( 2 ) X 11 , 8 ( 2 ) + X 9 , 6 ( 3 ) X 11 , 9 ( 2 ) + X 97 ( 3 ) X 12 , 1 ( 2 ) + X 10 , 1 ( 3 ) X 12 , 2 ( 2 ) + X 10 , 2 ( 3 ) X 12 , 3 ( 2 ) + X 10 , 3 ( 3 ) X 12 , 4 ( 2 ) + X 10 , 4 ( 3 ) X 12 , 5 ( 2 ) + X 10 , 5 ( 3 ) X 12 , 6 ( 2 ) X 12 , 8 ( 2 ) + X 10 , 6 ( 3 ) X 12 , 9 ( 2 ) + X 10 , 7 ( 3 ) X 13 , 1 ( 2 ) X 13 , 2 ( 2 ) X 13 , 3 ( 2 ) X 13 , 4 ( 2 ) X 13 , 5 ( 2 ) X 13 , 6 ( 2 ) X 13 , 8 ( 2 ) X 13 , 9 ( 2 ) , Φ 21 ( 2 ) = X 15 , 1 ( 2 ) + X 11 , 1 ( 3 ) X 15 , 2 ( 2 ) + X 11 , 2 ( 3 ) X 15 , 3 ( 2 ) + X 11 , 3 ( 3 ) X 15 , 4 ( 2 ) + X 11 , 4 ( 3 ) X 15 , 5 ( 2 ) + X 11 , 5 ( 3 ) X 15 , 6 ( 2 ) X 15 , 8 ( 2 ) + X 11 , 6 ( 3 ) X 15 , 9 ( 2 ) + X 11 , 7 ( 3 ) X 16 , 1 ( 2 ) + X 12 , 1 ( 3 ) X 16 , 2 ( 2 ) + X 12 , 2 ( 3 ) X 16 , 3 ( 2 ) + X 12 , 3 ( 3 ) X 16 , 4 ( 2 ) + X 12 , 4 ( 3 ) X 16 , 5 ( 2 ) + X 12 , 5 ( 3 ) X 16 , 6 ( 2 ) X 16 , 8 ( 2 ) + X 12 , 6 ( 3 ) X 16 , 9 ( 2 ) + X 12 , 7 ( 3 ) X 17 , 1 ( 2 ) + X 13 , 1 ( 3 ) X 17 , 2 ( 2 ) + X 13 , 2 ( 3 ) X 17 , 3 ( 2 ) + X 13 , 3 ( 3 ) X 17 , 4 ( 2 ) + X 13 , 4 ( 3 ) X 17 , 5 ( 2 ) + X 13 , 5 ( 3 ) X 17 , 6 ( 2 ) X 17 , 8 ( 2 ) + X 13 , 6 ( 3 ) X 17 , 9 ( 2 ) + X 13 , 7 ( 3 ) X 18 , 1 ( 2 ) + X 14 , 1 ( 3 ) X 18 , 2 ( 2 ) + X 14 , 2 ( 3 ) X 18 , 3 ( 2 ) + X 14 , 3 ( 3 ) X 18 , 4 ( 2 ) + X 14 , 4 ( 3 ) X 18 , 5 ( 2 ) + X 14 , 5 ( 3 ) X 18 , 6 ( 2 ) X 18 , 8 ( 2 ) + X 14 , 6 ( 3 ) X 18 , 9 ( 2 ) + X 14 , 7 ( 3 ) X 19 , 1 ( 2 ) + X 15 , 1 ( 3 ) X 19 , 2 ( 2 ) + X 15 , 2 ( 3 ) X 19 , 3 ( 2 ) + X 15 , 3 ( 3 ) X 19 , 4 ( 2 ) + X 15 , 4 ( 3 ) X 19 , 5 ( 2 ) + X 15 , 5 ( 3 ) X 19 , 6 ( 2 ) X 19 , 8 ( 2 ) + X 15 , 6 ( 3 ) X 19 , 9 ( 2 ) + X 15 , 7 ( 3 ) X 20 , 1 ( 2 ) X 20 , 2 ( 2 ) X 20 , 3 ( 2 ) X 20 , 4 ( 2 ) X 20 , 5 ( 2 ) X 20 , 6 ( 2 ) X 20 , 8 ( 2 ) X 20 , 9 ( 2 ) X 16 , 1 ( 3 ) X 16 , 2 ( 3 ) X 16 , 3 ( 3 ) X 16 , 4 ( 3 ) X 16 , 5 ( 3 ) 0 X 16 , 6 ( 3 ) X 16 , 7 ( 3 ) X 17 , 1 ( 3 ) X 17 , 2 ( 3 ) X 17 , 3 ( 3 ) X 17 , 4 ( 3 ) X 17 , 5 ( 3 ) 0 X 17 , 6 ( 3 ) X 17 , 7 ( 3 ) X 18 , 1 ( 3 ) X 18 , 2 ( 3 ) X 18 , 3 ( 3 ) X 18 , 4 ( 3 ) X 18 , 5 ( 3 ) 0 X 18 , 6 ( 3 ) X 18 , 7 ( 3 ) X 19 , 1 ( 3 ) X 19 , 2 ( 3 ) X 19 , 3 ( 3 ) X 19 , 4 ( 3 ) X 19 , 5 ( 3 ) 0 X 19 , 6 ( 3 ) X 19 , 7 ( 3 ) X 20 , 1 ( 3 ) X 20 , 2 ( 3 ) X 20 , 3 ( 3 ) X 20 , 4 ( 3 ) X 20 , 5 ( 3 ) 0 X 20 , 6 ( 3 ) X 20 , 7 ( 3 ) 0 0 0 0 0 0 0 0 , Φ 12 ( 2 ) = X 1 , 10 ( 2 ) + X 18 ( 3 ) X 1 , 11 ( 2 ) + X 19 ( 3 ) X 1 , 12 ( 2 ) + X 1 , 10 ( 3 ) X 1 , 13 ( 2 ) X 1 , 15 ( 2 ) + X 1 , 11 ( 3 ) X 1 , 16 ( 2 ) + X 1 , 12 ( 3 ) X 1 , 17 ( 2 ) + X 1 , 13 ( 3 ) X 2 , 10 ( 2 ) + X 28 ( 3 ) X 2 , 11 ( 2 ) + X 29 ( 3 ) X 2 , 12 ( 2 ) + X 2 , 10 ( 3 ) X 2 , 13 ( 2 ) X 2 , 15 ( 2 ) + X 2 , 11 ( 3 ) X 2 , 16 ( 2 ) + X 2 , 12 ( 3 ) X 2 , 17 ( 2 ) + X 2 , 13 ( 3 ) X 3 , 10 ( 2 ) + X 38 ( 3 ) X 3 , 11 ( 2 ) + X 39 ( 3 ) X 3 , 12 ( 2 ) + X 3 , 10 ( 3 ) X 3 , 13 ( 2 ) X 3 , 15 ( 2 ) + X 3 , 11 ( 3 ) X 3 , 16 ( 2 ) + X 3 , 12 ( 3 ) X 3 , 17 ( 2 ) + X 3 , 13 ( 3 ) X 4 , 10 ( 2 ) + X 48 ( 3 ) X 4 , 11 ( 2 ) + X 49 ( 3 ) X 4 , 12 ( 2 ) + X 4 , 10 ( 3 ) X 4 , 13 ( 2 ) X 4 , 15 ( 2 ) + X 4 , 11 ( 3 ) X 4 , 16 ( 2 ) + X 4 , 12 ( 3 ) X 4 , 17 ( 2 ) + X 4 , 13 ( 3 ) X 5 , 10 ( 2 ) + X 58 ( 3 ) X 5 , 11 ( 2 ) + X 59 ( 3 ) X 5 , 12 ( 2 ) + X 5 , 10 ( 3 ) X 5 , 13 ( 2 ) X 5 , 15 ( 2 ) + X 5 , 11 ( 3 ) X 5 , 16 ( 2 ) + X 5 , 12 ( 3 ) X 5 , 17 ( 2 ) + X 5 , 13 ( 3 ) X 6 , 10 ( 2 ) X 6 , 11 ( 2 ) X 6 , 12 ( 2 ) X 6 , 13 ( 2 ) X 6 , 15 ( 2 ) X 6 , 16 ( 2 ) X 6 , 17 ( 2 ) X 8 , 10 ( 2 ) + X 68 ( 3 ) X 8 , 11 ( 2 ) + X 69 ( 3 ) X 8 , 12 ( 2 ) + X 6 , 10 ( 3 ) X 8 , 13 ( 2 ) X 8 , 15 ( 2 ) + X 6 , 11 ( 3 ) X 8 , 16 ( 2 ) + X 6 , 12 ( 3 ) X 8 , 17 ( 2 ) + X 6 , 13 ( 3 ) X 9 , 10 ( 2 ) + X 78 ( 3 ) X 9 , 11 ( 2 ) + X 79 ( 3 ) X 9 , 12 ( 2 ) + X 7 , 10 ( 3 ) X 9 , 13 ( 2 ) X 9 , 15 ( 2 ) + X 7 , 11 ( 3 ) X 9 , 16 ( 2 ) + X 7 , 12 ( 3 ) X 9 , 17 ( 2 ) + X 7 , 13 ( 3 ) X 10 , 10 ( 2 ) + X 88 ( 3 ) X 10 , 11 ( 2 ) + X 89 ( 3 ) X 10 , 12 ( 2 ) + X 8 , 10 ( 3 ) X 10 , 13 ( 2 ) X 10 , 15 ( 2 ) + X 8 , 11 ( 3 ) X 10 , 16 ( 2 ) + X 8 , 12 ( 3 ) X 10 , 17 ( 2 ) + X 8 , 13 ( 3 ) X 11 , 10 ( 2 ) + X 98 ( 3 ) X 11 , 11 ( 2 ) + X 99 ( 3 ) X 11 , 12 ( 2 ) + X 9 , 10 ( 3 ) X 11 , 13 ( 2 ) X 11 , 15 ( 2 ) + X 9 , 11 ( 3 ) X 11 , 16 ( 2 ) + X 9 , 12 ( 3 ) X 11 , 17 ( 2 ) + X 9 , 13 ( 3 ) X 12 , 10 ( 2 ) + X 10 , 8 ( 3 ) X 12 , 11 ( 2 ) + X 10 , 9 ( 3 ) X 12 , 12 ( 2 ) + X 10 , 10 ( 3 ) X 12 , 13 ( 2 ) X 12 , 15 ( 2 ) + X 10 , 11 ( 3 ) X 12 , 16 ( 2 ) + X 10 , 12 ( 3 ) X 12 , 17 ( 2 ) + X 10 , 13 ( 3 ) X 13 , 10 ( 2 ) X 13 , 11 ( 2 ) X 13 , 12 ( 2 ) X 13 , 13 ( 2 ) X 13 , 15 ( 2 ) X 13 , 16 ( 2 ) X 13 , 17 ( 2 ) , Φ 22 ( 2 ) = X 15 , 10 ( 2 ) + X 11 , 8 ( 3 ) X 15 , 11 ( 2 ) + X 11 , 9 ( 3 ) X 15 , 12 ( 2 ) + X 11 , 10 ( 3 ) X 15 , 13 ( 2 ) X 15 , 15 ( 2 ) + X 11 , 11 ( 3 ) X 15 , 16 ( 2 ) + X 11 , 12 ( 3 ) X 15 , 17 ( 2 ) + X 11 , 13 ( 3 ) X 16 , 10 ( 2 ) + X 12 , 8 ( 3 ) X 16 , 11 ( 2 ) + X 12 , 9 ( 3 ) X 16 , 12 ( 2 ) + X 12 , 10 ( 3 ) X 16 , 13 ( 2 ) X 16 , 15 ( 2 ) + X 12 , 11 ( 3 ) X 16 , 16 ( 2 ) + X 12 , 12 ( 3 ) X 16 , 17 ( 2 ) + X 12 , 13 ( 3 ) X 17 , 10 ( 2 ) + X 13 , 8 ( 3 ) X 17 , 11 ( 2 ) + X 13 , 9 ( 3 ) X 17 , 12 ( 2 ) + X 13 , 10 ( 3 ) X 17 , 13 ( 2 ) X 17 , 15 ( 2 ) + X 13 , 11 ( 3 ) X 17 , 16 ( 2 ) + X 13 , 12 ( 3 ) X 17 , 17 ( 2 ) + X 13 , 13 ( 3 ) X 18 , 10 ( 2 ) + X 14 , 8 ( 3 ) X 18 , 11 ( 2 ) + X 14 , 9 ( 3 ) X 18 , 12 ( 2 ) + X 14 , 10 ( 3 ) X 18 , 13 ( 2 ) X 18 , 15 ( 2 ) + X 14 , 11 ( 3 ) X 18 , 16 ( 2 ) + X 14 , 12 ( 3 ) X 18 , 17 ( 2 ) + X 14 , 13 ( 3 ) X 19 , 10 ( 2 ) + X 15 , 8 ( 3 ) X 19 , 11 ( 2 ) + X 15 , 9 ( 3 ) X 19 , 12 ( 2 ) + X 15 , 10 ( 3 ) X 19 , 13 ( 2 ) X 19 , 15 ( 2 ) + X 15 , 11 ( 3 ) X 19 , 16 ( 2 ) + X 15 , 12 ( 3 ) X 19 , 17 ( 2 ) + X 15 , 13 ( 3 ) X 20 , 10 ( 2 ) X 20 , 11 ( 2 ) X 20 , 12 ( 2 ) X 20 , 13 ( 2 ) X 20 , 15 ( 2 ) X 20 , 16 ( 2 ) X 20 , 17 ( 2 ) X 16 , 8 ( 3 ) X 16 , 9 ( 3 ) X 16 , 10 ( 3 ) 0 X 16 , 11 ( 3 ) X 16 , 12 ( 3 ) X 16 , 13 ( 3 ) X 17 , 8 ( 3 ) X 17 , 9 ( 3 ) X 17 , 10 ( 3 ) 0 X 17 , 11 ( 3 ) X 17 , 12 ( 3 ) X 17 , 13 ( 3 ) X 18 , 8 ( 3 ) X 18 , 9 ( 3 ) X 18 , 10 ( 3 ) 0 X 18 , 11 ( 3 ) X 18 , 12 ( 3 ) X 18 , 13 ( 3 ) X 19 , 8 ( 3 ) X 19 , 9 ( 3 ) X 19 , 10 ( 3 ) 0 X 19 , 11 ( 3 ) X 19 , 12 ( 3 ) X 19 , 13 ( 3 ) X 20 , 8 ( 3 ) X 20 , 9 ( 3 ) X 20 , 10 ( 3 ) 0 X 20 , 11 ( 3 ) X 20 , 12 ( 3 ) X 20 , 13 ( 3 ) 0 0 0 0 0 0 0 , Φ 13 ( 2 ) = X 1 , 18 ( 2 ) + X 1 , 14 ( 3 ) X 1 , 19 ( 2 ) + X 1 , 15 ( 3 ) X 1 , 20 ( 2 ) X 1 , 16 ( 3 ) X 1 , 17 ( 3 ) X 1 , 18 ( 3 ) X 1 , 19 ( 3 ) X 1 , 20 ( 3 ) 0 X 2 , 18 ( 2 ) + X 2 , 14 ( 3 ) X 2 , 19 ( 2 ) + X 2 , 15 ( 3 ) X 2 , 20 ( 2 ) X 2 , 16 ( 3 ) X 2 , 17 ( 3 ) X 2 , 18 ( 3 ) X 2 , 19 ( 3 ) X 2 , 20 ( 3 ) 0 X 3 , 18 ( 2 ) + X 3 , 14 ( 3 ) X 3 , 19 ( 2 ) + X 3 , 15 ( 3 ) X 3 , 20 ( 2 ) X 3 , 16 ( 3 ) X 3 , 17 ( 3 ) X 3 , 18 ( 3 ) X 3 , 19 ( 3 ) X 3 , 20 ( 3 ) 0 X 4 , 18 ( 2 ) + X 4 , 14 ( 3 ) X 4 , 19 ( 2 ) + X 4 , 15 ( 3 ) X 4 , 20 ( 2 ) X 4 , 16 ( 3 ) X 4 , 17 ( 3 ) X 4 , 18 ( 3 ) X 4 , 19 ( 3 ) X 4 , 20 ( 3 ) 0 X 5 , 18 ( 2 ) + X 5 , 14 ( 3 ) X 5 , 19 ( 2 ) + X 5 , 15 ( 3 ) X 5 , 20 ( 2 ) X 5 , 16 ( 3 ) X 5 , 17 ( 3 ) X 5 , 18 ( 3 ) X 5 , 19 ( 3 ) X 5 , 20 ( 3 ) 0 X 6 , 18 ( 2 ) X 6 , 19 ( 2 ) X 6 , 20 ( 2 ) 0 0 0 0 0 0 X 8 , 18 ( 2 ) + X 6 , 14 ( 3 ) X 8 , 19 ( 2 ) + X 6 , 15 ( 3 ) X 8 , 20 ( 2 ) X 6 , 16 ( 3 ) X 6 , 17 ( 3 ) X 6 , 18 ( 3 ) X 6 , 19 ( 3 ) X 6 , 20 ( 3 ) 0 X 9 , 18 ( 2 ) + X 7 , 14 ( 3 ) X 9 , 19 ( 2 ) + X 7 , 15 ( 3 ) X 9 , 20 ( 2 ) X 7 , 16 ( 3 ) X 7 , 17 ( 3 ) X 7 , 18 ( 3 ) X 7 , 19 ( 3 ) X 7 , 20 ( 3 ) 0 X 10 , 18 ( 2 ) + X 8 , 14 ( 3 ) X 10 , 19 ( 2 ) + X 8 , 15 ( 3 ) X 10 , 20 ( 2 ) X 8 , 16 ( 3 ) X 8 , 17 ( 3 ) X 8 , 18 ( 3 ) X 8 , 19 ( 3 ) X 8 , 20 ( 3 ) 0 X 11 , 18 ( 2 ) + X 9 , 14 ( 3 ) X 11 , 19 ( 2 ) + X 9 , 15 ( 3 ) X 11 , 20 ( 2 ) X 9 , 16 ( 3 ) X 9 , 17 ( 3 ) X 9 , 18 ( 3 ) X 9 , 19 ( 3 ) X 9 , 20 ( 3 ) 0 X 12 , 18 ( 2 ) + X 10 , 14 ( 3 ) X 12 , 19 ( 2 ) + X 10 , 15 ( 3 ) X 12 , 20 ( 2 ) X 10 , 16 ( 3 ) X 10 , 17 ( 3 ) X 10 , 18 ( 3 ) X 10 , 19 ( 3 ) X 10 , 20 ( 3 ) 0 X 13 , 18 ( 2 ) X 13 , 19 ( 2 ) X 13 , 20 ( 2 ) 0 0 0 0 0 0 , Φ 23 ( 2 ) = X 15 , 18 ( 2 ) + X 11 , 14 ( 3 ) X 15 , 19 ( 2 ) + X 11 , 15 ( 3 ) X 15 , 20 ( 2 ) X 11 , 16 ( 3 ) X 11 , 17 ( 3 ) X 11 , 18 ( 3 ) X 11 , 19 ( 3 ) X 11 , 20 ( 3 ) 0 X 16 , 18 ( 2 ) + X 12 , 14 ( 3 ) X 16 , 19 ( 2 ) + X 12 , 15 ( 3 ) X 16 , 20 ( 2 ) X 12 , 16 ( 3 ) X 12 , 17 ( 3 ) X 12 , 18 ( 3 ) X 12 , 19 ( 3 ) X 12 , 20 ( 3 ) 0 X 17 , 18 ( 2 ) + X 13 , 14 ( 3 ) X 17 , 19 ( 2 ) + X 13 , 15 ( 3 ) X 17 , 20 ( 2 ) X 13 , 16 ( 3 ) X 13 , 17 ( 3 ) X 13 , 18 ( 3 ) X 13 , 19 ( 3 ) X 13 , 20 ( 3 ) 0 X 18 , 18 ( 2 ) + X 14 , 14 ( 3 ) X 18 , 19 ( 2 ) + X 14 , 15 ( 3 ) X 18 , 20 ( 2 ) X 14 , 16 ( 3 ) X 14 , 17 ( 3 ) X 14 , 18 ( 3 ) X 14 , 19 ( 3 ) X 14 , 20 ( 3 ) 0 X 19 , 18 ( 2 ) + X 15 , 14 ( 3 ) X 19 , 19 ( 2 ) + X 15 , 15 ( 3 ) X 19 , 20 ( 2 ) X 15 , 16 ( 3 ) X 15 , 17 ( 3 ) X 15 , 18 ( 3 ) X 15 , 19 ( 3 ) X 15 , 20 ( 3 ) 0 X 20 , 18 ( 2 ) X 20 , 19 ( 2 ) X 20 , 20 ( 2 ) 0 0 0 0 0 0 X 16 , 14 ( 3 ) X 16 , 15 ( 3 ) 0 X 16 , 16 ( 3 ) X 16 , 17 ( 3 ) X 16 , 18 ( 3 ) X 16 , 19 ( 3 ) X 16 , 20 ( 3 ) 0 X 17 , 14 ( 3 ) X 17 , 15 ( 3 ) 0 X 17 , 16 ( 3 ) X 17 , 17 ( 3 ) X 17 , 18 ( 3 ) X 17 , 19 ( 3 ) X 17 , 20 ( 3 ) 0 X 18 , 14 ( 3 ) X 18 , 15 ( 3 ) 0 X 18 , 16 ( 3 ) X 18 , 17 ( 3 ) X 18 , 18 ( 3 ) X 18 , 19 ( 3 ) X 18 , 20 ( 3 ) 0 X 19 , 14 ( 3 ) X 19 , 15 ( 3 ) 0 X 19 , 16 ( 3 ) X 19 , 17 ( 3 ) X 19 , 18 ( 3 ) X 19 , 19 ( 3 ) X 19 , 20 ( 3 ) 0 X 20 , 14 ( 3 ) X 20 , 15 ( 3 ) 0 X 20 , 16 ( 3 ) X 20 , 17 ( 3 ) X 20 , 18 ( 3 ) X 20 , 19 ( 3 ) X 20 , 20 ( 3 ) 0 0 0 0 0 0 0 0 0 0 . We have Ω 3 ^ = Φ 11 ( 3 ) Φ 12 ( 3 ) Φ 13 ( 3 ) Φ 21 ( 3 ) Φ 22 ( 3 ) Φ 23 ( 3 ) , (10) where Φ 11 ( 3 ) = X 11 ( 3 ) + X 11 ( 4 ) X 12 ( 3 ) + X 12 ( 4 ) X 13 ( 3 ) + X 13 ( 4 ) X 14 ( 3 ) X 16 ( 3 ) + X 14 ( 4 ) X 17 ( 3 ) + X 15 ( 4 ) X 18 ( 3 ) + X 16 ( 4 ) X 19 ( 3 ) X 21 ( 3 ) + X 21 ( 4 ) X 22 ( 3 ) + X 22 ( 4 ) X 23 ( 3 ) + X 23 ( 4 ) X 24 ( 3 ) X 26 ( 3 ) + X 24 ( 4 ) X 27 ( 3 ) + X 25 ( 4 ) X 28 ( 3 ) + X 26 ( 4 ) X 29 ( 3 ) X 31 ( 3 ) + X 31 ( 4 ) X 32 ( 3 ) + X 32 ( 4 ) X 33 ( 3 ) + X 33 ( 4 ) X 34 ( 3 ) X 36 ( 3 ) + X 34 ( 4 ) X 37 ( 3 ) + X 35 ( 4 ) X 38 ( 3 ) + X 36 ( 4 ) X 39 ( 3 ) X 41 ( 3 ) X 42 ( 3 ) X 43 ( 3 ) X 44 ( 3 ) X 46 ( 3 ) X 47 ( 3 ) X 48 ( 3 ) X 49 ( 3 ) X 61 ( 3 ) + X 41 ( 4 ) X 62 ( 3 ) + X 42 ( 4 ) X 63 ( 3 ) + X 43 ( 4 ) X 64 ( 3 ) X 66 ( 3 ) + X 44 ( 4 ) X 67 ( 3 ) + X 45 ( 4 ) X 68 ( 3 ) + X 46 ( 4 ) X 69 ( 3 ) X 71 ( 3 ) + X 51 ( 4 ) X 72 ( 3 ) + X 52 ( 4 ) X 73 ( 3 ) + X 53 ( 4 ) X 74 ( 3 ) X 76 ( 3 ) + X 54 ( 4 ) X 77 ( 3 ) + X 55 ( 4 ) X 78 ( 3 ) + X 56 ( 4 ) X 79 ( 3 ) X 81 ( 3 ) + X 61 ( 4 ) X 82 ( 3 ) + X 62 ( 4 ) X 83 ( 3 ) + X 63 ( 4 ) X 84 ( 3 ) X 86 ( 3 ) + X 64 ( 4 ) X 87 ( 3 ) + X 65 ( 4 ) X 88 ( 3 ) + X 66 ( 4 ) X 89 ( 3 ) X 91 ( 3 ) X 92 ( 3 ) X 93 ( 3 ) X 94 ( 3 ) X 96 ( 3 ) X 97 ( 3 ) X 98 ( 3 ) X 99 ( 3 ) X 11 , 1 ( 3 ) + X 71 ( 4 ) X 11 , 2 ( 3 ) + X 72 ( 4 ) X 11 , 3 ( 3 ) + X 73 ( 4 ) X 11 , 4 ( 3 ) X 11 , 6 ( 3 ) + X 74 ( 4 ) X 11 , 7 ( 3 ) + X 75 ( 4 ) X 11 , 8 ( 3 ) + X 76 ( 4 ) X 11 , 9 ( 3 ) X 12 , 1 ( 3 ) + X 81 ( 4 ) X 12 , 2 ( 3 ) + X 82 ( 4 ) X 12 , 3 ( 3 ) + X 83 ( 4 ) X 12 , 4 ( 3 ) X 12 , 6 ( 3 ) + X 84 ( 4 ) X 12 , 7 ( 3 ) + X 85 ( 4 ) X 12 , 8 ( 3 ) + X 86 ( 4 ) X 12 , 9 ( 3 ) X 13 , 1 ( 3 ) + X 91 ( 4 ) X 13 , 2 ( 3 ) + X 92 ( 4 ) X 13 , 3 ( 3 ) + X 93 ( 4 ) X 13 , 4 ( 3 ) X 13 , 6 ( 3 ) + X 94 ( 4 ) X 13 , 7 ( 3 ) + X 95 ( 4 ) X 13 , 8 ( 3 ) + X 96 ( 4 ) X 13 , 9 ( 3 ) X 14 , 1 ( 3 ) X 14 , 2 ( 3 ) X 14 , 3 ( 3 ) X 14 , 4 ( 3 ) X 14 , 6 ( 3 ) X 14 , 7 ( 3 ) X 14 , 8 ( 3 ) X 14 , 9 ( 3 ) , Φ 21 ( 3 ) = X 16 , 1 ( 3 ) + X 10 , 1 ( 4 ) X 16 , 2 ( 3 ) + X 10 , 2 ( 4 ) X 16 , 3 ( 3 ) + X 10 , 3 ( 4 ) X 16 , 4 ( 3 ) X 16 , 6 ( 3 ) + X 10 , 4 ( 4 ) X 16 , 7 ( 3 ) + X 10 , 5 ( 4 ) X 16 , 8 ( 3 ) + X 10 , 6 ( 4 ) X 16 , 9 ( 3 ) X 17 , 1 ( 3 ) + X 11 , 1 ( 4 ) X 17 , 2 ( 3 ) + X 11 , 2 ( 4 ) X 17 , 3 ( 3 ) + X 11 , 3 ( 4 ) X 17 , 4 ( 3 ) X 17 , 6 ( 3 ) + X 11 , 4 ( 4 ) X 17 , 7 ( 3 ) + X 11 , 5 ( 4 ) X 17 , 8 ( 3 ) + X 11 , 6 ( 4 ) X 17 , 9 ( 3 ) X 18 , 1 ( 3 ) + X 12 , 1 ( 4 ) X 18 , 2 ( 3 ) + X 12 , 2 ( 4 ) X 18 , 3 ( 3 ) + X 12 , 3 ( 4 ) X 18 , 4 ( 3 ) X 18 , 6 ( 3 ) + X 12 , 4 ( 4 ) X 18 , 7 ( 3 ) + X 12 , 5 ( 4 ) X 18 , 8 ( 3 ) + X 12 , 6 ( 4 ) X 18 , 9 ( 3 ) X 19 , 1 ( 3 ) X 19 , 2 ( 3 ) X 19 , 3 ( 3 ) X 19 , 4 ( 3 ) X 19 , 6 ( 3 ) X 19 , 7 ( 3 ) X 19 , 8 ( 3 ) X 19 , 9 ( 3 ) X 21 , 1 ( 3 ) + X 13 , 1 ( 4 ) X 21 , 2 ( 3 ) + X 13 , 2 ( 4 ) X 21 , 3 ( 3 ) + X 13 , 3 ( 4 ) X 21 , 4 ( 3 ) X 21 , 6 ( 3 ) + X 13 , 4 ( 4 ) X 21 , 7 ( 3 ) + X 13 , 5 ( 4 ) X 21 , 8 ( 3 ) + X 13 , 6 ( 4 ) X 21 , 9 ( 3 ) X 22 , 1 ( 3 ) + X 14 , 1 ( 4 ) X 22 , 2 ( 3 ) + X 14 , 2 ( 4 ) X 22 , 3 ( 3 ) + X 14 , 3 ( 4 ) X 22 , 4 ( 3 ) X 22 , 6 ( 3 ) + X 14 , 4 ( 4 ) X 22 , 7 ( 3 ) + X 14 , 5 ( 4 ) X 22 , 8 ( 3 ) + X 14 , 6 ( 4 ) X 22 , 9 ( 3 ) X 23 , 1 ( 3 ) + X 15 , 1 ( 4 ) X 23 , 2 ( 3 ) + X 15 , 2 ( 4 ) X 23 , 3 ( 3 ) + X 15 , 3 ( 4 ) X 23 , 4 ( 3 ) X 23 , 6 ( 3 ) + X 15 , 4 ( 4 ) X 23 , 7 ( 3 ) + X 15 , 5 ( 4 ) X 23 , 8 ( 3 ) + X 15 , 6 ( 4 ) X 23 , 9 ( 3 ) X 24 , 1 ( 3 ) X 24 , 2 ( 3 ) X 24 , 3 ( 3 ) X 24 , 4 ( 3 ) X 24 , 6 ( 3 ) X 24 , 7 ( 3 ) X 24 , 8 ( 3 ) X 24 , 9 ( 3 ) X 16 , 1 ( 4 ) X 16 , 2 ( 4 ) X 16 , 3 ( 4 ) 0 X 16 , 4 ( 4 ) X 16 , 5 ( 4 ) X 16 , 6 ( 4 ) 0 X 17 , 1 ( 4 ) X 17 , 2 ( 4 ) X 17 , 3 ( 4 ) 0 X 17 , 4 ( 4 ) X 17 , 5 ( 4 ) X 17 , 6 ( 4 ) 0 X 18 , 1 ( 4 ) X 18 , 2 ( 4 ) X 18 , 3 ( 4 ) 0 X 18 , 4 ( 4 ) X 18 , 5 ( 4 ) X 18 , 6 ( 4 ) 0 0 0 0 0 0 0 0 0 , Φ 12 ( 3 ) = X 1 , 11 ( 3 ) + X 17 ( 4 ) X 1 , 12 ( 3 ) + X 18 ( 4 ) X 1 , 13 ( 3 ) + X 19 ( 4 ) X 1 , 14 ( 3 ) X 1 , 16 ( 3 ) + X 1 , 10 ( 4 ) X 1 , 17 ( 3 ) + X 1 , 11 ( 4 ) X 1 , 18 ( 3 ) + X 1 , 12 ( 4 ) X 1 , 19 ( 3 ) X 2 , 11 ( 3 ) + X 27 ( 4 ) X 2 , 12 ( 3 ) + X 28 ( 4 ) X 2 , 13 ( 3 ) + X 29 ( 4 ) X 2 , 14 ( 3 ) X 2 , 16 ( 3 ) + X 2 , 10 ( 4 ) X 2 , 17 ( 3 ) + X 2 , 11 ( 4 ) X 2 , 18 ( 3 ) + X 2 , 12 ( 4 ) X 2 , 19 ( 3 ) X 3 , 11 ( 3 ) + X 37 ( 4 ) X 3 , 12 ( 3 ) + X 38 ( 4 ) X 3 , 13 ( 3 ) + X 39 ( 4 ) X 3 , 14 ( 3 ) X 3 , 16 ( 3 ) + X 3 , 10 ( 4 ) X 3 , 17 ( 3 ) + X 3 , 11 ( 4 ) X 3 , 18 ( 3 ) + X 3 , 12 ( 4 ) X 3 , 19 ( 3 ) X 4 , 11 ( 3 ) X 4 , 12 ( 3 ) X 4 , 13 ( 3 ) X 4 , 14 ( 3 ) X 4 , 16 ( 3 ) X 4 , 17 ( 3 ) X 4 , 18 ( 3 ) X 4 , 19 ( 3 ) X 6 , 11 ( 3 ) + X 47 ( 4 ) X 6 , 12 ( 3 ) + X 48 ( 4 ) X 6 , 13 ( 3 ) + X 49 ( 4 ) X 6 , 14 ( 3 ) X 6 , 16 ( 3 ) + X 4 , 10 ( 4 ) X 6 , 17 ( 3 ) + X 4 , 11 ( 4 ) X 6 , 18 ( 3 ) + X 4 , 12 ( 4 ) X 6 , 19 ( 3 ) X 7 , 11 ( 3 ) + X 57 ( 4 ) X 7 , 12 ( 3 ) + X 58 ( 4 ) X 7 , 13 ( 3 ) + X 59 ( 4 ) X 7 , 14 ( 3 ) X 7 , 16 ( 3 ) + X 5 , 10 ( 4 ) X 7 , 17 ( 3 ) + X 5 , 11 ( 4 ) X 7 , 18 ( 3 ) + X 5 , 12 ( 4 ) X 7 , 19 ( 3 ) X 8 , 11 ( 3 ) + X 67 ( 4 ) X 8 , 12 ( 3 ) + X 68 ( 4 ) X 8 , 13 ( 3 ) + X 69 ( 4 ) X 8 , 14 ( 3 ) X 8 , 16 ( 3 ) + X 6 , 10 ( 4 ) X 8 , 17 ( 3 ) + X 6 , 11 ( 4 ) X 8 , 18 ( 3 ) + X 6 , 12 ( 4 ) X 8 , 19 ( 3 ) X 9 , 11 ( 3 ) X 9 , 12 ( 3 ) X 9 , 13 ( 3 ) X 9 , 14 ( 3 ) X 9 , 16 ( 3 ) X 9 , 17 ( 3 ) X 9 , 18 ( 3 ) X 9 , 19 ( 3 ) X 11 , 11 ( 3 ) + X 77 ( 4 ) X 11 , 12 ( 3 ) + X 78 ( 4 ) X 11 , 13 ( 3 ) + X 79 ( 4 ) X 11 , 14 ( 3 ) X 11 , 16 ( 3 ) + X 7 , 10 ( 4 ) X 11 , 17 ( 3 ) + X 7 , 11 ( 4 ) X 11 , 18 ( 3 ) + X 7 , 12 ( 4 ) X 11 , 19 ( 3 ) X 12 , 11 ( 3 ) + X 87 ( 4 ) X 12 , 12 ( 3 ) + X 88 ( 4 ) X 12 , 13 ( 3 ) + X 89 ( 4 ) X 12 , 14 ( 3 ) X 12 , 16 ( 3 ) + X 8 , 10 ( 4 ) X 12 , 17 ( 3 ) + X 8 , 11 ( 4 ) X 12 , 18 ( 3 ) + X 8 , 12 ( 4 ) X 12 , 19 ( 3 ) X 13 , 11 ( 3 ) + X 97 ( 4 ) X 13 , 12 ( 3 ) + X 98 ( 4 ) X 13 , 13 ( 3 ) + X 99 ( 4 ) X 13 , 14 ( 3 ) X 13 , 16 ( 3 ) + X 9 , 10 ( 4 ) X 13 , 17 ( 3 ) + X 9 , 11 ( 4 ) X 13 , 18 ( 3 ) + X 9 , 12 ( 4 ) X 13 , 19 ( 3 ) X 14 , 11 ( 3 ) X 14 , 12 ( 3 ) X 14 , 13 ( 3 ) X 14 , 14 ( 3 ) X 14 , 16 ( 3 ) X 14 , 17 ( 3 ) X 14 , 18 ( 3 ) X 14 , 19 ( 3 ) , Φ 22 ( 3 ) = X 16 , 11 ( 3 ) + X 10 , 7 ( 4 ) X 16 , 12 ( 3 ) + X 10 , 8 ( 4 ) X 16 , 13 ( 3 ) + X 10 , 9 ( 4 ) X 16 , 14 ( 3 ) X 16 , 16 ( 3 ) + X 10 , 10 ( 4 ) X 16 , 17 ( 3 ) + X 10 , 11 ( 4 ) X 16 , 18 ( 3 ) + X 10 , 12 ( 4 ) X 16 , 19 ( 3 ) X 17 , 11 ( 3 ) + X 11 , 7 ( 4 ) X 17 , 12 ( 3 ) + X 11 , 8 ( 4 ) X 17 , 13 ( 3 ) + X 11 , 9 ( 4 ) X 17 , 14 ( 3 ) X 17 , 16 ( 3 ) + X 11 , 10 ( 4 ) X 17 , 17 ( 3 ) + X 11 , 11 ( 4 ) X 17 , 18 ( 3 ) + X 11 , 12 ( 4 ) X 17 , 19 ( 3 ) X 18 , 11 ( 3 ) + X 12 , 7 ( 4 ) X 18 , 12 ( 3 ) + X 12 , 8 ( 4 ) X 18 , 13 ( 3 ) + X 12 , 9 ( 4 ) X 18 , 14 ( 3 ) X 18 , 16 ( 3 ) + X 12 , 10 ( 4 ) X 18 , 17 ( 3 ) + X 12 , 11 ( 4 ) X 18 , 18 ( 3 ) + X 12 , 12 ( 4 ) X 18 , 19 ( 3 ) X 19 , 11 ( 3 ) X 19 , 12 ( 3 ) X 19 , 13 ( 3 ) X 19 , 14 ( 3 ) X 19 , 16 ( 3 ) X 19 , 17 ( 3 ) X 19 , 18 ( 3 ) X 19 , 19 ( 3 ) X 21 , 11 ( 3 ) + X 13 , 7 ( 4 ) X 21 , 12 ( 3 ) + X 13 , 8 ( 4 ) X 21 , 13 ( 3 ) + X 13 , 9 ( 4 ) X 21 , 14 ( 3 ) X 21 , 16 ( 3 ) + X 13 , 10 ( 4 ) X 21 , 17 ( 3 ) + X 13 , 11 ( 4 ) X 21 , 18 ( 3 ) + X 13 , 12 ( 4 ) X 21 , 19 ( 3 ) X 22 , 11 ( 3 ) + X 14 , 7 ( 4 ) X 22 , 12 ( 3 ) + X 14 , 8 ( 4 ) X 22 , 13 ( 3 ) + X 14 , 9 ( 4 ) X 22 , 14 ( 3 ) X 22 , 16 ( 3 ) + X 14 , 10 ( 4 ) X 22 , 17 ( 3 ) + X 14 , 11 ( 4 ) X 22 , 18 ( 3 ) + X 14 , 12 ( 4 ) X 22 , 19 ( 3 ) X 23 , 11 ( 3 ) + X 15 , 7 ( 4 ) X 23 , 12 ( 3 ) + X 15 , 8 ( 4 ) X 23 , 13 ( 3 ) + X 15 , 9 ( 4 ) X 23 , 14 ( 3 ) X 23 , 16 ( 3 ) + X 15 , 10 ( 4 ) X 23 , 17 ( 3 ) + X 15 , 11 ( 4 ) X 23 , 18 ( 3 ) + X 15 , 12 ( 4 ) X 23 , 19 ( 3 ) X 24 , 11 ( 3 ) X 24 , 12 ( 3 ) X 24 , 13 ( 3 ) X 24 , 14 ( 3 ) X 24 , 16 ( 3 ) X 24 , 17 ( 3 ) X 24 , 18 ( 3 ) X 24 , 19 ( 3 ) X 16 , 7 ( 4 ) X 16 , 8 ( 4 ) X 16 , 9 ( 4 ) 0 X 16 , 10 ( 4 ) X 16 , 11 ( 4 ) X 16 , 12 ( 4 ) 0 X 17 , 7 ( 4 ) X 17 , 8 ( 4 ) X 17 , 9 ( 4 ) 0 X 17 , 10 ( 4 ) X 17 , 11 ( 4 ) X 17 , 12 ( 4 ) 0 X 18 , 7 ( 4 ) X 18 , 8 ( 4 ) X 18 , 9 ( 4 ) 0 X 18 , 10 ( 4 ) X 18 , 11 ( 4 ) X 18 , 12 ( 4 ) 0 0 0 0 0 0 0 0 0 , Φ 13 ( 3 ) = X 1 , 21 ( 3 ) + X 1 , 13 ( 4 ) X 1 , 22 ( 3 ) + X 1 , 14 ( 4 ) X 1 , 23 ( 3 ) + X 1 , 15 ( 4 ) X 1 , 24 ( 3 ) X 1 , 16 ( 4 ) X 1 , 17 ( 4 ) X 1 , 18 ( 4 ) 0 X 2 , 21 ( 3 ) + X 2 , 13 ( 4 ) X 2 , 22 ( 3 ) + X 2 , 14 ( 4 ) X 2 , 23 ( 3 ) + X 2 , 15 ( 4 ) X 2 , 24 ( 3 ) X 2 , 16 ( 4 ) X 2 , 17 ( 4 ) X 2 , 18 ( 4 ) 0 X 3 , 21 ( 3 ) + X 3 , 13 ( 4 ) X 3 , 22 ( 3 ) + X 3 , 14 ( 4 ) X 3 , 23 ( 3 ) + X 3 , 15 ( 4 ) X 3 , 24 ( 3 ) X 3 , 16 ( 4 ) X 3 , 17 ( 4 ) X 3 , 18 ( 4 ) 0 X 4 , 21 ( 3 ) X 4 , 22 ( 3 ) X 4 , 23 ( 3 ) X 4 , 24 ( 3 ) 0 0 0 0 X 6 , 21 ( 3 ) + X 4 , 13 ( 4 ) X 6 , 22 ( 3 ) + X 4 , 14 ( 4 ) X 6 , 23 ( 3 ) + X 4 , 15 ( 4 ) X 6 , 24 ( 3 ) X 4 , 16 ( 4 ) X 4 , 17 ( 4 ) X 4 , 18 ( 4 ) 0 X 7 , 21 ( 3 ) + X 5 , 13 ( 4 ) X 7 , 22 ( 3 ) + X 5 , 14 ( 4 ) X 7 , 23 ( 3 ) + X 5 , 15 ( 4 ) X 7 , 24 ( 3 ) X 5 , 16 ( 4 ) X 5 , 17 ( 4 ) X 5 , 18 ( 4 ) 0 X 8 , 21 ( 3 ) + X 6 , 13 ( 4 ) X 8 , 22 ( 3 ) + X 6 , 14 ( 4 ) X 8 , 23 ( 3 ) + X 6 , 15 ( 4 ) X 8 , 24 ( 3 ) X 6 , 16 ( 4 ) X 6 , 17 ( 4 ) X 6 , 18 ( 4 ) 0 X 9 , 21 ( 3 ) X 9 , 22 ( 3 ) X 9 , 23 ( 3 ) X 9 , 24 ( 3 ) 0 0 0 0 X 11 , 21 ( 3 ) + X 7 , 13 ( 4 ) X 11 , 22 ( 3 ) + X 7 , 14 ( 4 ) X 11 , 23 ( 3 ) + X 7 , 15 ( 4 ) X 11 , 24 ( 3 ) X 7 , 16 ( 4 ) X 7 , 17 ( 4 ) X 7 , 18 ( 4 ) 0 X 12 , 21 ( 3 ) + X 8 , 13 ( 4 ) X 12 , 22 ( 3 ) + X 8 , 14 ( 4 ) X 12 , 23 ( 3 ) + X 8 , 15 ( 4 ) X 12 , 24 ( 3 ) X 8 , 16 ( 4 ) X 8 , 17 ( 4 ) X 8 , 18 ( 4 ) 0 X 13 , 21 ( 3 ) + X 9 , 13 ( 4 ) X 13 , 22 ( 3 ) + X 9 , 14 ( 4 ) X 13 , 23 ( 3 ) + X 9 , 15 ( 4 ) X 13 , 24 ( 3 ) X 9 , 16 ( 4 ) X 9 , 17 ( 4 ) X 9 , 18 ( 4 ) 0 X 14 , 21 ( 3 ) X 14 , 22 ( 3 ) X 14 , 23 ( 3 ) X 14 , 24 ( 3 ) 0 0 0 0 , Φ 23 ( 3 ) = X 16 , 21 ( 3 ) + X 10 , 13 ( 4 ) X 16 , 22 ( 3 ) + X 10 , 14 ( 4 ) X 16 , 23 ( 3 ) + X 10 , 15 ( 4 ) X 16 , 24 ( 3 ) X 10 , 16 ( 4 ) X 10 , 17 ( 4 ) X 10 , 18 ( 4 ) 0 X 17 , 21 ( 3 ) + X 11 , 13 ( 4 ) X 17 , 22 ( 3 ) + X 11 , 14 ( 4 ) X 17 , 23 ( 3 ) + X 11 , 15 ( 4 ) X 17 , 24 ( 3 ) X 11 , 16 ( 4 ) X 11 , 17 ( 4 ) X 11 , 18 ( 4 ) 0 X 18 , 21 ( 3 ) + X 12 , 13 ( 4 ) X 18 , 22 ( 3 ) + X 12 , 14 ( 4 ) X 18 , 23 ( 3 ) + X 12 , 15 ( 4 ) X 18 , 24 ( 3 ) X 12 , 16 ( 4 ) X 12 , 17 ( 4 ) X 12 , 18 ( 4 ) 0 X 19 , 21 ( 3 ) X 19 , 22 ( 3 ) X 19 , 23 ( 3 ) X 19 , 24 ( 3 ) 0 0 0 0 X 21 , 21 ( 3 ) + X 13 , 13 ( 4 ) X 21 , 22 ( 3 ) + X 13 , 14 ( 4 ) X 21 , 23 ( 3 ) + X 13 , 15 ( 4 ) X 21 , 24 ( 3 ) X 13 , 16 ( 4 ) X 13 , 17 ( 4 ) X 13 , 18 ( 4 ) 0 X 22 , 21 ( 3 ) + X 14 , 13 ( 4 ) X 22 , 22 ( 3 ) + X 14 , 14 ( 4 ) X 22 , 23 ( 3 ) + X 14 , 15 ( 4 ) X 22 , 24 ( 3 ) X 14 , 16 ( 4 ) X 14 , 17 ( 4 ) X 14 , 18 ( 4 ) 0 X 23 , 21 ( 3 ) + X 15 , 13 ( 4 ) X 23 , 22 ( 3 ) + X 15 , 14 ( 4 ) X 23 , 23 ( 3 ) + X 15 , 15 ( 4 ) X 23 , 24 ( 3 ) X 15 , 16 ( 4 ) X 15 , 17 ( 4 ) X 15 , 18 ( 4 ) 0 X 24 , 21 ( 3 ) X 24 , 22 ( 3 ) X 24 , 23 ( 3 ) X 24 , 24 ( 3 ) 0 0 0 0 X 16 , 13 ( 4 ) X 16 , 14 ( 4 ) X 16 , 15 ( 4 ) 0 X 16 , 16 ( 4 ) X 16 , 17 ( 4 ) X 16 , 18 ( 4 ) 0 X 17 , 13 ( 4 ) X 17 , 14 ( 4 ) X 17 , 15 ( 4 ) 0 X 17 , 16 ( 4 ) X 17 , 17 ( 4 ) X 17 , 18 ( 4 ) 0 X 18 , 13 ( 4 ) X 18 , 14 ( 4 ) X 18 , 15 ( 4 ) 0 X 18 , 16 ( 4 ) X 18 , 17 ( 4 ) X 18 , 18 ( 4 ) 0 0 0 0 0 0 0 0 0 . We have Ω 4 ^ = ( Φ 1 ( 4 ) , Φ 2 ( 4 ) ) , (11) where Φ 1 ( 4 ) = X 11 ( 4 ) + X 11 ( 5 ) X 12 ( 4 ) X 14 ( 4 ) + X 12 ( 5 ) X 15 ( 4 ) X 17 ( 4 ) + X 13 ( 5 ) X 18 ( 4 ) X 1 , 10 ( 4 ) + X 14 ( 5 ) X 21 ( 4 ) X 22 ( 4 ) X 24 ( 4 ) X 25 ( 4 ) X 27 ( 4 ) X 28 ( 4 ) X 2 , 10 ( 4 ) X 41 ( 4 ) + X 21 ( 5 ) X 42 ( 4 ) X 44 ( 4 ) + X 22 ( 5 ) X 45 ( 4 ) X 47 ( 4 ) + X 23 ( 5 ) X 48 ( 4 ) X 4 , 10 ( 4 ) + X 24 ( 5 ) X 51 ( 4 ) X 52 ( 4 ) X 54 ( 4 ) X 55 ( 4 ) X 57 ( 4 ) X 58 ( 4 ) X 5 , 10 ( 4 ) X 71 ( 4 ) + X 31 ( 5 ) X 72 ( 4 ) X 74 ( 4 ) + X 32 ( 5 ) X 75 ( 4 ) X 77 ( 4 ) + X 33 ( 5 ) X 78 ( 4 ) X 7 , 10 ( 4 ) + X 34 ( 5 ) X 81 ( 4 ) X 82 ( 4 ) X 84 ( 4 ) X 85 ( 4 ) X 87 ( 4 ) X 88 ( 4 ) X 8 , 10 ( 4 ) X 10 , 1 ( 4 ) + X 41 ( 5 ) X 10 , 2 ( 4 ) X 10 , 4 ( 4 ) + X 42 ( 5 ) X 10 , 5 ( 4 ) X 10 , 7 ( 4 ) + X 43 ( 5 ) X 10 , 8 ( 4 ) X 10 , 10 ( 4 ) + X 44 ( 5 ) X 11 , 1 ( 4 ) X 11 , 2 ( 4 ) X 11 , 4 ( 4 ) X 11 , 5 ( 4 ) X 11 , 7 ( 4 ) X 11 , 8 ( 4 ) X 11 , 10 ( 4 ) X 13 , 1 ( 4 ) + X 51 ( 5 ) X 13 , 2 ( 4 ) X 13 , 4 ( 4 ) + X 52 ( 5 ) X 13 , 5 ( 4 ) X 13 , 7 ( 4 ) + X 53 ( 5 ) X 13 , 8 ( 4 ) X 13 , 10 ( 4 ) + X 54 ( 5 ) X 14 , 1 ( 4 ) X 14 , 2 ( 4 ) X 14 , 4 ( 4 ) X 14 , 5 ( 4 ) X 14 , 7 ( 4 ) X 14 , 8 ( 4 ) X 14 , 10 ( 4 ) X 16 , 1 ( 4 ) + X 61 ( 5 ) X 16 , 2 ( 4 ) X 16 , 4 ( 4 ) + X 62 ( 5 ) X 16 , 5 ( 4 ) X 16 , 7 ( 4 ) + X 63 ( 5 ) X 16 , 8 ( 4 ) X 16 , 10 ( 4 ) + X 64 ( 5 ) X 17 , 1 ( 4 ) X 17 , 2 ( 4 ) X 17 , 4 ( 4 ) X 17 , 5 ( 4 ) X 17 , 7 ( 4 ) X 17 , 8 ( 4 ) X 17 , 10 ( 4 ) X 19 , 1 ( 4 ) + X 71 ( 5 ) X 19 , 2 ( 4 ) X 19 , 4 ( 4 ) + X 72 ( 5 ) X 19 , 5 ( 4 ) X 19 , 7 ( 4 ) + X 73 ( 5 ) X 19 , 8 ( 4 ) X 19 , 10 ( 4 ) + X 74 ( 5 ) X 20 , 1 ( 4 ) X 20 , 2 ( 4 ) X 20 , 4 ( 4 ) X 20 , 5 ( 4 ) X 20 , 7 ( 4 ) X 20 , 8 ( 4 ) X 20 , 10 ( 4 ) X 81 ( 5 ) 0 X 82 ( 5 ) 0 X 83 ( 5 ) 0 X 84 ( 5 ) 0 0 0 0 0 0 0 , Φ 2 ( 4 ) = X 1 , 11 ( 4 ) X 1 , 13 ( 4 ) + X 15 ( 5 ) X 1 , 14 ( 4 ) X 1 , 16 ( 4 ) + X 16 ( 5 ) X 1 , 17 ( 4 ) X 1 , 19 ( 4 ) + X 17 ( 5 ) X 1 , 20 ( 4 ) X 18 ( 5 ) 0 X 2 , 11 ( 4 ) X 2 , 13 ( 4 ) X 2 , 14 ( 4 ) X 2 , 16 ( 4 ) X 2 , 17 ( 4 ) X 2 , 19 ( 4 ) X 2 , 20 ( 4 ) 0 0 X 4 , 11 ( 4 ) X 4 , 13 ( 4 ) + X 25 ( 5 ) X 4 , 14 ( 4 ) X 4 , 16 ( 4 ) + X 26 ( 5 ) X 4 , 17 ( 4 ) X 4 , 19 ( 4 ) + X 27 ( 5 ) X 4 , 20 ( 4 ) X 28 ( 5 ) 0 X 5 , 11 ( 4 ) X 5 , 13 ( 4 ) X 5 , 14 ( 4 ) X 5 , 16 ( 4 ) X 5 , 17 ( 4 ) X 5 , 19 ( 4 ) X 5 , 20 ( 4 ) 0 0 X 7 , 11 ( 4 ) X 7 , 13 ( 4 ) + X 35 ( 5 ) X 7 , 14 ( 4 ) X 7 , 16 ( 4 ) + X 36 ( 5 ) X 7 , 17 ( 4 ) X 7 , 19 ( 4 ) + X 37 ( 5 ) X 7 , 20 ( 4 ) X 38 ( 5 ) 0 X 8 , 11 ( 4 ) X 8 , 13 ( 4 ) X 8 , 14 ( 4 ) X 8 , 16 ( 4 ) X 8 , 17 ( 4 ) X 8 , 19 ( 4 ) X 8 , 20 ( 4 ) 0 0 X 10 , 11 ( 4 ) X 10 , 13 ( 4 ) + X 45 ( 5 ) X 10 , 14 ( 4 ) X 10 , 16 ( 4 ) + X 46 ( 5 ) X 10 , 17 ( 4 ) X 10 , 19 ( 4 ) + X 47 ( 5 ) X 10 , 20 ( 4 ) X 48 ( 5 ) 0 X 11 , 11 ( 4 ) X 11 , 13 ( 4 ) X 11 , 14 ( 4 ) X 11 , 16 ( 4 ) X 11 , 17 ( 4 ) X 11 , 19 ( 4 ) X 11 , 20 ( 4 ) 0 0 X 13 , 11 ( 4 ) X 13 , 13 ( 4 ) + X 55 ( 5 ) X 13 , 14 ( 4 ) X 13 , 16 ( 4 ) + X 56 ( 5 ) X 13 , 17 ( 4 ) X 13 , 19 ( 4 ) + X 57 ( 5 ) X 13 , 20 ( 4 ) X 58 ( 5 ) 0 X 14 , 11 ( 4 ) X 14 , 13 ( 4 ) X 14 , 14 ( 4 ) X 14 , 16 ( 4 ) X 14 , 17 ( 4 ) X 14 , 19 ( 4 ) X 14 , 20 ( 4 ) 0 0 X 16 , 11 ( 4 ) X 16 , 13 ( 4 ) + X 65 ( 5 ) X 16 , 14 ( 4 ) X 16 , 16 ( 4 ) + X 66 ( 5 ) X 16 , 17 ( 4 ) X 16 , 19 ( 4 ) + X 67 ( 5 ) X 16 , 20 ( 4 ) X 68 ( 5 ) 0 X 17 , 11 ( 4 ) X 17 , 13 ( 4 ) X 17 , 14 ( 4 ) X 17 , 16 ( 4 ) X 17 , 17 ( 4 ) X 17 , 19 ( 4 ) X 17 , 20 ( 4 ) 0 0 X 19 , 11 ( 4 ) X 19 , 13 ( 4 ) + X 75 ( 5 ) X 19 , 14 ( 4 ) X 19 , 16 ( 4 ) + X 76 ( 5 ) X 19 , 17 ( 4 ) X 19 , 19 ( 4 ) + X 77 ( 5 ) X 19 , 20 ( 4 ) X 78 ( 5 ) 0 X 20 , 11 ( 4 ) X 20 , 13 ( 4 ) X 20 , 14 ( 4 ) X 20 , 16 ( 4 ) X 20 , 17 ( 4 ) X 20 , 19 ( 4 ) X 20 , 20 ( 4 ) 0 0 0 X 85 ( 5 ) 0 X 86 ( 5 ) 0 X 87 ( 5 ) 0 X 88 ( 5 ) 0 0 0 0 0 0 0 0 0 0 . Theorem 1. In terms of system (1), the following conditions are equivalent to each other:1.System (1) is consistent.2.The ranks of A i , B i , C i , D i , Ω i , i = 1 , ⋯ , 4 satisfy the following 40 rank equalities: r A i Ω i B i = r A i B i , (12) r C i | Ω i | D i = r C i | D i , (13) r A i Ω i | 0 D i = r A i + r D i , (14) r C i 0 | Ω i B i = r C i + r B i , (15) r A 1 Ω 1 B 1 00 | 0 D 1 0 C 2 0 | 00 A 2 − Ω 2 B 2 = r A 1 B 1 0 | 0 A 2 B 2 + r D 1 C 2 , (16) r C 1 00 | Ω 1 B 1 0 | D 1 0 C 2 | 0 A 2 − Ω 2 | 00 D 2 = r B 1 | A 2 + r C 1 0 | D 1 C 2 | 0 D 2 , (17) r A 1 Ω 1 B 1 0 | 0 D 1 0 C 2 | 00 A 2 − Ω 2 | 000 D 2 = r A 1 B 1 | 0 A 2 + r D 1 C 2 | 0 D 2 , (18) r C 1 000 | Ω 1 B 1 00 | D 1 0 C 2 0 | 0 A 2 − Ω 2 B 2 = r B 1 0 | A 2 B 2 + r C 1 0 | D 1 C 2 , (19) r A 2 Ω 2 B 2 00 | 0 D 2 0 C 3 0 | 00 A 3 − Ω 3 B 3 = r A 2 B 2 0 | 0 A 3 B 3 + r D 2 C 3 , (20) r C 2 00 | Ω 2 B 2 0 | D 2 0 C 3 | 0 A 3 − Ω 3 | 00 D 3 = r B 2 | A 3 + r C 2 0 | D 2 C 3 | 0 D 3 , (21) r A 2 Ω 2 B 2 0 | 0 D 2 0 C 3 | 00 A 3 − Ω 3 | 000 D 3 = r A 2 B 2 | 0 A 3 + r D 2 C 3 | 0 D 3 , (22) r C 2 000 | Ω 2 B 2 00 | D 2 0 C 3 0 | 0 A 3 − Ω 3 B 3 = r B 2 0 | A 3 B 3 + r C 2 0 | D 2 C 3 , (23) r A 3 Ω 3 B 3 00 | 0 D 3 0 C 4 0 | 00 A 4 − Ω 4 B 4 = r A 3 B 3 0 | 0 A 4 B 4 + r D 3 C 4 , (24) r C 3 00 | Ω 3 B 3 0 | D 3 0 C 4 | 0 A 4 − Ω 4 | 00 D 4 = r B 3 | A 4 + r C 3 0 | D 3 C 4 | 0 D 4 , (25) r A 3 Ω 3 B 3 0 | 0 D 3 0 C 4 | 00 A 4 − Ω 4 | 000 D 4 = r A 3 B 3 | 0 A 4 + r D 3 C 4 | 0 D 4 , (26) r C 3 000 | Ω 3 B 3 00 | D 3 0 C 4 0 | 0 A 4 − Ω 4 B 4 = r B 3 0 | A 4 B 4 + r C 3 0 | D 3 C 4 , (27) r A 1 Ω 1 B 1 0000 | 0 D 1 0 C 2 000 | 00 A 2 − Ω 2 B 2 00 | 000 D 2 0 C 3 0 | 0000 A 3 Ω 3 B 3 = r A 1 B 1 00 | 0 A 2 B 2 0 | 00 A 3 B 3 + r D 1 C 2 0 | 0 D 2 C 3 , (28) r C 1 0000 | Ω 1 B 1 000 | D 1 0 C 2 00 | 0 A 2 − Ω 2 B 2 0 | 00 D 2 0 C 3 | 000 A 3 Ω 3 | 0000 D 3 = r B 1 0 | A 2 B 2 | 0 A 3 + r C 1 00 | D 1 C 2 0 | 0 D 2 C 3 | 00 D 3 , (29) r A 1 Ω 1 B 1 000 | 0 D 1 0 C 2 00 | 00 A 2 − Ω 2 B 2 0 | 000 D 2 0 C 3 | 0000 A 3 Ω 3 | 00000 D 3 = r A 1 B 1 0 | 0 A 2 B 2 | 00 A 3 + r D 1 C 2 0 | 0 D 2 C 3 | 00 D 3 , (30) r C 1 00000 | Ω 1 B 1 0000 | D 1 0 C 2 000 | 0 A 2 − Ω 2 B 2 00 | 00 D 2 0 C 3 0 | 000 A 3 Ω 3 B 3 = r B 1 00 | A 2 B 2 0 | 0 A 3 B 3 + r C 1 00 | D 1 C 2 0 | 0 D 2 C 3 , (31) r A 2 Ω 2 B 2 0000 | 0 D 2 0 C 3 000 | 00 A 3 − Ω 3 B 3 00 | 000 D 3 0 C 4 0 | 0000 A 4 Ω 4 B 4 = r A 2 B 2 00 | 0 A 3 B 3 0 | 00 A 4 B 4 + r D 2 C 3 0 | 0 D 3 C 4 , (32) r C 2 0000 | Ω 2 B 2 000 | D 2 0 C 3 00 | 0 A 3 − Ω 3 B 3 0 | 00 D 3 0 C 4 | 000 A 4 Ω 4 | 0000 D 4 = r B 2 0 | A 3 B 3 | 0 A 4 + r C 2 00 | D 2 C 3 0 | 0 D 3 C 4 | 00 D 4 , (33) r A 2 Ω 2 B 2 000 | 0 D 2 0 C 3 00 | 00 A 3 − Ω 3 B 3 0 | 000 D 3 0 C 4 | 0000 A 4 Ω 4 | 00000 D 4 = r A 2 B 2 0 | 0 A 3 B 3 | 00 A 4 + r D 2 C 3 0 | 0 D 3 C 4 | 00 D 4 , (34) r C 2 00000 | Ω 2 B 2 0000 | D 2 0 C 3 000 | 0 A 3 − Ω 3 B 3 00 | 00 D 3 0 C 4 0 | 000 A 4 Ω 4 B 4 = r B 2 00 | A 3 B 3 0 | 0 A 4 B 4 + r C 2 00 | D 2 C 3 0 | 0 D 3 C 4 , (35) r A 1 Ω 1 B 1 000000 | 0 D 1 0 C 2 00000 | 00 A 2 − Ω 2 B 2 0000 | 000 D 2 0 C 3 000 | 0000 A 3 Ω 3 B 3 00 | 00000 D 3 0 C 4 0 | 000000 A 4 − Ω 4 B 4 = r A 1 B 1 000 | 0 A 2 B 2 00 | 00 A 3 B 3 0 | 000 A 4 B 4 + r D 1 C 2 00 | 0 D 2 C 3 0 | 00 D 3 C 4 , (36) r C 1 000000 | Ω 1 B 1 00000 | D 1 0 C 2 0000 | 0 A 2 − Ω 2 B 2 000 | 00 D 2 0 C 3 00 | 000 A 3 Ω 3 B 3 0 | 0000 D 3 0 C 4 | 00000 A 4 − Ω 4 | 000000 D 4 = r B 1 00 | A 2 B 2 0 | 0 A 3 B 3 | 00 A 4 + r C 1 000 | D 1 C 2 00 | 0 D 2 C 3 0 | 00 D 3 C 4 | 000 D 4 , (37) r A 1 Ω 1 B 1 00000 | 0 D 1 0 C 2 0000 | 00 A 2 − Ω 2 B 2 000 | 000 D 2 0 C 3 00 | 0000 A 3 Ω 3 B 3 0 | 00000 D 3 0 C 4 | 000000 A 4 − Ω 4 | 0000000 D 4 = r A 1 B 1 00 | 0 A 2 B 2 0 | 00 A 3 B 3 | 000 A 4 + r D 1 C 2 00 | 0 D 2 C 3 0 | 00 D 3 C 4 | 000 D 4 , (38) r C 1 0000000 | Ω 1 B 1 000000 | D 1 0 C 2 00000 | 0 A 2 − Ω 2 B 2 0000 | 00 D 2 0 C 3 000 | 000 A 3 Ω 3 B 3 00 | 0000 D 3 0 C 4 0 | 00000 A 4 − Ω 4 B 4 = r B 1 000 | A 2 B 2 00 | 0 A 3 B 3 0 | 00 A 4 B 4 + r C 1 000 | D 1 C 2 00 | 0 D 2 C 3 0 | 00 D 3 C 4 . (39) 3.The block matrices satisfy ω 16 , 1 ( 1 ) ω 16 , 2 ( 1 ) ⋯ ω 16 , 16 ( 1 ) = 0 , ω 24 , 1 ( 2 ) ω 24 , 2 ( 2 ) ⋯ ω 24 , 24 ( 2 ) = 0 , ω 24 , 1 ( 3 ) ω 24 , 2 ( 3 ) ⋯ ω 24 , 24 ( 3 ) = 0 , ω 16 , 1 ( 4 ) ω 16 , 2 ( 4 ) ⋯ ω 16 , 16 ( 4 ) = 0 , ω 1 , 16 ( 1 ) ω 2 , 16 ( 1 ) ⋮ ω 16 , 16 ( 1 ) = 0 , ω 1 , 24 ( 2 ) ω 2 , 24 ( 2 ) ⋮ ω 24 , 24 ( 2 ) = 0 , ω 1 , 24 ( 3 ) ω 2 , 24 ( 3 ) ⋮ ω 24 , 24 ( 3 ) = 0 , ω 1 , 16 ( 4 ) ω 2 , 16 ( 4 ) ⋮ ω 16 , 16 ( 4 ) = 0 , (40) ω 98 ( 1 ) = 0 , ω 10 , 8 ( 1 ) = 0 , ω 11 , 8 ( 1 ) = 0 , ω 12 , 8 ( 1 ) = 0 , ω 13 , 8 ( 1 ) = 0 , ω 14 , 8 ( 1 ) = 0 , ω 15 , 8 ( 1 ) = 0 , ω 19 , 6 ( 2 ) = 0 , ω 20 , 6 ( 2 ) = 0 , ω 21 , 6 ( 2 ) = 0 , ω 22 , 6 ( 2 ) = 0 , ω 23 , 6 ( 2 ) = 0 , ω 19 , 12 ( 2 ) = 0 , ω 20 , 12 ( 2 ) = 0 , ω 21 , 12 ( 2 ) = 0 , ω 22 , 12 ( 2 ) = 0 , ω 23 , 12 ( 2 ) = 0 , ω 19 , 18 ( 2 ) = 0 , ω 20 , 18 ( 2 ) = 0 , ω 21 , 18 ( 2 ) = 0 , ω 22 , 18 ( 2 ) = 0 , ω 23 , 18 ( 2 ) = 0 , ω 21 , 4 ( 3 ) = 0 , ω 22 , 4 ( 3 ) = 0 , ω 23 , 4 ( 3 ) = 0 , ω 21 , 8 ( 3 ) = 0 , ω 22 , 8 ( 3 ) = 0 , ω 23 , 8 ( 3 ) = 0 , ω 21 , 12 ( 3 ) = 0 , ω 22 , 12 ( 3 ) = 0 , ω 23 , 12 ( 3 ) = 0 , ω 21 , 16 ( 3 ) = 0 , ω 22 , 16 ( 3 ) = 0 , ω 23 , 16 ( 3 ) = 0 , ω 21 , 20 ( 3 ) = 0 , ω 22 , 20 ( 3 ) = 0 , ω 23 , 20 ( 3 ) = 0 , ω 15 , 2 ( 4 ) = 0 , ω 15 , 4 ( 4 ) = 0 , ω 15 , 6 ( 4 ) , ω 15 , 8 ( 4 ) = 0 , ω 15 , 10 ( 4 ) = 0 , ω 15 , 12 ( 4 ) = 0 , ω 15 , 14 ( 4 ) = 0 , (41) ω 89 ( 1 ) = 0 , ω 8 , 10 ( 1 ) = 0 , ω 8 , 11 ( 1 ) = 0 , ω 8 , 12 ( 1 ) = 0 , ω 8 , 13 ( 1 ) = 0 , ω 8 , 14 ( 1 ) = 0 , ω 8 , 15 ( 1 ) = 0 , ω 6 , 19 ( 2 ) = 0 , ω 6 , 20 ( 2 ) = 0 , ω 6 , 21 ( 2 ) = 0 , ω 6 , 22 ( 2 ) = 0 , ω 6 , 23 ( 2 ) = 0 , ω 12 , 19 ( 2 ) = 0 , ω 12 , 20 ( 2 ) = 0 , ω 12 , 21 ( 2 ) = 0 , ω 12 , 22 ( 2 ) = 0 , ω 12 , 23 ( 2 ) = 0 , ω 18 , 19 ( 2 ) = 0 , ω 18 , 20 ( 2 ) = 0 , ω 18 , 21 ( 2 ) , ω 18 , 22 ( 2 ) = 0 , ω 18 , 23 ( 2 ) = 0 , ω 4 , 21 ( 3 ) = 0 , ω 4 , 22 ( 3 ) = 0 , ω 4 , 23 ( 3 ) = 0 , ω 8 , 21 ( 3 ) = 0 , ω 8 , 22 ( 3 ) = 0 , ω 8 , 23 ( 3 ) = 0 , ω 12 , 21 ( 3 ) = 0 , ω 12 , 22 ( 3 ) = 0 , ω 12 , 23 ( 3 ) = 0 , ω 16 , 21 ( 3 ) = 0 , ω 16 , 22 ( 3 ) = 0 , ω 16 , 23 ( 3 ) = 0 , ω 20 , 21 ( 3 ) = 0 , ω 20 , 22 ( 3 ) = 0 , ω 20 , 23 ( 3 ) = 0 , ω 2 , 15 ( 4 ) = 0 , ω 4 , 15 ( 4 ) = 0 , ω 6 , 15 ( 4 ) = 0 , ω 8 , 15 ( 4 ) = 0 , ω 10 , 15 ( 4 ) = 0 , ω 12 , 15 ( 4 ) = 0 , ω 14 , 15 ( 4 ) = 0 , (42) ω 14 , 1 ( 1 ) = ω 12 , 1 ( 2 ) , ω 14 , 2 ( 1 ) = ω 12 , 2 ( 2 ) , ω 14 , 3 ( 1 ) = ω 12 , 3 ( 2 ) , ω 14 , 4 ( 1 ) = ω 12 , 4 ( 2 ) , ω 14 , 5 ( 1 ) = ω 12 , 5 ( 2 ) , ω 14 , 6 ( 1 ) = ω 12 , 6 ( 2 ) , ω 14 , 9 ( 1 ) = ω 12 , 7 ( 2 ) , ω 14 , 10 ( 1 ) = ω 12 , 8 ( 2 ) , ω 14 , 11 ( 1 ) = ω 12 , 9 ( 2 ) , ω 14 , 12 ( 1 ) = ω 12 , 10 ( 2 ) , ω 14 , 13 ( 1 ) = ω 12 , 11 ( 2 ) , ω 14 , 14 ( 1 ) = ω 12 , 12 ( 2 ) , (43) ω 1 , 14 ( 1 ) = ω 1 , 12 ( 2 ) , ω 2 , 14 ( 1 ) = ω 2 , 12 ( 2 ) , ω 3 , 14 ( 1 ) = ω 3 , 12 ( 2 ) , ω 4 , 14 ( 1 ) = ω 4 , 12 ( 2 ) , ω 5 , 14 ( 1 ) = ω 5 , 12 ( 2 ) , ω 6 , 14 ( 1 ) = ω 6 , 12 ( 2 ) , ω 9 , 14 ( 1 ) = ω 7 , 12 ( 2 ) , ω 10 , 14 ( 1 ) = ω 8 , 12 ( 2 ) , ω 11 , 14 ( 1 ) = ω 9 , 12 ( 2 ) , ω 12 , 14 ( 1 ) = ω 10 , 12 ( 2 ) , ω 13 , 14 ( 1 ) = ω 11 , 12 ( 2 ) , ω 14 , 14 ( 1 ) = ω 12 , 12 ( 2 ) , (44) ω 9 , 6 ( 1 ) = ω 76 ( 2 ) , ω 10 , 6 ( 1 ) = ω 86 ( 2 ) , ω 11 , 6 ( 1 ) = ω 96 ( 2 ) , ω 12 , 6 ( 1 ) = ω 10 , 6 ( 2 ) , ω 13 , 6 ( 1 ) = ω 11 , 6 ( 2 ) , ω 14 , 6 ( 1 ) = ω 12 , 6 ( 2 ) , ω 9 , 14 ( 1 ) = ω 7 , 12 ( 2 ) , ω 10 , 14 ( 1 ) = ω 8 , 12 ( 2 ) , ω 11 , 14 ( 1 ) = ω 9 , 12 ( 2 ) , ω 12 , 14 ( 1 ) = ω 10 , 12 ( 2 ) , ω 13 , 14 ( 1 ) = ω 11 , 12 ( 2 ) , ω 14 , 14 ( 1 ) = ω 12 , 12 ( 2 ) , (45) ω 6 , 9 ( 1 ) = ω 67 ( 2 ) , ω 6 , 10 ( 1 ) = ω 68 ( 2 ) , ω 6 , 11 ( 1 ) = ω 69 ( 2 ) , ω 6 , 12 ( 1 ) = ω 6 , 10 ( 2 ) , ω 6 , 13 ( 1 ) = ω 6 , 11 ( 2 ) , ω 6 , 14 ( 1 ) = ω 6 , 12 ( 2 ) , ω 14 , 9 ( 1 ) = ω 12 , 7 ( 2 ) , ω 14 , 10 ( 1 ) = ω 12 , 8 ( 2 ) , ω 14 , 11 ( 1 ) = ω 12 , 9 ( 2 ) , ω 14 , 12 ( 1 ) = ω 12 , 10 ( 2 ) , ω 14 , 13 ( 1 ) = ω 12 , 11 ( 2 ) , ω 14 , 14 ( 1 ) = ω 12 , 12 ( 2 ) , (46) ω 22 , 1 ( 2 ) = ω 16 , 1 ( 3 ) , ω 22 , 2 ( 2 ) = ω 16 , 2 ( 3 ) , ω 22 , 3 ( 2 ) = ω 16 , 3 ( 3 ) , ω 22 , 4 ( 2 ) = ω 16 , 4 ( 3 ) , ω 22 , 7 ( 2 ) = ω 16 , 5 ( 3 ) , ω 22 , 8 ( 2 ) = ω 16 , 6 ( 3 ) , ω 22 , 9 ( 2 ) = ω 16 , 7 ( 3 ) , ω 22 , 10 ( 2 ) = ω 16 , 8 ( 3 ) , ω 22 , 13 ( 2 ) = ω 16 , 9 ( 3 ) , ω 22 , 14 ( 2 ) = ω 16 , 10 ( 3 ) , ω 22 , 15 ( 2 ) = ω 16 , 11 ( 3 ) , ω 22 , 16 ( 2 ) = ω 16 , 12 ( 3 ) , ω 22 , 19 ( 2 ) = ω 16 , 13 ( 3 ) , ω 22 , 20 ( 2 ) = ω 16 , 14 ( 3 ) , ω 22 , 21 ( 2 ) = ω 16 , 15 ( 3 ) , ω 22 , 22 ( 2 ) = ω 16 , 16 ( 3 ) , (47) ω 1 , 22 ( 2 ) = ω 1 , 16 ( 3 ) , ω 2 , 22 ( 2 ) = ω 2 , 16 ( 3 ) , ω 3 , 22 ( 2 ) = ω 3 , 16 ( 3 ) , ω 4 , 22 ( 2 ) = ω 4 , 16 ( 3 ) , ω 7 , 22 ( 2 ) = ω 5 , 16 ( 3 ) , ω 8 , 22 ( 2 ) = ω 6 , 16 ( 3 ) , ω 9 , 22 ( 2 ) = ω 7 , 16 ( 3 ) , ω 10 , 22 ( 2 ) = ω 8 , 16 ( 3 ) , ω 13 , 22 ( 2 ) = ω 9 , 16 ( 3 ) , ω 14 , 22 ( 2 ) = ω 10 , 16 ( 3 ) , ω 15 , 22 ( 2 ) = ω 11 , 16 ( 3 ) , ω 16 , 22 ( 2 ) = ω 12 , 16 ( 3 ) , ω 19 , 22 ( 2 ) = ω 13 , 16 ( 3 ) , ω 20 , 22 ( 2 ) = ω 14 , 16 ( 3 ) , ω 21 , 22 ( 2 ) = ω 15 , 16 ( 3 ) , ω 22 , 22 ( 2 ) = ω 16 , 16 ( 3 ) , (48) ω 19 , 4 ( 2 ) = ω 13 , 4 ( 3 ) , ω 20 , 4 ( 2 ) = ω 14 , 4 ( 3 ) , ω 21 , 4 ( 2 ) = ω 15 , 4 ( 3 ) , ω 22 , 4 ( 2 ) = ω 16 , 4 ( 3 ) , ω 19 , 10 ( 2 ) = ω 13 , 8 ( 3 ) , ω 20 , 10 ( 2 ) = ω 14 , 8 ( 3 ) , ω 21 , 10 ( 2 ) = ω 15 , 8 ( 3 ) , ω 22 , 10 ( 2 ) = ω 16 , 8 ( 3 ) , ω 19 , 16 ( 2 ) = ω 13 , 12 ( 3 ) , ω 20 , 16 ( 2 ) = ω 14 , 12 ( 3 ) , ω 21 , 16 ( 2 ) = ω 15 , 12 ( 3 ) , ω 22 , 16 ( 2 ) = ω 16 , 12 ( 3 ) , ω 19 , 22 ( 2 ) = ω 13 , 16 ( 3 ) , ω 20 , 22 ( 2 ) = ω 14 , 16 ( 3 ) , ω 21 , 22 ( 2 ) = ω 15 , 16 ( 3 ) , ω 22 , 22 ( 2 ) = ω 16 , 16 ( 3 ) , (49) ω 4 , 19 ( 2 ) = ω 4 , 13 ( 3 ) , ω 4 , 20 ( 2 ) = ω 4 , 14 ( 3 ) , ω 4 , 21 ( 2 ) = ω 4 , 15 ( 3 ) , ω 4 , 22 ( 2 ) = ω 4 , 16 ( 3 ) , ω 10 , 19 ( 2 ) = ω 8 , 13 ( 3 ) , ω 10 , 20 ( 2 ) = ω 8 , 14 ( 3 ) , ω 10 , 21 ( 2 ) = ω 8 , 15 ( 3 ) , ω 10 , 22 ( 2 ) = ω 8 , 16 ( 3 ) , ω 16 , 19 ( 2 ) = ω 12 , 13 ( 3 ) , ω 16 , 20 ( 2 ) = ω 12 , 14 ( 3 ) , ω 16 , 21 ( 2 ) = ω 12 , 15 ( 3 ) , ω 16 , 22 ( 2 ) = ω 12 , 16 ( 3 ) , ω 22 , 19 ( 2 ) = ω 16 , 13 ( 3 ) , ω 22 , 20 ( 2 ) = ω 16 , 14 ( 3 ) , ω 22 , 21 ( 2 ) = ω 16 , 15 ( 3 ) , ω 22 , 22 ( 2 ) = ω 16 , 16 ( 3 ) , (50) ω 22 , 1 ( 3 ) = ω 12 , 1 ( 4 ) , ω 22 , 2 ( 3 ) = ω 12 , 2 ( 4 ) , ω 22 , 5 ( 3 ) = ω 12 , 3 ( 4 ) , ω 22 , 6 ( 3 ) = ω 12 , 4 ( 4 ) , ω 22 , 9 ( 3 ) = ω 12 , 5 ( 4 ) , ω 22 , 10 ( 3 ) = ω 12 , 6 ( 4 ) , ω 22 , 13 ( 3 ) = ω 12 , 7 ( 4 ) , ω 22 , 14 ( 3 ) = ω 12 , 8 ( 4 ) , ω 22 , 17 ( 3 ) = ω 12 , 9 ( 4 ) , ω 22 , 18 ( 3 ) = ω 12 , 10 ( 4 ) , ω 22 , 21 ( 3 ) = ω 12 , 11 ( 4 ) , ω 22 , 22 ( 3 ) = ω 12 , 12 ( 4 ) , (51) ω 1 , 22 ( 3 ) = ω 1 , 12 ( 4 ) , ω 2 , 22 ( 3 ) = ω 2 , 12 ( 4 ) , ω 5 , 22 ( 3 ) = ω 3 , 12 ( 4 ) , ω 6 , 22 ( 3 ) = ω 4 , 12 ( 4 ) , ω 9 , 22 ( 3 ) = ω 5 , 12 ( 4 ) , ω 10 , 22 ( 3 ) = ω 6 , 12 ( 4 ) , ω 13 , 22 ( 3 ) = ω 7 , 12 ( 4 ) , ω 14 , 22 ( 3 ) = ω 8 , 12 ( 4 ) , ω 17 , 22 ( 3 ) = ω 9 , 12 ( 4 ) , ω 18 , 22 ( 3 ) = ω 10 , 12 ( 4 ) , ω 21 , 22 ( 3 ) = ω 11 , 12 ( 4 ) , ω 22 , 22 ( 3 ) = ω 12 , 12 ( 4 ) , (52) ω 21 , 2 ( 3 ) = ω 11 , 2 ( 4 ) , ω 21 , 6 ( 3 ) = ω 11 , 4 ( 4 ) , ω 21 , 10 ( 3 ) = ω 11 , 6 ( 4 ) , ω 21 , 14 ( 3 ) = ω 11 , 8 ( 4 ) , ω 21 , 18 ( 3 ) = ω 11 , 10 ( 4 ) , ω 21 , 22 ( 3 ) = ω 11 , 12 ( 4 ) , ω 22 , 2 ( 3 ) = ω 12 , 2 ( 4 ) , ω 22 , 6 ( 3 ) = ω 12 , 4 ( 4 ) , ω 22 , 10 ( 3 ) = ω 12 , 6 ( 4 ) , ω 22 , 14 ( 3 ) = ω 12 , 8 ( 4 ) , ω 22 , 18 ( 3 ) = ω 12 , 10 ( 4 ) , ω 22 , 22 ( 3 ) = ω 12 , 12 ( 4 ) , (53) ω 2 , 21 ( 3 ) = ω 2 , 11 ( 4 ) , ω 6 , 21 ( 3 ) = ω 4 , 11 ( 4 ) , ω 10 , 21 ( 3 ) = ω 6 , 11 ( 4 ) , ω 14 , 21 ( 3 ) = ω 8 , 11 ( 4 ) , ω 18 , 21 ( 3 ) = ω 10 , 11 ( 4 ) , ω 22 , 21 ( 3 ) = ω 12 , 11 ( 4 ) , ω 2 , 22 ( 3 ) = ω 2 , 12 ( 4 ) , ω 6 , 22 ( 3 ) = ω 4 , 12 ( 4 ) , ω 10 , 22 ( 3 ) = ω 6 , 12 ( 4 ) , ω 14 , 22 ( 3 ) = ω 8 , 12 ( 4 ) , ω 18 , 22 ( 3 ) = ω 10 , 12 ( 4 ) , ω 22 , 22 ( 3 ) = ω 12 , 12 ( 4 ) , (54) ω 12 , 1 ( 1 ) + ω 81 ( 3 ) = ω 10 , 1 ( 2 ) , ω 12 , 2 ( 1 ) + ω 82 ( 3 ) = ω 10 , 2 ( 2 ) , ω 12 , 3 ( 1 ) + ω 83 ( 3 ) = ω 10 , 3 ( 2 ) , ω 12 , 4 ( 1 ) + ω 84 ( 3 ) = ω 10 , 4 ( 2 ) , ω 12 , 9 ( 1 ) + ω 85 ( 3 ) = ω 10 , 7 ( 2 ) , ω 12 , 10 ( 1 ) + ω 86 ( 3 ) = ω 10 , 8 ( 2 ) , ω 12 , 11 ( 1 ) + ω 87 ( 3 ) = ω 10 , 9 ( 2 ) , ω 12 , 12 ( 1 ) + ω 88 ( 3 ) = ω 10 , 10 ( 2 ) , (55) ω 1 , 12 ( 1 ) + ω 18 ( 3 ) = ω 1 , 10 ( 2 ) , ω 2 , 12 ( 1 ) + ω 28 ( 3 ) = ω 2 , 10 ( 2 ) , ω 3 , 12 ( 1 ) + ω 38 ( 3 ) = ω 3 , 10 ( 2 ) , ω 4 , 12 ( 1 ) + ω 48 ( 3 ) = ω 4 , 10 ( 2 ) , ω 9 , 12 ( 1 ) + ω 58 ( 3 ) = ω 7 , 10 ( 2 ) , ω 10 , 12 ( 1 ) + ω 68 ( 3 ) = ω 8 , 10 ( 2 ) , ω 11 , 12 ( 1 ) + ω 78 ( 3 ) = ω 9 , 10 ( 2 ) , ω 12 , 12 ( 1 ) + ω 88 ( 3 ) = ω 10 , 10 ( 2 ) , (56) ω 94 ( 1 ) + ω 54 ( 3 ) = ω 74 ( 2 ) , ω 10 , 4 ( 1 ) + ω 64 ( 3 ) = ω 84 ( 2 ) , ω 11 , 4 ( 1 ) + ω 74 ( 3 ) = ω 94 ( 2 ) , ω 12 , 4 ( 1 ) + ω 84 ( 3 ) = ω 10 , 4 ( 2 ) , ω 9 , 12 ( 1 ) + ω 58 ( 3 ) = ω 7 , 10 2 , ω 10 , 12 ( 1 ) + ω 68 ( 3 ) = ω 8 , 10 2 , ω 11 , 12 ( 1 ) + ω 78 ( 3 ) = ω 9 , 10 2 , ω 12 , 12 ( 1 ) + ω 88 ( 3 ) = ω 10 , 10 2 , (57) ω 4 , 9 ( 1 ) + ω 45 ( 3 ) = ω 47 ( 2 ) , ω 4 , 10 ( 1 ) + ω 46 ( 3 ) = ω 48 ( 2 ) , ω 4 , 11 ( 1 ) + ω 47 ( 3 ) = ω 49 ( 2 ) , ω 4 , 12 ( 1 ) + ω 48 ( 3 ) = ω 4 , 10 ( 2 ) , ω 12 , 9 ( 1 ) + ω 85 ( 3 ) = ω 10 , 7 2 , ω 12 , 10 ( 1 ) + ω 86 ( 3 ) = ω 10 , 8 2 , ω 12 , 11 ( 1 ) + ω 87 ( 3 ) = ω 10 , 9 2 , ω 12 , 12 ( 1 ) + ω 88 ( 3 ) = ω 10 , 10 2 , (58) ω 20 , 1 ( 2 ) + ω 81 ( 4 ) = ω 14 , 1 ( 3 ) , ω 20 , 2 ( 2 ) + ω 82 ( 4 ) = ω 14 , 2 ( 3 ) , ω 20 , 7 ( 2 ) + ω 83 ( 4 ) = ω 14 , 5 ( 3 ) , ω 20 , 8 ( 2 ) + ω 84 ( 4 ) = ω 14 , 6 ( 3 ) , ω 20 , 13 ( 2 ) + ω 85 ( 4 ) = ω 14 , 9 ( 3 ) , ω 20 , 14 ( 2 ) + ω 86 ( 4 ) = ω 14 , 10 ( 3 ) , ω 20 , 19 ( 2 ) + ω 87 ( 4 ) = ω 14 , 13 ( 3 ) , ω 20 , 20 ( 2 ) + ω 88 ( 4 ) = ω 14 , 14 ( 3 ) , (59) ω 1 , 20 ( 2 ) + ω 18 ( 4 ) = ω 1 , 14 ( 3 ) , ω 2 , 20 ( 2 ) + ω 28 ( 4 ) = ω 2 , 14 ( 3 ) , ω 7 , 20 ( 2 ) + ω 38 ( 4 ) = ω 5 , 14 ( 3 ) , ω 8 , 20 ( 2 ) + ω 48 ( 4 ) = ω 6 , 14 ( 3 ) , ω 13 , 20 ( 2 ) + ω 58 ( 4 ) = ω 9 , 14 ( 3 ) , ω 14 , 20 ( 2 ) + ω 68 ( 4 ) = ω 10 , 14 ( 3 ) , ω 19 , 20 ( 2 ) + ω 78 ( 4 ) = ω 13 , 14 ( 3 ) , ω 20 , 20 ( 2 ) + ω 88 ( 4 ) = ω 14 , 14 ( 3 ) , (60) ω 19 , 2 ( 2 ) + ω 72 ( 4 ) = ω 13 , 2 ( 3 ) , ω 20 , 2 ( 2 ) + ω 82 ( 4 ) = ω 14 , 2 ( 3 ) , ω 19 , 8 ( 2 ) + ω 74 ( 4 ) = ω 13 , 6 ( 3 ) , ω 20 , 8 ( 2 ) + ω 84 ( 4 ) = ω 14 , 6 ( 3 ) , ω 19 , 14 ( 2 ) + ω 76 ( 4 ) = ω 13 , 10 ( 3 ) , ω 20 , 14 ( 2 ) + ω 86 ( 4 ) = ω 14 , 10 ( 3 ) , ω 19 , 20 ( 2 ) + ω 78 ( 4 ) = ω 13 , 14 ( 3 ) , ω 20 , 20 ( 2 ) + ω 88 ( 4 ) = ω 14 , 14 ( 3 ) , (61) ω 2 , 19 ( 2 ) + ω 27 ( 4 ) = ω 2 , 13 ( 3 ) , ω 2 , 20 ( 2 ) + ω 28 ( 4 ) = ω 2 , 14 ( 3 ) , ω 8 , 19 ( 2 ) + ω 47 ( 4 ) = ω 6 , 13 ( 3 ) , ω 8 , 20 ( 2 ) + ω 48 ( 4 ) = ω 6 , 14 ( 3 ) , ω 14 , 19 ( 2 ) + ω 67 ( 4 ) = ω 10 , 13 ( 3 ) , ω 14 , 20 ( 2 ) + ω 68 ( 4 ) = ω 10 , 14 ( 3 ) , ω 20 , 19 ( 2 ) + ω 87 ( 4 ) = ω 13 , 14 ( 3 ) , ω 20 , 20 ( 2 ) + ω 88 ( 4 ) = ω 14 , 14 ( 3 ) , (62) ω 10 , 1 ( 1 ) + ω 61 ( 3 ) = ω 81 ( 2 ) + ω 41 ( 4 ) , ω 10 , 2 ( 1 ) + ω 62 ( 3 ) = ω 82 ( 2 ) + ω 42 ( 4 ) , ω 10 , 9 ( 1 ) + ω 65 ( 3 ) = ω 87 ( 2 ) + ω 43 ( 4 ) , ω 10 , 10 ( 1 ) + ω 66 ( 3 ) = ω 88 ( 2 ) + ω 44 ( 4 ) , (63) ω 1 , 10 ( 1 ) + ω 16 ( 3 ) = ω 18 ( 2 ) + ω 14 ( 4 ) , ω 2 , 10 ( 1 ) + ω 26 ( 3 ) = ω 28 ( 2 ) + ω 24 ( 4 ) , ω 9 , 10 ( 1 ) + ω 56 ( 3 ) = ω 78 ( 2 ) + ω 34 ( 4 ) , ω 10 , 10 ( 1 ) + ω 66 ( 3 ) = ω 88 ( 2 ) + ω 44 ( 4 ) , (64) ω 92 ( 1 ) + ω 52 ( 3 ) = ω 72 ( 2 ) + ω 32 ( 4 ) , ω 10 , 2 ( 1 ) + ω 62 ( 3 ) = ω 82 ( 2 ) + ω 42 ( 4 ) , ω 9 , 10 ( 1 ) + ω 56 ( 3 ) = ω 78 ( 2 ) + ω 34 ( 4 ) , ω 10 , 10 ( 1 ) + ω 66 ( 3 ) = ω 88 ( 2 ) + ω 44 ( 4 ) , (65) ω 29 ( 1 ) + ω 25 ( 3 ) = ω 27 ( 2 ) + ω 23 ( 4 ) , ω 2 , 10 ( 1 ) + ω 26 ( 3 ) = ω 28 ( 2 ) + ω 24 ( 4 ) , ω 10 , 9 ( 1 ) + ω 65 ( 3 ) = ω 87 ( 2 ) + ω 43 ( 4 ) , ω 10 , 10 ( 1 ) + ω 66 ( 3 ) = ω 88 ( 2 ) + ω 44 ( 4 ) . (66) Proof. (1) ⇒ (2): Suppose that ( X 1 ′ , X 2 ′ , X 3 ′ , X 4 ′ , X 5 ′ ) is a solution to system (1), that is, A i X i ′ C i + B i X i + 1 ′ D i = Ω i , i = 1 , 2 , 3 , 4 , we can employ elementary matrix operations to show that the rank equalities (12)–(39) hold.(2) ⇒ (3): ( 12 ) ⇔ r ( S a i Ω i ^ S b i ) = r ( S a i S b i ) ⇒ i = 1 , ω 16 , 1 ( 1 ) ω 16 , 2 ( 1 ) ⋯ ω 16 , 16 ( 1 ) = 0 , i = 2 , ω 24 , 1 ( 2 ) ω 24 , 2 ( 2 ) ⋯ ω 24 , 24 ( 2 ) = 0 , i = 3 , ω 24 , 1 ( 3 ) ω 24 , 2 ( 3 ) ⋯ ω 24 , 24 ( 3 ) = 0 , i = 4 , ω 16 , 1 ( 4 ) ω 16 , 2 ( 4 ) ⋯ ω 16 , 16 ( 4 ) = 0 . Similarly, we have: (13) ⇒ (40), (14) ⇒ (41), (15) ⇒ (42),(16) ⇒ (43) with (40) − (42), (17) ⇒ (44) with (40) − (42),(18) ⇒ (45) with (40) − (42), (19) ⇒ (46) with (40) − (42),(20) ⇒ (48) with (40) − (42), (22) ⇒ (49) with (40) − (42),(23) ⇒ (50) with (40) − (42), (24) ⇒ (51) with (40) − (42),(25) ⇒ (52) with (40) − (42), (26) ⇒ (53) with (40) − (42),(27) ⇒ (54) with (40) − (42), (28) ⇒ (55) with (40) − (50),(29) ⇒ (56) with (40) − (50), (30) ⇒ (57) with (40) − (50),(31) ⇒ (58) with (40) − (50),(32) ⇒ (59) with (40) − (42) and (47) − (54),(33) ⇒ (60) with (40) − (42) and (47) − (54),(34) ⇒ (61) with (40) − (42) and (47) − (54),(35) ⇒ (62) with (40) − (42) and (47) − (54),(36) ⇒ (63) with (40) − (62), (37) ⇒ (64) with (40) − (62),(38) ⇒ (65) with (40) − (62), (39) ⇒ (66) with (40) − (62).(3) ⇔ (1): By (8), (9), (10) and (11), system (1) is consistent if and only if (40)–(66) hold. □By utilizing the simultaneous decomposition, we give out some necessary and sufficient conditions for system (1) to be solvable. However, it is hard to verify the conditions (40)–(66) because the amount of them is huge. It is easy to check conditions (12)–(39). In terms of conditions (40)–(66), we put more emphasis on their mutual verification with (12)–(39). In addition, by making use of the decomposition, we can obtain some useful properties related to the general solution. We refer the readers to [5]. 3. The General Solution to System (1)In this section, we detail the general solution to system (1) by using the partitioned matrix, and Algorithm 1 which clearly illustrate the steps to obtain the general solution to system (1) is set up. Theorem 2. If (12)–(39) or (40)–(66) hold, then X j = Q j X j ^ T j are the general solution to system (1), where j = 1 , 2 , 3 , 4 , 5 . X j ^ are listed as follows: X 1 ^ = ( Y 1 ( 1 ) , Y 2 ( 1 ) ) , (67) where Y 1 ( 1 ) = ω 11 ( 1 ) − ω 11 ( 2 ) + ω 11 ( 3 ) − ω 11 ( 4 ) + X 11 ( 5 ) ω 12 ( 1 ) − ω 12 ( 2 ) + ω 12 ( 3 ) − ω 12 ( 4 ) ω 13 ( 1 ) − ω 13 ( 2 ) + ω 13 ( 3 ) − X 13 ( 4 ) ω 21 ( 1 ) − ω 21 ( 2 ) + ω 21 ( 3 ) − ω 21 ( 4 ) ω 22 ( 1 ) − ω 22 ( 2 ) + ω 22 ( 3 ) − ω 22 ( 4 ) ω 23 ( 1 ) − ω 23 ( 2 ) + ω 23 ( 3 ) − X 23 ( 4 ) ω 31 ( 1 ) − ω 31 ( 2 ) + ω 31 ( 3 ) − X 31 ( 4 ) ω 32 ( 1 ) − ω 32 ( 2 ) + ω 32 ( 3 ) − X 32 ( 4 ) ω 33 ( 1 ) − ω 33 ( 2 ) + ω 33 ( 3 ) − X 33 ( 4 ) ω 41 ( 1 ) − ω 41 ( 2 ) + ω 41 ( 3 ) ω 42 ( 1 ) − ω 42 ( 2 ) + ω 42 ( 3 ) ω 43 ( 1 ) − ω 43 ( 2 ) + ω 43 ( 3 ) ω 51 ( 1 ) − ω 51 ( 2 ) + X 51 ( 3 ) ω 52 ( 1 ) − ω 52 ( 2 ) + X 52 ( 3 ) ω 53 ( 1 ) − ω 53 ( 2 ) + X 53 ( 3 ) ω 61 ( 1 ) − ω 61 ( 2 ) ω 62 ( 1 ) − ω 62 ( 2 ) ω 63 ( 1 ) − ω 63 ( 2 ) ω 71 ( 1 ) − X 71 ( 2 ) ω 72 ( 1 ) − X 72 ( 2 ) ω 73 ( 1 ) − X 73 ( 2 ) ω 81 ( 1 ) ω 82 ( 1 ) ω 83 ( 1 ) X 91 ( 1 ) X 92 ( 1 ) X 93 ( 1 ) , Y 2 ( 1 ) = ω 14 ( 1 ) − ω 14 ( 2 ) + ω 14 ( 3 ) ω 15 ( 1 ) − ω 15 ( 2 ) + X 15 ( 3 ) ω 16 ( 1 ) − ω 16 ( 2 ) ω 17 ( 1 ) − X 17 ( 2 ) ω 18 ( 1 ) X 19 ( 1 ) ω 24 ( 1 ) − ω 24 ( 2 ) + ω 24 ( 3 ) ω 25 ( 1 ) − ω 25 ( 2 ) + X 25 ( 3 ) ω 26 ( 1 ) − ω 26 ( 2 ) ω 27 ( 1 ) − X 27 ( 2 ) ω 28 ( 1 ) X 29 ( 1 ) ω 34 ( 1 ) − ω 34 ( 2 ) + ω 34 ( 3 ) ω 35 ( 1 ) − ω 35 ( 2 ) + X 35 ( 3 ) ω 36 ( 1 ) − ω 36 ( 2 ) ω 37 ( 1 ) − X 37 ( 2 ) ω 38 ( 1 ) X 39 ( 1 ) ω 44 ( 1 ) − ω 44 ( 2 ) + ω 44 ( 3 ) ω 45 ( 1 ) − ω 45 ( 2 ) + X 45 ( 3 ) ω 46 ( 1 ) − ω 46 ( 2 ) ω 47 ( 1 ) − X 47 ( 2 ) ω 48 ( 1 ) X 49 ( 1 ) ω 54 ( 1 ) − ω 54 ( 2 ) + X 54 ( 3 ) ω 55 ( 1 ) − ω 55 ( 2 ) + X 55 ( 3 ) ω 56 ( 1 ) − ω 56 ( 2 ) ω 57 ( 1 ) − X 57 ( 2 ) ω 58 ( 1 ) X 59 ( 1 ) ω 64 ( 1 ) − ω 64 ( 2 ) ω 65 ( 1 ) − ω 65 ( 2 ) ω 66 ( 1 ) − ω 66 ( 2 ) ω 67 ( 1 ) − X 67 ( 2 ) ω 68 ( 1 ) X 69 ( 1 ) ω 74 ( 1 ) − X 74 ( 2 ) ω 75 ( 1 ) − X 75 ( 2 ) ω 76 ( 1 ) − X 76 ( 2 ) ω 77 ( 1 ) − X 77 ( 2 ) ω 78 ( 1 ) X 79 ( 1 ) ω 84 ( 1 ) ω 85 ( 1 ) ω 86 ( 1 ) ω 87 ( 1 ) ω 88 ( 1 ) X 89 ( 1 ) X 94 ( 1 ) X 95 ( 1 ) X 96 ( 1 ) X 97 ( 1 ) X 98 ( 1 ) X 99 ( 1 ) . X 2 ^ = Y 11 ( 2 ) Y 12 ( 2 ) Y 13 ( 2 ) Y 21 ( 2 ) Y 22 ( 2 ) Y 23 ( 2 ) , (68) where Y 11 ( 2 ) = ω 11 ( 2 ) − ω 11 ( 3 ) + ω 11 ( 4 ) − X 11 ( 5 ) ω 12 ( 2 ) − ω 12 ( 3 ) + ω 12 ( 4 ) ω 13 ( 2 ) − ω 13 ( 3 ) + X 13 ( 4 ) ω 14 ( 2 ) − ω 14 ( 3 ) ω 15 ( 2 ) − X 15 ( 3 ) ω 16 ( 2 ) X 17 ( 2 ) ω 21 ( 2 ) − ω 21 ( 3 ) + ω 21 ( 4 ) ω 22 ( 2 ) − ω 22 ( 3 ) + ω 22 ( 4 ) ω 23 ( 2 ) − ω 23 ( 3 ) + X 23 ( 4 ) ω 24 ( 2 ) − ω 24 ( 3 ) ω 25 ( 2 ) − X 25 ( 3 ) ω 26 ( 2 ) X 27 ( 2 ) ω 31 ( 2 ) − ω 31 ( 3 ) + X 31 ( 4 ) ω 32 ( 2 ) − ω 32 ( 3 ) + X 32 ( 4 ) ω 33 ( 2 ) − ω 33 ( 3 ) + X 33 ( 4 ) ω 34 ( 2 ) − ω 34 ( 3 ) ω 35 ( 2 ) − X 35 ( 3 ) ω 36 ( 2 ) X 37 ( 2 ) ω 41 ( 2 ) − ω 41 ( 3 ) ω 42 ( 2 ) − ω 42 ( 3 ) ω 43 ( 2 ) − ω 43 ( 3 ) ω 44 ( 2 ) − ω 44 ( 3 ) ω 45 ( 2 ) − X 45 ( 3 ) ω 46 ( 2 ) X 47 ( 2 ) ω 51 ( 2 ) − X 51 ( 3 ) ω 52 ( 2 ) − X 52 ( 3 ) ω 53 ( 2 ) − X 53 ( 3 ) ω 54 ( 2 ) − X 54 ( 3 ) ω 55 ( 2 ) − X 55 ( 3 ) ω 56 ( 2 ) X 57 ( 2 ) ω 61 ( 2 ) ω 62 ( 2 ) ω 63 ( 2 ) ω 64 ( 2 ) ω 65 ( 2 ) ω 66 ( 2 ) X 67 ( 2 ) X 71 ( 2 ) X 72 ( 2 ) X 73 ( 2 ) X 74 ( 2 ) X 75 ( 2 ) X 76 ( 2 ) X 77 ( 2 ) ω 91 ( 1 ) ω 92 ( 1 ) ω 93 ( 1 ) ω 94 ( 1 ) ω 95 ( 1 ) ω 96 ( 1 ) ω 97 ( 1 ) ω 10 , 1 ( 1 ) ω 10 , 2 ( 1 ) ω 10 , 3 ( 1 ) ω 10 , 4 ( 1 ) ω 10 , 5 ( 1 ) ω 10 , 6 ( 1 ) ω 10 , 7 ( 1 ) ω 11 , 1 ( 1 ) ω 11 , 2 ( 1 ) ω 11 , 3 ( 1 ) ω 11 , 4 ( 1 ) ω 11 , 5 ( 1 ) ω 11 , 6 ( 1 ) ω 11 , 7 ( 1 ) , Y 21 ( 2 ) = ω 12 , 1 ( 1 ) ω 12 , 2 ( 1 ) ω 12 , 3 ( 1 ) ω 12 , 4 ( 1 ) ω 12 , 5 ( 1 ) ω 12 , 6 ( 1 ) ω 12 , 7 ( 1 ) ω 13 , 1 ( 1 ) ω 13 , 2 ( 1 ) ω 13 , 3 ( 1 ) ω 13 , 4 ( 1 ) ω 13 , 5 ( 1 ) ω 13 , 6 ( 1 ) ω 13 , 7 ( 1 ) ω 14 , 1 ( 1 ) ω 14 , 2 ( 1 ) ω 14 , 3 ( 1 ) ω 14 , 4 ( 1 ) ω 14 , 5 ( 1 ) ω 14 , 6 ( 1 ) ω 14 , 7 ( 1 ) ω 15 , 1 ( 1 ) ω 15 , 2 ( 1 ) ω 15 , 3 ( 1 ) ω 15 , 4 ( 1 ) ω 15 , 5 ( 1 ) ω 15 , 6 ( 1 ) ω 15 , 7 ( 1 ) ω 13 , 1 ( 2 ) − ω 91 ( 3 ) + ω 51 ( 4 ) − X 31 ( 5 ) ω 13 , 2 ( 2 ) − ω 92 ( 3 ) + ω 52 ( 4 ) ω 13 , 3 ( 2 ) − ω 93 ( 3 ) + X 73 ( 4 ) ω 13 , 4 ( 2 ) − ω 94 ( 3 ) ω 13 , 5 ( 2 ) − X 11 , 5 ( 3 ) ω 13 , 6 ( 2 ) X 15 , 7 ( 2 ) ω 14 , 1 ( 2 ) − ω 10 , 1 ( 3 ) + ω 61 ( 4 ) ω 14 , 2 ( 2 ) − ω 10 , 2 ( 3 ) + ω 62 ( 4 ) ω 14 , 3 ( 2 ) − ω 10 , 3 ( 3 ) + X 83 ( 4 ) ω 14 , 4 ( 2 ) − ω 10 , 4 ( 3 ) ω 14 , 5 ( 2 ) − X 12 , 5 ( 3 ) ω 14 , 6 ( 2 ) X 16 , 7 ( 2 ) ω 15 , 1 ( 2 ) − ω 11 , 1 ( 3 ) + X 91 ( 4 ) ω 15 , 2 ( 2 ) − ω 11 , 2 ( 3 ) + X 92 ( 4 ) ω 15 , 3 ( 2 ) − ω 11 , 3 ( 3 ) + X 93 ( 4 ) ω 15 , 4 ( 2 ) − ω 11 , 4 ( 3 ) ω 15 , 5 ( 2 ) − X 13 , 5 ( 3 ) ω 15 , 6 ( 2 ) X 17 , 7 ( 2 ) ω 16 , 1 ( 2 ) − ω 12 , 1 ( 3 ) ω 16 , 2 ( 2 ) − ω 12 , 2 ( 3 ) ω 16 , 3 ( 2 ) − ω 12 , 3 ( 3 ) ω 16 , 4 ( 2 ) − ω 12 , 4 ( 3 ) ω 16 , 5 ( 2 ) − X 14 , 5 ( 3 ) ω 16 , 6 ( 2 ) X 18 , 7 ( 2 ) ω 17 , 1 ( 2 ) − X 15 , 1 ( 3 ) ω 17 , 2 ( 2 ) − X 15 , 2 ( 3 ) ω 17 , 3 ( 2 ) − X 15 , 3 ( 3 ) ω 17 , 4 ( 2 ) − X 15 , 4 ( 3 ) ω 17 , 5 ( 2 ) − X 15 , 5 ( 3 ) ω 17 , 6 ( 2 ) X 19 , 7 ( 2 ) ω 18 , 1 ( 2 ) ω 18 , 2 ( 2 ) ω 18 , 3 ( 2 ) ω 18 , 4 ( 2 ) ω 18 , 5 ( 2 ) ω 18 , 6 ( 2 ) X 20 , 7 ( 2 ) X 21 , 1 ( 2 ) X 21 , 2 ( 2 ) X 21 , 3 ( 2 ) X 21 , 4 ( 2 ) X 21 , 5 ( 2 ) X 21 , 6 ( 2 ) X 21 , 7 ( 2 ) , Y 12 ( 2 ) = ω 19 ( 1 ) ω 1 , 10 ( 1 ) ω 1 , 11 ( 1 ) ω 1 , 12 ( 1 ) ω 1 , 13 ( 1 ) ω 1 , 14 ( 1 ) ω 1 , 15 ( 1 ) ω 29 ( 1 ) ω 2 , 10 ( 1 ) ω 2 , 11 ( 1 ) ω 2 , 12 ( 1 ) ω 2 , 13 ( 1 ) ω 2 , 14 ( 1 ) ω 2 , 15 ( 1 ) ω 39 ( 1 ) ω 3 , 10 ( 1 ) ω 3 , 11 ( 1 ) ω 3 , 12 ( 1 ) ω 3 , 13 ( 1 ) ω 3 , 14 ( 1 ) ω 3 , 15 ( 1 ) ω 49 ( 1 ) ω 4 , 10 ( 1 ) ω 4 , 11 ( 1 ) ω 4 , 12 ( 1 ) ω 4 , 13 ( 1 ) ω 4 , 14 ( 1 ) ω 4 , 15 ( 1 ) ω 59 ( 1 ) ω 5 , 10 ( 1 ) ω 5 , 11 ( 1 ) ω 5 , 12 ( 1 ) ω 5 , 13 ( 1 ) ω 5 , 14 ( 1 ) ω 5 , 15 ( 1 ) ω 69 ( 1 ) ω 6 , 10 ( 1 ) ω 6 , 11 ( 1 ) ω 6 , 12 ( 1 ) ω 6 , 13 ( 1 ) ω 6 , 14 ( 1 ) ω 6 , 15 ( 1 ) ω 79 ( 1 ) ω 7 , 10 ( 1 ) ω 7 , 11 ( 1 ) ω 7 , 12 ( 1 ) ω 7 , 13 ( 1 ) ω 7 , 14 ( 1 ) ω 7 , 15 ( 1 ) ω 99 ( 1 ) ω 9 , 10 ( 1 ) ω 9 , 11 ( 1 ) ω 9 , 12 ( 1 ) ω 9 , 13 ( 1 ) ω 9 , 14 ( 1 ) ω 9 , 15 ( 1 ) ω 10 , 9 ( 1 ) ω 10 , 10 ( 1 ) ω 10 , 11 ( 1 ) ω 10 , 12 ( 1 ) ω 10 , 13 ( 1 ) ω 10 , 14 ( 1 ) ω 10 , 15 ( 1 ) ω 11 , 9 ( 1 ) ω 11 , 10 ( 1 ) ω 11 , 11 ( 1 ) ω 11 , 12 ( 1 ) ω 11 , 13 ( 1 ) ω 11 , 14 ( 1 ) ω 11 , 15 ( 1 ) , Y 22 ( 2 ) = ω 12 , 9 ( 1 ) ω 12 , 10 ( 1 ) ω 12 , 11 ( 1 ) ω 12 , 12 ( 1 ) ω 12 , 13 ( 1 ) ω 12 , 14 ( 1 ) ω 12 , 15 ( 1 ) ω 13 , 9 ( 1 ) ω 13 , 10 ( 1 ) ω 13 , 11 ( 1 ) ω 13 , 12 ( 1 ) ω 13 , 13 ( 1 ) ω 13 , 14 ( 1 ) ω 13 , 15 ( 1 ) ω 14 , 9 ( 1 ) ω 14 , 10 ( 1 ) ω 14 , 11 ( 1 ) ω 14 , 12 ( 1 ) ω 14 , 13 ( 1 ) ω 14 , 14 ( 1 ) ω 14 , 15 ( 1 ) ω 15 , 9 ( 1 ) ω 15 , 10 ( 1 ) ω 15 , 11 ( 1 ) ω 15 , 12 ( 1 ) ω 15 , 13 ( 1 ) ω 15 , 14 ( 1 ) ω 15 , 15 ( 1 ) ω 13 , 7 ( 2 ) − ω 95 ( 3 ) + ω 53 ( 4 ) − X 32 ( 5 ) ω 13 , 8 ( 2 ) − ω 96 ( 3 ) + ω 54 ( 4 ) ω 13 , 9 ( 2 ) − ω 97 ( 3 ) + X 76 ( 4 ) ω 13 , 10 ( 2 ) − ω 98 ( 3 ) ω 13 , 11 ( 2 ) − X 11 , 10 ( 3 ) ω 13 , 12 ( 3 ) X 15 , 14 ( 2 ) ω 14 , 7 ( 2 ) − ω 10 , 5 ( 3 ) + ω 63 ( 4 ) ω 14 , 8 ( 2 ) − ω 10 , 6 ( 3 ) + ω 64 ( 4 ) ω 14 , 9 ( 2 ) − ω 10 , 7 ( 3 ) + X 86 ( 4 ) ω 14 , 10 ( 2 ) − ω 10 , 8 ( 3 ) ω 14 , 11 ( 2 ) − X 12 , 10 ( 3 ) ω 14 , 12 ( 3 ) X 16 , 14 ( 2 ) ω 15 , 7 ( 2 ) − ω 11 , 5 ( 3 ) + X 94 ( 4 ) ω 15 , 8 ( 2 ) − ω 11 , 6 ( 3 ) + X 95 ( 4 ) ω 15 , 9 ( 2 ) − ω 11 , 7 ( 3 ) + X 96 ( 4 ) ω 15 , 10 ( 2 ) − ω 11 , 8 ( 3 ) ω 15 , 11 ( 2 ) − X 13 , 10 ( 3 ) ω 15 , 12 ( 3 ) X 17 , 14 ( 2 ) ω 16 , 7 ( 2 ) − ω 12 , 5 ( 3 ) ω 16 , 8 ( 2 ) − ω 12 , 6 ( 3 ) ω 16 , 9 ( 2 ) − ω 12 , 7 ( 3 ) ω 16 , 10 ( 2 ) − ω 12 , 8 ( 3 ) ω 16 , 11 ( 2 ) − X 14 , 10 ( 3 ) ω 16 , 12 ( 3 ) X 18 , 14 ( 2 ) ω 17 , 7 ( 2 ) − X 15 , 6 ( 3 ) ω 17 , 8 ( 2 ) − X 15 , 7 ( 3 ) ω 17 , 9 ( 2 ) − X 15 , 8 ( 3 ) ω 17 , 10 ( 2 ) − X 15 , 9 ( 3 ) ω 17 , 11 ( 2 ) − X 15 , 10 ( 3 ) ω 17 , 12 ( 3 ) X 19 , 14 ( 2 ) ω 18 , 7 ( 2 ) ω 18 , 8 ( 2 ) ω 18 , 9 ( 2 ) ω 18 , 10 ( 2 ) ω 18 , 11 ( 2 ) ω 18 , 12 ( 3 ) X 20 , 14 ( 2 ) X 21 , 8 ( 2 ) X 21 , 9 ( 2 ) X 21 , 10 ( 2 ) X 21 , 11 ( 2 ) X 21 , 12 ( 2 ) X 21 , 13 ( 2 ) X 21 , 14 ( 2 ) , Y 13 ( 2 ) = ω 1 , 13 ( 2 ) − ω 19 ( 3 ) + ω 15 ( 4 ) − X 13 ( 5 ) ω 1 , 14 ( 2 ) − ω 1 , 10 ( 3 ) + ω 16 ( 4 ) ω 1 , 15 ( 2 ) − ω 1 , 11 ( 3 ) + X 19 ( 4 ) ω 1 , 16 ( 2 ) − ω 1 , 12 ( 3 ) ω 1 , 17 ( 2 ) − X 1 , 15 ( 3 ) ω 1 , 18 ( 2 ) X 1 , 21 ( 2 ) ω 2 , 13 ( 2 ) − ω 29 ( 3 ) + ω 25 ( 4 ) ω 2 , 14 ( 2 ) − ω 2 , 10 ( 3 ) + ω 26 ( 4 ) ω 2 , 15 ( 2 ) − ω 2 , 11 ( 3 ) + X 29 ( 4 ) ω 2 , 16 ( 2 ) − ω 2 , 12 ( 3 ) ω 2 , 17 ( 2 ) − X 2 , 15 ( 3 ) ω 2 , 18 ( 2 ) X 2 , 21 ( 2 ) ω 3 , 13 ( 2 ) − ω 39 ( 3 ) + X 37 ( 4 ) ω 3 , 14 ( 2 ) − ω 3 , 10 ( 3 ) + X 38 ( 4 ) ω 3 , 15 ( 2 ) − ω 3 , 11 ( 3 ) + X 39 ( 4 ) ω 3 , 16 ( 2 ) − ω 3 , 12 ( 3 ) ω 3 , 17 ( 2 ) − X 3 , 15 ( 3 ) ω 3 , 18 ( 2 ) X 3 , 21 ( 2 ) ω 4 , 13 ( 2 ) − ω 49 ( 3 ) ω 4 , 14 ( 2 ) − ω 4 , 10 ( 3 ) ω 4 , 15 ( 2 ) − ω 4 , 11 ( 3 ) ω 4 , 16 ( 2 ) − ω 4 , 12 ( 3 ) ω 4 , 17 ( 2 ) − X 4 , 15 ( 3 ) ω 4 , 18 ( 2 ) X 4 , 21 ( 2 ) ω 5 , 13 ( 2 ) − X 5 , 11 ( 3 ) ω 5 , 14 ( 2 ) − X 5 , 12 ( 3 ) ω 5 , 15 ( 2 ) − X 5 , 13 ( 3 ) ω 5 , 16 ( 2 ) − X 5 , 14 ( 3 ) ω 5 , 17 ( 2 ) − X 5 , 15 ( 3 ) ω 5 , 18 ( 2 ) X 5 , 21 ( 2 ) ω 6 , 13 ( 2 ) ω 6 , 14 ( 2 ) ω 6 , 15 ( 2 ) ω 6 , 16 ( 2 ) ω 6 , 17 ( 2 ) ω 6 , 18 ( 2 ) X 6 , 21 ( 2 ) X 7 , 15 ( 2 ) X 7 , 16 ( 2 ) X 7 , 17 ( 2 ) X 7 , 18 ( 2 ) X 7 , 19 ( 2 ) X 7 , 20 ( 2 ) X 7 , 21 ( 2 ) ω 7 , 13 ( 2 ) − ω 59 ( 3 ) + ω 35 ( 4 ) − X 23 ( 5 ) ω 7 , 14 ( 2 ) − ω 5 , 10 ( 3 ) + ω 36 ( 4 ) ω 7 , 15 ( 2 ) − ω 5 , 11 ( 3 ) + X 49 ( 4 ) ω 7 , 16 ( 2 ) − ω 5 , 12 ( 3 ) ω 7 , 17 ( 2 ) − X 6 , 15 ( 3 ) ω 7 , 18 ( 2 ) X 8 , 21 ( 2 ) ω 8 , 13 ( 2 ) − ω 69 ( 3 ) + ω 45 ( 4 ) ω 8 , 14 ( 2 ) − ω 6 , 10 ( 3 ) + ω 46 ( 4 ) ω 8 , 15 ( 2 ) − ω 6 , 11 ( 3 ) + X 59 ( 4 ) ω 8 , 16 ( 2 ) − ω 6 , 12 ( 3 ) ω 8 , 17 ( 2 ) − X 7 , 15 ( 3 ) ω 8 , 18 ( 2 ) X 9 , 21 ( 2 ) ω 9 , 13 ( 2 ) − ω 79 ( 3 ) + X 67 ( 4 ) ω 9 , 14 ( 2 ) − ω 7 , 10 ( 3 ) + X 68 ( 4 ) ω 9 , 15 ( 2 ) − ω 7 , 11 ( 3 ) + X 69 ( 4 ) ω 9 , 16 ( 2 ) − ω 7 , 12 ( 3 ) ω 9 , 17 ( 2 ) − X 8 , 15 ( 3 ) ω 9 , 18 ( 2 ) X 10 , 21 ( 2 ) , Y 23 ( 2 ) = ω 10 , 13 ( 2 ) − ω 89 ( 3 ) ω 10 , 14 ( 2 ) − ω 8 , 10 ( 3 ) ω 10 , 15 ( 2 ) − ω 8 , 11 ( 3 ) ω 10 , 16 ( 2 ) − ω 8 , 12 ( 3 ) ω 10 , 17 ( 2 ) − X 9 , 15 ( 3 ) ω 10 , 18 ( 2 ) X 11 , 21 ( 2 ) ω 11 , 13 ( 2 ) − X 10 , 11 ( 3 ) ω 11 , 14 ( 2 ) − X 10 , 12 ( 3 ) ω 11 , 15 ( 2 ) − X 10 , 13 ( 3 ) ω 11 , 16 ( 2 ) − X 10 , 14 ( 3 ) ω 11 , 17 ( 2 ) − X 10 , 15 ( 3 ) ω 11 , 18 ( 2 ) X 12 , 21 ( 2 ) ω 12 , 13 ( 2 ) ω 12 , 14 ( 2 ) ω 12 , 15 ( 2 ) ω 12 , 16 ( 2 ) ω 12 , 17 ( 2 ) ω 12 , 18 ( 2 ) X 13 , 21 ( 2 ) X 14 , 15 ( 2 ) X 14 , 16 ( 2 ) X 14 , 17 ( 2 ) X 14 , 18 ( 2 ) X 14 , 19 ( 2 ) X 14 , 20 ( 2 ) X 14 , 21 ( 2 ) ω 13 , 13 ( 2 ) − ω 99 ( 3 ) + ω 55 ( 4 ) − X 33 ( 5 ) ω 13 , 14 ( 2 ) − ω 9 , 10 ( 3 ) + ω 56 ( 4 ) ω 13 , 15 ( 2 ) − ω 9 , 11 ( 3 ) + X 79 ( 4 ) ω 13 , 16 ( 2 ) − ω 9 , 12 ( 3 ) ω 13 , 17 ( 2 ) − X 11 , 15 ( 3 ) ω 13 , 18 ( 2 ) X 15 , 21 ( 2 ) ω 14 , 13 ( 2 ) − ω 10 , 9 ( 3 ) + ω 65 ( 4 ) ω 14 , 14 ( 2 ) − ω 10 , 10 ( 3 ) + ω 66 ( 4 ) ω 14 , 15 ( 2 ) − ω 10 , 11 ( 3 ) + X 89 ( 4 ) ω 14 , 16 ( 2 ) − ω 10 , 12 ( 3 ) ω 14 , 17 ( 2 ) − X 12 , 15 ( 3 ) ω 14 , 18 ( 2 ) X 16 , 21 ( 2 ) ω 15 , 13 ( 2 ) − ω 11 , 9 ( 3 ) + X 97 ( 4 ) ω 15 , 14 ( 2 ) − ω 11 , 10 ( 3 ) + X 98 ( 4 ) ω 15 , 15 ( 2 ) − ω 11 , 11 ( 3 ) + X 99 ( 4 ) ω 15 , 16 ( 2 ) − ω 11 , 12 ( 3 ) ω 15 , 17 ( 2 ) − X 13 , 15 ( 3 ) ω 15 , 18 ( 2 ) X 17 , 21 ( 2 ) ω 16 , 13 ( 2 ) − ω 12 , 9 ( 3 ) ω 16 , 14 ( 2 ) − ω 12 , 10 ( 3 ) ω 16 , 15 ( 2 ) − ω 12 , 11 ( 3 ) ω 16 , 16 ( 2 ) − ω 12 , 12 ( 3 ) ω 16 , 17 ( 2 ) − X 14 , 15 ( 3 ) ω 16 , 18 ( 2 ) X 18 , 21 ( 2 ) ω 17 , 13 ( 2 ) − X 15 , 11 ( 3 ) ω 17 , 14 ( 2 ) − X 15 , 12 ( 3 ) ω 17 , 15 ( 2 ) − X 15 , 13 ( 3 ) ω 17 , 16 ( 2 ) − X 15 , 14 ( 3 ) ω 17 , 17 ( 2 ) − X 15 , 15 ( 3 ) ω 17 , 18 ( 2 ) X 19 , 21 ( 2 ) ω 18 , 13 ( 2 ) ω 18 , 14 ( 2 ) ω 18 , 15 ( 2 ) ω 18 , 16 ( 2 ) ω 18 , 17 ( 2 ) ω 18 , 18 ( 2 ) X 20 , 21 ( 2 ) X 21 , 15 ( 2 ) X 21 , 16 ( 2 ) X 21 , 17 ( 2 ) X 21 , 18 ( 2 ) X 21 , 19 ( 2 ) X 21 , 20 ( 2 ) X 21 , 21 ( 2 ) . X 3 ^ = Y 11 ( 3 ) Y 12 ( 3 ) Y 13 ( 3 ) Y 14 ( 3 ) Y 21 ( 3 ) Y 22 ( 3 ) Y 23 ( 3 ) Y 24 ( 3 ) , (69) where Y 11 ( 3 ) = ω 11 ( 3 ) − ω 11 ( 4 ) + X 11 ( 5 ) ω 12 ( 3 ) − ω 12 ( 4 ) ω 13 ( 3 ) − X 13 ( 4 ) ω 14 ( 3 ) X 15 ( 3 ) ω 17 ( 2 ) − ω 19 ( 1 ) ω 21 ( 3 ) − ω 21 ( 4 ) ω 22 ( 3 ) − ω 22 ( 4 ) ω 23 ( 3 ) − X 23 ( 4 ) ω 24 ( 3 ) X 25 ( 3 ) ω 27 ( 2 ) − ω 29 ( 1 ) ω 31 ( 3 ) − X 31 ( 4 ) ω 32 ( 3 ) − X 32 ( 4 ) ω 33 ( 3 ) − X 33 ( 4 ) ω 34 ( 3 ) X 35 ( 3 ) ω 37 ( 2 ) − ω 39 ( 1 ) ω 41 ( 3 ) ω 42 ( 3 ) ω 43 ( 3 ) ω 44 ( 3 ) X 45 ( 3 ) ω 45 ( 3 ) X 51 ( 3 ) X 52 ( 3 ) X 53 ( 3 ) X 54 ( 3 ) X 55 ( 3 ) ω 57 ( 2 ) − ω 59 ( 1 ) ω 71 ( 2 ) − ω 91 ( 1 ) ω 72 ( 2 ) − ω 92 ( 1 ) ω 73 ( 2 ) − ω 93 ( 1 ) ω 54 ( 3 ) ω 75 ( 2 ) − ω 95 ( 1 ) ω 77 ( 2 ) − ω 99 ( 1 ) ω 81 ( 2 ) − ω 10 , 1 ( 1 ) ω 82 ( 2 ) − ω 10 , 2 ( 1 ) ω 83 ( 2 ) − ω 10 , 3 ( 1 ) ω 64 ( 3 ) ω 85 ( 2 ) − ω 10 , 5 ( 1 ) ω 87 ( 2 ) − ω 10 , 9 ( 1 ) ω 91 ( 2 ) − ω 11 , 1 ( 1 ) ω 92 ( 2 ) − ω 11 , 2 ( 1 ) ω 93 ( 2 ) − ω 11 , 3 ( 1 ) ω 74 ( 3 ) ω 95 ( 2 ) − ω 11 , 5 ( 1 ) ω 97 ( 2 ) − ω 11 , 9 ( 1 ) ω 81 ( 3 ) ω 82 ( 3 ) ω 83 ( 3 ) ω 84 ( 3 ) ω 10 , 5 ( 2 ) − ω 12 , 5 ( 1 ) ω 85 ( 3 ) ω 11 , 1 ( 2 ) − ω 13 , 1 ( 1 ) ω 11 , 2 ( 2 ) − ω 13 , 2 ( 1 ) ω 11 , 3 ( 2 ) − ω 13 , 3 ( 1 ) ω 11 , 4 ( 2 ) − ω 13 , 4 ( 1 ) ω 11 , 5 ( 2 ) − ω 13 , 5 ( 1 ) ω 11 , 7 ( 2 ) − ω 13 , 9 ( 1 ) ω 91 ( 3 ) − ω 51 ( 4 ) + X 31 ( 5 ) ω 92 ( 3 ) − ω 52 ( 4 ) ω 93 ( 3 ) − X 73 ( 4 ) ω 94 ( 3 ) X 11 , 5 ( 3 ) ω 95 ( 3 ) − ω 53 ( 4 ) + X 32 ( 5 ) ω 10 , 1 ( 3 ) − ω 61 ( 4 ) ω 10 , 2 ( 3 ) − ω 62 ( 4 ) ω 10 , 3 ( 3 ) − X 83 ( 4 ) ω 10 , 4 ( 3 ) X 12 , 5 ( 3 ) ω 10 , 5 ( 3 ) − ω 63 ( 4 ) ω 11 , 1 ( 3 ) − X 91 ( 4 ) ω 11 , 2 ( 3 ) − X 92 ( 4 ) ω 11 , 3 ( 3 ) − X 93 ( 4 ) ω 11 , 4 ( 3 ) X 13 , 5 ( 3 ) ω 11 , 5 ( 3 ) − X 94 ( 4 ) , Y 21 ( 3 ) = ω 12 , 1 ( 3 ) ω 12 , 2 ( 3 ) ω 12 , 3 ( 3 ) ω 12 , 4 ( 3 ) X 14 , 5 ( 3 ) ω 12 , 5 ( 3 ) X 15 , 1 ( 3 ) X 15 , 2 ( 3 ) X 15 , 3 ( 3 ) X 15 , 4 ( 3 ) X 15 , 5 ( 3 ) X 15 , 6 ( 3 ) ω 19 , 1 ( 2 ) ω 19 , 2 ( 2 ) ω 19 , 3 ( 2 ) ω 19 , 4 ( 2 ) ω 19 , 5 ( 2 ) ω 19 , 7 ( 2 ) ω 20 , 1 ( 2 ) ω 20 , 2 ( 2 ) ω 20 , 3 ( 2 ) ω 20 , 4 ( 2 ) ω 20 , 5 ( 2 ) ω 20 , 7 ( 2 ) ω 21 , 1 ( 2 ) ω 21 , 2 ( 2 ) ω 21 , 3 ( 2 ) ω 21 , 4 ( 2 ) ω 21 , 5 ( 2 ) ω 21 , 7 ( 2 ) ω 22 , 1 ( 2 ) ω 22 , 2 ( 2 ) ω 22 , 3 ( 2 ) ω 22 , 4 ( 2 ) ω 22 , 5 ( 2 ) ω 22 , 7 ( 2 ) ω 23 , 1 ( 2 ) ω 23 , 2 ( 2 ) ω 23 , 3 ( 2 ) ω 23 , 4 ( 2 ) ω 23 , 5 ( 2 ) ω 23 , 7 ( 2 ) ω 17 , 1 ( 3 ) − ω 91 ( 4 ) + X 51 ( 5 ) ω 17 , 2 ( 3 ) − ω 92 ( 4 ) ω 17 , 3 ( 3 ) − X 13 , 3 ( 4 ) ω 17 , 4 ( 3 ) X 21 , 5 ( 3 ) ω 17 , 5 ( 3 ) − ω 93 ( 4 ) + X 52 ( 5 ) ω 18 , 1 ( 3 ) − ω 10 , 1 ( 4 ) ω 18 , 2 ( 3 ) − ω 10 , 2 ( 4 ) ω 18 , 3 ( 3 ) − X 14 , 3 ( 4 ) ω 18 , 4 ( 3 ) X 22 , 5 ( 3 ) ω 18 , 5 ( 3 ) − ω 10 , 3 ( 4 ) ω 19 , 1 ( 3 ) − X 15 , 1 ( 4 ) ω 19 , 2 ( 3 ) − X 15 , 2 ( 4 ) ω 19 , 3 ( 3 ) − X 15 , 3 ( 4 ) ω 19 , 4 ( 3 ) X 23 , 5 ( 3 ) ω 19 , 5 ( 3 ) − X 15 , 4 ( 4 ) ω 20 , 1 ( 3 ) ω 20 , 2 ( 3 ) ω 20 , 3 ( 3 ) ω 20 , 4 ( 3 ) X 24 , 5 ( 3 ) ω 20 , 5 ( 3 ) X 25 , 1 ( 3 ) X 25 , 2 ( 3 ) X 25 , 3 ( 3 ) X 25 , 4 ( 3 ) X 25 , 5 ( 3 ) X 25 , 6 ( 3 ) , Y 12 ( 3 ) = ω 18 ( 2 ) − ω 1 , 10 ( 1 ) ω 19 ( 2 ) − ω 1 , 11 ( 1 ) ω 18 ( 3 ) ω 1 , 11 ( 2 ) − ω 1 , 13 ( 1 ) ω 19 ( 3 ) − ω 15 ( 4 ) + X 13 ( 5 ) ω 1 , 10 ( 3 ) − ω 16 ( 4 ) ω 28 ( 2 ) − ω 2 , 10 ( 1 ) ω 29 ( 2 ) − ω 2 , 11 ( 1 ) ω 28 ( 3 ) ω 2 , 11 ( 2 ) − ω 2 , 13 ( 1 ) ω 29 ( 3 ) − ω 25 ( 4 ) ω 2 , 10 ( 3 ) − ω 26 ( 4 ) ω 38 ( 2 ) − ω 3 , 10 ( 1 ) ω 39 ( 2 ) − ω 3 , 11 ( 1 ) ω 38 ( 3 ) ω 3 , 11 ( 2 ) − ω 3 , 13 ( 1 ) ω 39 ( 3 ) − X 37 ( 4 ) ω 3 , 10 ( 3 ) − X 38 ( 4 ) ω 46 ( 3 ) ω 47 ( 3 ) ω 48 ( 3 ) ω 4 , 11 ( 2 ) − ω 4 , 13 ( 1 ) ω 49 ( 3 ) ω 4 , 10 ( 3 ) ω 58 ( 2 ) − ω 5 , 10 ( 1 ) ω 59 ( 2 ) − ω 5 , 11 ( 1 ) ω 5 , 10 ( 2 ) − ω 5 , 12 ( 1 ) ω 5 , 11 ( 2 ) − ω 5 , 13 ( 1 ) X 5 , 11 ( 3 ) X 5 , 12 ( 3 ) ω 78 ( 2 ) − ω 9 , 10 ( 1 ) ω 79 ( 2 ) − ω 9 , 11 ( 1 ) ω 58 ( 3 ) ω 7 , 11 ( 2 ) − ω 9 , 13 ( 1 ) ω 59 ( 3 ) − ω 35 ( 4 ) + X 23 ( 5 ) ω 5 , 10 ( 3 ) − ω 36 ( 4 ) ω 88 ( 2 ) − ω 10 , 10 ( 1 ) ω 89 ( 2 ) − ω 10 , 11 ( 1 ) ω 68 ( 3 ) ω 8 , 11 ( 2 ) − ω 10 , 13 ( 1 ) ω 69 ( 3 ) − ω 45 ( 4 ) ω 6 , 10 ( 3 ) − ω 46 ( 4 ) ω 98 ( 2 ) − ω 11 , 10 ( 1 ) ω 99 ( 2 ) − ω 11 , 11 ( 1 ) ω 78 ( 3 ) ω 9 , 11 ( 2 ) − ω 11 , 13 ( 1 ) ω 79 ( 3 ) − X 67 ( 4 ) ω 7 , 10 ( 3 ) − X 68 ( 4 ) ω 86 ( 3 ) ω 87 ( 3 ) ω 88 ( 3 ) ω 10 , 11 ( 2 ) − ω 12 , 13 ( 1 ) ω 89 ( 3 ) ω 8 , 10 ( 3 ) ω 11 , 8 ( 2 ) − ω 13 , 10 ( 1 ) ω 11 , 9 ( 2 ) − ω 13 , 11 ( 1 ) ω 11 , 10 ( 2 ) − ω 13 , 12 ( 1 ) ω 11 , 11 ( 2 ) − ω 13 , 13 ( 1 ) X 10 , 11 ( 3 ) X 10 , 12 ( 3 ) ω 96 ( 3 ) − ω 54 ( 4 ) ω 97 ( 3 ) − X 76 ( 4 ) ω 98 ( 3 ) X 11 , 10 ( 3 ) ω 99 ( 3 ) − ω 55 ( 4 ) + X 33 ( 5 ) ω 9 , 10 ( 3 ) − ω 56 ( 4 ) ω 10 , 6 ( 3 ) − ω 64 ( 4 ) ω 10 , 7 ( 3 ) − X 86 ( 4 ) ω 10 , 8 ( 3 ) X 12 , 10 ( 3 ) ω 10 , 9 ( 3 ) − ω 65 ( 4 ) ω 10 , 10 ( 3 ) − ω 66 ( 4 ) ω 11 , 6 ( 3 ) − X 95 ( 4 ) ω 11 , 7 ( 3 ) − X 96 ( 4 ) ω 11 , 8 ( 3 ) X 13 , 10 ( 3 ) ω 11 , 9 ( 3 ) − X 97 ( 4 ) ω 11 , 10 ( 3 ) − X 98 ( 4 ) , Y 22 ( 3 ) = ω 12 , 6 ( 3 ) ω 12 , 7 ( 3 ) ω 12 , 8 ( 3 ) X 14 , 10 ( 3 ) ω 12 , 9 ( 3 ) ω 12 , 10 ( 3 ) X 15 , 7 ( 3 ) X 15 , 8 ( 3 ) X 15 , 9 ( 3 ) X 15 , 10 ( 3 ) X 15 , 11 ( 3 ) X 15 , 12 ( 3 ) ω 19 , 8 ( 2 ) ω 19 , 9 ( 2 ) ω 19 , 10 ( 2 ) ω 19 , 11 ( 2 ) ω 19 , 13 ( 2 ) ω 19 , 14 ( 2 ) ω 20 , 8 ( 2 ) ω 20 , 9 ( 2 ) ω 20 , 10 ( 2 ) ω 20 , 11 ( 2 ) ω 20 , 13 ( 2 ) ω 20 , 14 ( 2 ) ω 21 , 8 ( 2 ) ω 21 , 9 ( 2 ) ω 21 , 10 ( 2 ) ω 21 , 11 ( 2 ) ω 21 , 13 ( 2 ) ω 21 , 14 ( 2 ) ω 22 , 8 ( 2 ) ω 22 , 9 ( 2 ) ω 22 , 10 ( 2 ) ω 22 , 11 ( 2 ) ω 22 , 13 ( 2 ) ω 22 , 14 ( 2 ) ω 23 , 8 ( 2 ) ω 23 , 9 ( 2 ) ω 23 , 10 ( 2 ) ω 23 , 11 ( 2 ) ω 23 , 13 ( 2 ) ω 23 , 14 ( 2 ) ω 17 , 6 ( 3 ) − ω 94 ( 4 ) ω 17 , 7 ( 3 ) − X 13 , 6 ( 4 ) ω 17 , 8 ( 3 ) X 21 , 10 ( 3 ) ω 17 , 9 ( 3 ) − ω 95 ( 4 ) + X 53 ( 5 ) ω 17 , 10 ( 3 ) − ω 96 ( 4 ) ω 18 , 6 ( 3 ) − ω 10 , 4 ( 4 ) ω 18 , 7 ( 3 ) − X 14 , 6 ( 4 ) ω 18 , 8 ( 3 ) X 22 , 10 ( 3 ) ω 18 , 9 ( 3 ) − ω 10 , 5 ( 4 ) ω 18 , 10 ( 3 ) − ω 10 , 6 ( 4 ) ω 19 , 6 ( 3 ) − X 15 , 5 ( 4 ) ω 19 , 7 ( 3 ) − X 15 , 6 ( 4 ) ω 19 , 8 ( 3 ) X 23 , 10 ( 3 ) ω 19 , 9 ( 3 ) − X 15 , 7 ( 4 ) ω 19 , 10 ( 3 ) − X 15 , 8 ( 4 ) ω 20 , 6 ( 3 ) ω 20 , 7 ( 3 ) ω 20 , 8 ( 3 ) X 24 , 10 ( 3 ) ω 20 , 9 ( 3 ) ω 20 , 10 ( 3 ) X 25 , 7 ( 3 ) X 25 , 8 ( 3 ) X 25 , 9 ( 3 ) X 25 , 10 ( 3 ) X 25 , 11 ( 3 ) X 25 , 12 ( 3 ) , Y 13 ( 3 ) = ω 1 , 11 ( 3 ) − X 19 ( 4 ) ω 1 , 12 ( 3 ) X 1 , 15 ( 3 ) ω 1 , 19 ( 2 ) ω 1 , 20 ( 2 ) ω 1 , 21 ( 2 ) ω 2 , 11 ( 3 ) − X 29 ( 4 ) ω 2 , 12 ( 3 ) X 2 , 15 ( 3 ) ω 2 , 19 ( 2 ) ω 2 , 20 ( 2 ) ω 2 , 21 ( 2 ) ω 3 , 11 ( 3 ) − X 39 ( 4 ) ω 3 , 12 ( 3 ) X 3 , 15 ( 3 ) ω 3 , 19 ( 2 ) ω 3 , 20 ( 2 ) ω 3 , 21 ( 2 ) ω 4 , 11 ( 3 ) ω 4 , 12 ( 3 ) X 4 , 15 ( 3 ) ω 4 , 19 ( 2 ) ω 4 , 20 ( 2 ) ω 4 , 21 ( 2 ) X 5 , 13 ( 3 ) X 5 , 14 ( 3 ) X 5 , 15 ( 3 ) ω 5 , 19 ( 2 ) ω 5 , 20 ( 2 ) ω 5 , 21 ( 2 ) ω 5 , 11 ( 3 ) − X 49 ( 4 ) ω 5 , 12 ( 3 ) X 6 , 15 ( 3 ) ω 7 , 19 ( 2 ) ω 7 , 20 ( 2 ) ω 7 , 21 ( 2 ) ω 6 , 11 ( 3 ) − X 59 ( 4 ) ω 6 , 12 ( 3 ) X 7 , 15 ( 3 ) ω 8 , 19 ( 2 ) ω 8 , 20 ( 2 ) ω 8 , 21 ( 2 ) ω 7 , 11 ( 3 ) − X 69 ( 4 ) ω 7 , 12 ( 3 ) X 8 , 15 ( 3 ) ω 9 , 19 ( 2 ) ω 9 , 20 ( 2 ) ω 9 , 21 ( 2 ) ω 8 , 11 ( 3 ) ω 8 , 12 ( 3 ) X 9 , 15 ( 3 ) ω 10 , 19 ( 2 ) ω 10 , 20 ( 2 ) ω 10 , 21 ( 2 ) X 10 , 13 ( 3 ) X 10 , 14 ( 3 ) X 10 , 15 ( 3 ) ω 11 , 19 ( 2 ) ω 11 , 20 ( 2 ) ω 11 , 21 ( 2 ) ω 9 , 11 ( 3 ) − X 79 ( 4 ) ω 9 , 12 ( 3 ) X 11 , 15 ( 3 ) ω 13 , 19 ( 2 ) ω 13 , 20 ( 2 ) ω 13 , 21 ( 2 ) ω 10 , 11 ( 3 ) − X 89 ( 4 ) ω 10 , 12 ( 3 ) X 12 , 15 ( 3 ) ω 14 , 19 ( 2 ) ω 14 , 20 ( 2 ) ω 14 , 21 ( 2 ) ω 11 , 11 ( 3 ) − X 99 ( 4 ) ω 11 , 12 ( 3 ) X 13 , 15 ( 3 ) ω 15 , 19 ( 2 ) ω 15 , 20 ( 2 ) ω 15 , 21 ( 2 ) , Y 23 ( 3 ) = ω 12 , 11 ( 3 ) ω 12 , 12 ( 3 ) X 14 , 15 ( 3 ) ω 16 , 19 ( 2 ) ω 16 , 20 ( 2 ) ω 16 , 21 ( 2 ) X 15 , 13 ( 3 ) X 15 , 14 ( 3 ) X 15 , 15 ( 3 ) ω 17 , 19 ( 2 ) ω 17 , 20 ( 2 ) ω 17 , 21 ( 2 ) ω 19 , 15 ( 2 ) ω 19 , 16 ( 2 ) ω 19 , 17 ( 2 ) ω 19 , 19 ( 2 ) ω 19 , 20 ( 2 ) ω 19 , 21 ( 2 ) ω 20 , 15 ( 2 ) ω 20 , 16 ( 2 ) ω 20 , 17 ( 2 ) ω 20 , 19 ( 2 ) ω 20 , 20 ( 2 ) ω 20 , 21 ( 2 ) ω 21 , 15 ( 2 ) ω 21 , 16 ( 2 ) ω 21 , 17 ( 2 ) ω 21 , 19 ( 2 ) ω 21 , 20 ( 2 ) ω 21 , 21 ( 2 ) ω 22 , 15 ( 2 ) ω 22 , 16 ( 2 ) ω 22 , 17 ( 2 ) ω 22 , 19 ( 2 ) ω 22 , 20 ( 2 ) ω 22 , 21 ( 2 ) ω 23 , 15 ( 2 ) ω 23 , 16 ( 2 ) ω 23 , 17 ( 2 ) ω 23 , 19 ( 2 ) ω 23 , 20 ( 2 ) ω 23 , 21 ( 2 ) ω 17 , 11 ( 3 ) − X 13 , 9 ( 4 ) ω 17 , 12 ( 3 ) X 21 , 15 ( 3 ) ω 17 , 13 ( 3 ) − ω 97 ( 4 ) + X 54 ( 5 ) ω 17 , 14 ( 3 ) − ω 98 ( 4 ) ω 17 , 15 ( 3 ) − X 13 , 12 ( 4 ) ω 18 , 11 ( 3 ) − X 14 , 9 ( 4 ) ω 18 , 12 ( 3 ) X 22 , 15 ( 3 ) ω 18 , 13 ( 3 ) − ω 10 , 7 ( 4 ) ω 18 , 14 ( 3 ) − ω 10 , 8 ( 4 ) ω 18 , 15 ( 3 ) − X 14 , 12 ( 4 ) ω 19 , 11 ( 3 ) − X 15 , 9 ( 4 ) ω 19 , 12 ( 3 ) X 23 , 15 ( 3 ) ω 19 , 13 ( 3 ) − X 15 , 10 ( 4 ) ω 19 , 14 ( 3 ) − X 15 , 11 ( 4 ) ω 19 , 15 ( 3 ) − X 15 , 12 ( 4 ) ω 20 , 11 ( 3 ) ω 20 , 12 ( 3 ) X 24 , 15 ( 3 ) ω 20 , 13 ( 3 ) ω 20 , 14 ( 3 ) ω 20 , 15 ( 3 ) X 25 , 13 ( 3 ) X 25 , 14 ( 3 ) X 25 , 15 ( 3 ) X 25 , 16 ( 3 ) X 25 , 17 ( 3 ) X 25 , 18 ( 3 ) , Y 14 ( 3 ) = ω 1 , 22 ( 2 ) ω 1 , 23 ( 2 ) ω 1 , 17 ( 3 ) − ω 19 ( 4 ) + X 15 ( 5 ) ω 1 , 18 ( 3 ) − ω 1 , 10 ( 4 ) ω 1 , 19 ( 3 ) − X 1 , 15 ( 4 ) ω 1 , 20 ( 3 ) X 1 , 25 ( 3 ) ω 2 , 22 ( 2 ) ω 2 , 23 ( 2 ) ω 2 , 17 ( 3 ) − ω 29 ( 4 ) ω 2 , 18 ( 3 ) − ω 2 , 10 ( 4 ) ω 2 , 19 ( 3 ) − X 2 , 15 ( 4 ) ω 2 , 20 ( 3 ) X 2 , 25 ( 3 ) ω 3 , 22 ( 2 ) ω 3 , 23 ( 2 ) ω 3 , 17 ( 3 ) − X 3 , 13 ( 4 ) ω 3 , 18 ( 3 ) − X 3 , 14 ( 4 ) ω 3 , 19 ( 3 ) − X 3 , 15 ( 4 ) ω 3 , 20 ( 3 ) X 3 , 25 ( 3 ) ω 4 , 22 ( 2 ) ω 4 , 23 ( 2 ) ω 4 , 17 ( 3 ) ω 4 , 18 ( 3 ) ω 4 , 19 ( 3 ) ω 4 , 20 ( 3 ) X 4 , 25 ( 3 ) ω 5 , 22 ( 2 ) ω 5 , 23 ( 2 ) X 5 , 21 ( 3 ) X 5 , 22 ( 3 ) X 5 , 23 ( 3 ) X 5 , 24 ( 3 ) X 5 , 25 ( 3 ) ω 7 , 22 ( 2 ) ω 7 , 23 ( 2 ) ω 5 , 17 ( 3 ) − ω 39 ( 4 ) + X 25 ( 5 ) ω 5 , 18 ( 3 ) − ω 3 , 10 ( 4 ) ω 5 , 19 ( 3 ) − X 4 , 15 ( 4 ) ω 5 , 20 ( 3 ) X 6 , 25 ( 3 ) ω 8 , 22 ( 2 ) ω 8 , 23 ( 2 ) ω 6 , 17 ( 3 ) − ω 49 ( 4 ) ω 6 , 18 ( 3 ) − ω 4 , 10 ( 4 ) ω 6 , 19 ( 3 ) − X 5 , 15 ( 4 ) ω 6 , 20 ( 3 ) X 7 , 25 ( 3 ) ω 9 , 22 ( 2 ) ω 9 , 23 ( 2 ) ω 7 , 17 ( 3 ) − X 6 , 13 ( 4 ) ω 7 , 18 ( 3 ) − X 6 , 14 ( 4 ) ω 7 , 19 ( 3 ) − X 6 , 15 ( 4 ) ω 7 , 20 ( 3 ) X 8 , 25 ( 3 ) ω 10 , 22 ( 2 ) ω 10 , 23 ( 2 ) ω 8 , 17 ( 3 ) ω 8 , 18 ( 3 ) ω 8 , 19 ( 3 ) ω 8 , 20 ( 3 ) X 9 , 25 ( 3 ) ω 11 , 22 ( 2 ) ω 11 , 23 ( 2 ) X 10 , 21 ( 3 ) X 10 , 22 ( 3 ) X 10 , 23 ( 3 ) X 10 , 24 ( 3 ) X 10 , 25 ( 3 ) ω 13 , 22 ( 2 ) ω 13 , 23 ( 2 ) ω 9 , 17 ( 3 ) − ω 59 ( 4 ) + X 35 ( 5 ) ω 9 , 18 ( 3 ) − ω 5 , 10 ( 4 ) ω 9 , 19 ( 3 ) − X 7 , 15 ( 4 ) ω 9 , 20 ( 3 ) X 11 , 25 ( 3 ) ω 14 , 22 ( 2 ) ω 14 , 23 ( 2 ) ω 10 , 17 ( 3 ) − ω 69 ( 4 ) ω 10 , 18 ( 3 ) − ω 6 , 10 ( 4 ) ω 10 , 19 ( 3 ) − X 8 , 15 ( 4 ) ω 10 , 20 ( 3 ) X 12 , 25 ( 3 ) ω 15 , 22 ( 2 ) ω 15 , 23 ( 2 ) ω 11 , 17 ( 3 ) − X 9 , 13 ( 4 ) ω 11 , 18 ( 3 ) − X 9 , 14 ( 4 ) ω 11 , 19 ( 3 ) − X 9 , 15 ( 4 ) ω 11 , 20 ( 3 ) X 13 , 25 ( 3 ) , Y 24 ( 3 ) = ω 16 , 22 ( 2 ) ω 16 , 23 ( 2 ) ω 12 , 17 ( 3 ) ω 12 , 18 ( 3 ) ω 12 , 19 ( 3 ) ω 12 , 20 ( 3 ) X 14 , 25 ( 3 ) ω 17 , 22 ( 2 ) ω 17 , 23 ( 2 ) X 15 , 21 ( 3 ) X 15 , 22 ( 3 ) X 15 , 23 ( 3 ) X 15 , 24 ( 3 ) X 15 , 25 ( 3 ) ω 19 , 22 ( 2 ) ω 19 , 23 ( 2 ) ω 13 , 17 ( 3 ) − ω 79 ( 4 ) + X 45 ( 5 ) ω 13 , 18 ( 3 ) − ω 7 , 10 ( 4 ) ω 13 , 19 ( 3 ) − X 10 , 15 ( 4 ) ω 13 , 20 ( 3 ) X 16 , 25 ( 3 ) ω 20 , 22 ( 2 ) ω 20 , 23 ( 2 ) ω 14 , 17 ( 3 ) − ω 89 ( 4 ) ω 14 , 18 ( 3 ) − ω 8 , 10 ( 4 ) ω 14 , 19 ( 3 ) − X 11 , 15 ( 4 ) ω 14 , 20 ( 3 ) X 17 , 25 ( 3 ) ω 21 , 22 ( 2 ) ω 21 , 23 ( 2 ) ω 15 , 17 ( 3 ) − X 12 , 13 ( 4 ) ω 15 , 18 ( 3 ) − X 12 , 14 ( 4 ) ω 15 , 19 ( 3 ) − X 12 , 15 ( 4 ) ω 15 , 20 ( 3 ) X 18 , 25 ( 3 ) ω 22 , 22 ( 2 ) ω 22 , 23 ( 2 ) ω 16 , 17 ( 3 ) ω 16 , 18 ( 3 ) ω 16 , 19 ( 3 ) ω 16 , 20 ( 3 ) X 19 , 25 ( 3 ) ω 23 , 22 ( 2 ) ω 23 , 23 ( 2 ) X 20 , 21 ( 3 ) X 20 , 22 ( 3 ) X 20 , 23 ( 3 ) X 20 , 24 ( 3 ) X 20 , 25 ( 3 ) ω 17 , 16 ( 3 ) X 21 , 20 ( 3 ) ω 17 , 17 ( 3 ) − ω 99 ( 4 ) + X 55 ( 5 ) ω 17 , 18 ( 3 ) − ω 9 , 10 ( 4 ) ω 17 , 19 ( 3 ) − X 13 , 15 ( 4 ) ω 17 , 20 ( 3 ) X 21 , 25 ( 3 ) ω 18 , 16 ( 3 ) X 22 , 20 ( 3 ) ω 18 , 17 ( 3 ) − ω 10 , 9 ( 4 ) ω 18 , 18 ( 3 ) − ω 10 , 10 ( 4 ) ω 18 , 19 ( 3 ) − X 14 , 15 ( 4 ) ω 18 , 20 ( 3 ) X 22 , 25 ( 3 ) ω 19 , 16 ( 3 ) X 23 , 20 ( 3 ) ω 19 , 17 ( 3 ) − X 15 , 13 ( 4 ) ω 19 , 18 ( 3 ) − X 15 , 14 ( 4 ) ω 19 , 19 ( 3 ) − X 15 , 15 ( 4 ) ω 19 , 20 ( 3 ) X 23 , 25 ( 3 ) ω 20 , 16 ( 3 ) X 24 , 20 ( 3 ) ω 20 , 17 ( 3 ) ω 20 , 18 ( 3 ) ω 20 , 19 ( 3 ) ω 20 , 20 ( 3 ) X 24 , 25 ( 3 ) X 25 , 19 ( 3 ) X 25 , 20 ( 3 ) X 25 , 21 ( 3 ) X 25 , 22 ( 3 ) X 25 , 23 ( 3 ) X 25 , 24 ( 3 ) X 25 , 25 ( 3 ) . X 4 ^ = Y 11 ( 4 ) Y 12 ( 4 ) Y 13 ( 4 ) Y 21 ( 4 ) Y 22 ( 4 ) Y 23 ( 4 ) , (70) where Y 11 ( 4 ) = ω 11 ( 4 ) − X 11 ( 5 ) ω 12 ( 4 ) X 13 ( 4 ) ω 15 ( 3 ) − ω 17 ( 2 ) + ω 19 ( 1 ) ω 14 ( 4 ) ω 17 ( 3 ) − ω 19 ( 2 ) + ω 1 , 11 ( 1 ) ω 21 ( 4 ) ω 22 ( 4 ) X 23 ( 4 ) ω 23 ( 4 ) ω 24 ( 4 ) ω 27 ( 3 ) − ω 29 ( 2 ) + ω 2 , 11 ( 1 ) X 31 ( 4 ) X 32 ( 4 ) X 33 ( 4 ) ω 35 ( 3 ) − ω 37 ( 2 ) + ω 39 ( 1 ) ω 36 ( 3 ) − ω 38 ( 2 ) + ω 3 , 10 ( 1 ) ω 37 ( 3 ) − ω 39 ( 2 ) + ω 3 , 11 ( 1 ) ω 51 ( 3 ) − ω 71 ( 2 ) + ω 91 ( 1 ) ω 32 ( 4 ) ω 53 ( 3 ) − ω 73 ( 2 ) + ω 93 ( 1 ) ω 55 ( 3 ) − ω 77 ( 2 ) + ω 99 ( 1 ) ω 34 ( 4 ) ω 57 ( 3 ) − ω 79 ( 2 ) + ω 9 , 11 ( 1 ) ω 41 ( 4 ) ω 42 ( 4 ) ω 63 ( 3 ) − ω 83 ( 2 ) + ω 10 , 3 ( 1 ) ω 43 ( 4 ) ω 44 ( 4 ) ω 67 ( 3 ) − ω 89 ( 2 ) + ω 10 , 11 ( 1 ) ω 71 ( 3 ) − ω 91 ( 2 ) + ω 11 , 1 ( 1 ) ω 72 ( 3 ) − ω 92 ( 2 ) + ω 11 , 2 ( 1 ) ω 73 ( 3 ) − ω 93 ( 2 ) + ω 11 , 3 ( 1 ) ω 75 ( 3 ) − ω 97 ( 2 ) + ω 11 , 9 ( 1 ) ω 76 ( 3 ) − ω 98 ( 2 ) + ω 11 , 10 ( 1 ) ω 77 ( 3 ) − ω 99 ( 2 ) + ω 11 , 11 ( 1 ) ω 51 ( 4 ) − X 31 ( 5 ) ω 52 ( 4 ) X 73 ( 4 ) ω 53 ( 4 ) − X 32 ( 5 ) ω 54 ( 4 ) X 76 ( 4 ) ω 61 ( 4 ) ω 62 ( 4 ) X 83 ( 4 ) ω 63 ( 4 ) ω 64 ( 4 ) X 86 ( 4 ) X 91 ( 4 ) X 92 ( 4 ) X 93 ( 4 ) X 94 ( 4 ) X 95 ( 4 ) X 96 ( 4 ) ω 13 , 1 ( 3 ) − ω 19 , 1 ( 2 ) ω 72 ( 4 ) ω 13 , 3 ( 3 ) − ω 19 , 3 ( 2 ) ω 13 , 5 ( 3 ) − ω 19 , 7 ( 2 ) ω 74 ( 4 ) ω 13 , 7 ( 3 ) − ω 19 , 9 ( 2 ) ω 81 ( 4 ) ω 82 ( 4 ) ω 14 , 3 ( 3 ) − ω 20 , 3 ( 2 ) ω 83 ( 4 ) ω 84 ( 4 ) ω 14 , 7 ( 3 ) − ω 20 , 9 ( 2 ) , Y 21 ( 4 ) = ω 15 , 1 ( 3 ) − ω 21 , 1 ( 2 ) ω 15 , 2 ( 3 ) − ω 21 , 2 ( 2 ) ω 15 , 3 ( 3 ) − ω 21 , 3 ( 2 ) ω 15 , 5 ( 3 ) − ω 21 , 7 ( 2 ) ω 15 , 6 ( 3 ) − ω 21 , 8 ( 2 ) ω 15 , 7 ( 3 ) − ω 21 , 9 ( 2 ) ω 91 ( 4 ) − X 51 ( 5 ) ω 92 ( 4 ) X 13 , 3 ( 4 ) ω 93 ( 4 ) − X 52 ( 5 ) ω 94 ( 4 ) X 13 , 6 ( 4 ) ω 10 , 1 ( 4 ) ω 10 , 2 ( 4 ) X 14 , 3 ( 4 ) ω 10 , 3 ( 4 ) ω 10 , 4 ( 4 ) X 14 , 6 ( 4 ) X 15 , 1 ( 4 ) X 15 , 2 ( 4 ) X 15 , 3 ( 4 ) X 15 , 4 ( 4 ) X 15 , 5 ( 4 ) X 15 , 6 ( 4 ) ω 21 , 1 ( 3 ) ω 11 , 2 ( 4 ) ω 21 , 3 ( 3 ) ω 21 , 5 ( 3 ) ω 11 , 4 ( 4 ) ω 21 , 7 ( 3 ) ω 12 , 1 ( 4 ) ω 12 , 2 ( 4 ) ω 22 , 3 ( 3 ) ω 12 , 3 ( 4 ) ω 12 , 4 ( 4 ) ω 22 , 7 ( 3 ) ω 23 , 1 ( 3 ) ω 23 , 2 ( 3 ) ω 23 , 3 ( 3 ) ω 23 , 5 ( 3 ) ω 23 , 6 ( 3 ) ω 23 , 7 ( 3 ) ω 13 , 1 ( 4 ) − X 71 ( 5 ) ω 13 , 2 ( 4 ) X 19 , 3 ( 4 ) ω 13 , 3 ( 4 ) − X 72 ( 5 ) ω 13 , 4 ( 4 ) X 19 , 6 ( 4 ) ω 14 , 1 ( 4 ) ω 14 , 2 ( 4 ) X 20 , 3 ( 4 ) ω 14 , 3 ( 4 ) ω 14 , 4 ( 4 ) X 20 , 6 ( 4 ) X 21 , 1 ( 4 ) X 21 , 2 ( 4 ) X 21 , 3 ( 4 ) X 21 , 4 ( 4 ) X 21 , 5 ( 4 ) X 21 , 6 ( 4 ) , Y 12 ( 4 ) = ω 15 ( 4 ) − X 13 ( 5 ) ω 16 ( 4 ) X 19 ( 4 ) ω 1 , 13 ( 3 ) − ω 1 , 19 ( 2 ) ω 18 ( 4 ) ω 1 , 15 ( 3 ) − ω 1 , 21 ( 2 ) ω 19 ( 4 ) − X 15 ( 5 ) ω 25 ( 4 ) ω 26 ( 4 ) X 29 ( 4 ) ω 27 ( 4 ) ω 28 ( 4 ) ω 2 , 15 ( 3 ) − ω 2 , 21 ( 2 ) ω 29 ( 4 ) X 37 ( 4 ) X 38 ( 4 ) X 39 ( 4 ) ω 3 , 13 ( 3 ) − ω 3 , 19 ( 2 ) ω 3 , 14 ( 3 ) − ω 3 , 20 ( 2 ) ω 3 , 15 ( 3 ) − ω 3 , 21 ( 2 ) X 3 , 13 ( 4 ) ω 35 ( 4 ) − X 23 ( 5 ) ω 36 ( 4 ) X 49 ( 4 ) ω 5 , 13 ( 3 ) − ω 7 , 19 ( 2 ) ω 38 ( 4 ) ω 5 , 15 ( 3 ) − ω 7 , 21 ( 2 ) ω 39 ( 4 ) − X 25 ( 5 ) ω 45 ( 4 ) ω 46 ( 4 ) X 59 ( 4 ) ω 47 ( 4 ) ω 48 ( 4 ) ω 6 , 15 ( 3 ) − ω 8 , 21 ( 2 ) ω 49 ( 4 ) X 67 ( 4 ) X 68 ( 4 ) X 69 ( 4 ) ω 7 , 13 ( 3 ) − ω 9 , 19 ( 2 ) ω 7 , 14 ( 3 ) − ω 9 , 20 ( 2 ) ω 7 , 15 ( 3 ) − ω 9 , 21 ( 2 ) X 6 , 13 ( 4 ) ω 55 ( 4 ) − X 33 ( 5 ) ω 56 ( 4 ) X 79 ( 4 ) ω 9 , 13 ( 3 ) − ω 13 , 19 ( 2 ) ω 58 ( 4 ) ω 9 , 15 ( 3 ) − ω 13 , 21 ( 2 ) ω 59 ( 4 ) − X 35 ( 5 ) ω 65 ( 4 ) ω 66 ( 4 ) X 89 ( 4 ) ω 67 ( 4 ) ω 68 ( 4 ) ω 10 , 15 ( 3 ) − ω 14 , 21 ( 2 ) ω 69 ( 4 ) X 97 ( 4 ) X 98 ( 4 ) X 99 ( 4 ) ω 11 , 13 ( 3 ) − ω 15 , 19 ( 2 ) ω 11 , 14 ( 3 ) − ω 15 , 20 ( 2 ) ω 11 , 15 ( 3 ) − ω 15 , 21 ( 2 ) X 9 , 13 ( 4 ) ω 13 , 9 ( 3 ) − ω 19 , 13 ( 2 ) ω 76 ( 4 ) ω 13 , 11 ( 3 ) − ω 19 , 15 ( 2 ) ω 13 , 13 ( 3 ) − ω 19 , 19 ( 2 ) ω 78 ( 4 ) ω 13 , 15 ( 3 ) − ω 19 , 21 ( 2 ) ω 79 ( 4 ) − X 45 ( 5 ) ω 85 ( 4 ) ω 86 ( 4 ) ω 14 , 11 ( 3 ) − ω 20 , 15 ( 2 ) ω 87 ( 4 ) ω 88 ( 4 ) ω 14 , 15 ( 3 ) − ω 20 , 21 ( 2 ) ω 89 ( 4 ) , Y 22 ( 4 ) = ω 15 , 9 ( 3 ) − ω 21 , 13 ( 2 ) ω 15 , 10 ( 3 ) − ω 21 , 14 ( 2 ) ω 15 , 11 ( 3 ) − ω 21 , 15 ( 2 ) ω 15 , 13 ( 3 ) − ω 21 , 19 ( 2 ) ω 15 , 14 ( 3 ) − ω 21 , 20 ( 2 ) ω 15 , 15 ( 3 ) − ω 21 , 21 ( 2 ) X 12 , 13 ( 4 ) ω 95 ( 4 ) − X 53 ( 5 ) ω 9 , 6 ( 4 ) X 13 , 9 ( 4 ) ω 97 ( 4 ) − X 54 ( 5 ) ω 98 ( 4 ) X 13 , 12 ( 4 ) ω 99 ( 4 ) − X 55 ( 5 ) ω 10 , 5 ( 4 ) ω 10 , 6 ( 4 ) X 14 , 9 ( 4 ) ω 10 , 7 ( 4 ) ω 10 , 8 ( 4 ) X 14 , 12 ( 4 ) ω 10 , 9 ( 4 ) X 15 , 7 ( 4 ) X 15 , 8 ( 4 ) X 15 , 9 ( 4 ) X 15 , 10 ( 4 ) X 15 , 11 ( 4 ) X 15 , 12 ( 4 ) X 15 , 13 ( 4 ) ω 21 , 9 ( 3 ) ω 11 , 6 ( 4 ) ω 21 , 11 ( 3 ) ω 21 , 13 ( 3 ) ω 11 , 8 ( 4 ) ω 21 , 15 ( 3 ) ω 21 , 17 ( 3 ) ω 12 , 5 ( 4 ) ω 12 , 6 ( 4 ) ω 22 , 11 ( 3 ) ω 12 , 7 ( 4 ) ω 12 , 8 ( 4 ) ω 22 , 15 ( 3 ) ω 12 , 9 ( 4 ) ω 23 , 9 ( 3 ) ω 23 , 10 ( 3 ) ω 23 , 11 ( 3 ) ω 23 , 13 ( 3 ) ω 23 , 14 ( 3 ) ω 23 , 15 ( 3 ) ω 23 , 17 ( 3 ) ω 13 , 5 ( 4 ) − X 73 ( 5 ) ω 13 , 6 ( 4 ) X 19 , 9 ( 4 ) ω 13 , 7 ( 4 ) − X 74 ( 5 ) ω 13 , 8 ( 4 ) X 19 , 12 ( 4 ) ω 13 , 9 ( 4 ) − X 75 ( 5 ) ω 14 , 5 ( 4 ) ω 14 , 6 ( 4 ) X 20 , 9 ( 4 ) ω 14 , 7 ( 4 ) ω 14 , 8 ( 4 ) X 20 , 12 ( 4 ) ω 14 , 9 ( 4 ) X 21 , 7 ( 4 ) X 21 , 8 ( 4 ) X 21 , 9 ( 4 ) X 21 , 10 ( 4 ) X 21 , 11 ( 4 ) X 21 , 12 ( 4 ) X 21 , 13 ( 4 ) , Y 13 ( 4 ) = ω 1 , 10 ( 4 ) X 1 , 15 ( 4 ) ω 1 , 21 ( 3 ) ω 1 , 12 ( 4 ) ω 1 , 23 ( 3 ) ω 1 , 13 ( 4 ) − X 17 ( 5 ) ω 1 , 14 ( 4 ) X 1 , 21 ( 4 ) ω 2 , 10 ( 4 ) X 2 , 15 ( 4 ) ω 2 , 11 ( 4 ) ω 2 , 12 ( 4 ) ω 2 , 23 ( 3 ) ω 2 , 13 ( 4 ) ω 2 , 14 ( 4 ) X 2 , 21 ( 4 ) X 3 , 14 ( 4 ) X 3 , 15 ( 4 ) ω 3 , 21 ( 3 ) ω 3 , 22 ( 3 ) ω 3 , 23 ( 3 ) X 3 , 19 ( 4 ) X 3 , 20 ( 4 ) X 3 , 21 ( 4 ) ω 3 , 10 ( 4 ) X 4 , 15 ( 4 ) ω 5 , 21 ( 3 ) ω 3 , 12 ( 4 ) ω 5 , 23 ( 3 ) ω 3 , 13 ( 4 ) − X 27 ( 5 ) ω 3 , 14 ( 4 ) X 4 , 21 ( 4 ) ω 4 , 10 ( 4 ) X 5 , 15 ( 4 ) ω 4 , 11 ( 4 ) ω 4 , 12 ( 4 ) ω 6 , 23 ( 3 ) ω 4 , 13 ( 4 ) ω 4 , 14 ( 4 ) X 5 , 21 ( 4 ) X 6 , 14 ( 4 ) X 6 , 15 ( 4 ) ω 7 , 21 ( 3 ) ω 7 , 22 ( 3 ) ω 7 , 23 ( 3 ) X 6 , 19 ( 4 ) X 6 , 20 ( 4 ) X 6 , 21 ( 4 ) ω 5 , 10 ( 4 ) X 7 , 15 ( 4 ) ω 9 , 21 ( 3 ) ω 5 , 12 ( 4 ) ω 9 , 23 ( 3 ) ω 5 , 13 ( 4 ) − X 37 ( 5 ) ω 5 , 14 ( 4 ) X 7 , 21 ( 4 ) ω 6 , 10 ( 4 ) X 8 , 15 ( 4 ) ω 6 , 11 ( 4 ) ω 6 , 12 ( 4 ) ω 10 , 23 ( 3 ) ω 6 , 13 ( 4 ) ω 6 , 14 ( 4 ) X 8 , 21 ( 4 ) X 9 , 14 ( 4 ) X 9 , 15 ( 4 ) ω 11 , 21 ( 3 ) ω 11 , 22 ( 3 ) ω 11 , 23 ( 3 ) X 9 , 19 ( 4 ) X 9 , 20 ( 4 ) X 9 , 21 ( 4 ) ω 7 , 10 ( 4 ) X 10 , 15 ( 4 ) ω 13 , 21 ( 3 ) ω 7 , 12 ( 4 ) ω 13 , 23 ( 3 ) ω 7 , 13 ( 4 ) − X 47 ( 5 ) ω 7 , 14 ( 4 ) X 10 , 21 ( 4 ) ω 8 , 10 ( 4 ) X 11 , 15 ( 4 ) ω 8 , 11 ( 4 ) ω 8 , 12 ( 4 ) ω 14 , 23 ( 3 ) ω 8 , 13 ( 4 ) ω 8 , 14 ( 4 ) X 11 , 21 ( 4 ) , Y 23 ( 4 ) = X 12 , 14 ( 4 ) X 12 , 15 ( 4 ) ω 15 , 21 ( 3 ) ω 15 , 22 ( 3 ) ω 15 , 23 ( 3 ) X 12 , 19 ( 4 ) X 12 , 20 ( 4 ) X 12 , 21 ( 4 ) ω 9 , 10 ( 4 ) X 13 , 15 ( 4 ) ω 17 , 21 ( 3 ) ω 9 , 12 ( 4 ) ω 17 , 23 ( 3 ) ω 9 , 13 ( 4 ) − X 57 ( 5 ) ω 9 , 14 ( 4 ) X 13 , 21 ( 4 ) ω 10 , 10 ( 4 ) X 14 , 15 ( 4 ) ω 10 , 11 ( 4 ) ω 10 , 12 ( 4 ) ω 18 , 23 ( 3 ) ω 10 , 13 ( 4 ) ω 10 , 14 ( 4 ) X 14 , 21 ( 4 ) X 15 , 14 ( 4 ) X 15 , 15 ( 4 ) ω 19 , 21 ( 3 ) ω 19 , 22 ( 3 ) ω 19 , 23 ( 3 ) X 15 , 19 ( 4 ) X 15 , 20 ( 4 ) X 15 , 21 ( 4 ) ω 11 , 10 ( 4 ) ω 21 , 19 ( 3 ) ω 21 , 21 ( 3 ) ω 11 , 12 ( 4 ) ω 21 , 23 ( 3 ) ω 11 , 13 ( 4 ) − X 67 ( 5 ) ω 11 , 14 ( 4 ) X 16 , 21 ( 4 ) ω 12 , 10 ( 4 ) ω 22 , 19 ( 3 ) ω 12 , 11 ( 4 ) ω 12 , 12 ( 4 ) ω 22 , 23 ( 3 ) ω 12 , 13 ( 4 ) ω 12 , 14 ( 4 ) X 17 , 21 ( 4 ) ω 23 , 18 ( 3 ) ω 23 , 19 ( 3 ) ω 23 , 21 ( 3 ) ω 23 , 22 ( 3 ) ω 23 , 23 ( 3 ) X 18 , 19 ( 4 ) X 18 , 20 ( 4 ) X 18 , 21 ( 4 ) ω 13 , 10 ( 4 ) X 19 , 15 ( 4 ) ω 13 , 11 ( 4 ) − X 76 ( 5 ) ω 13 , 12 ( 4 ) X 19 , 18 ( 4 ) ω 13 , 13 ( 4 ) − X 77 ( 5 ) ω 13 , 14 ( 4 ) X 19 , 21 ( 4 ) ω 14 , 10 ( 4 ) X 20 , 15 ( 4 ) ω 14 , 11 ( 4 ) ω 14 , 12 ( 4 ) X 20 , 18 ( 4 ) ω 14 , 13 ( 4 ) ω 14 , 14 ( 4 ) X 20 , 21 ( 4 ) X 21 , 14 ( 4 ) X 21 , 15 ( 4 ) X 21 , 16 ( 4 ) X 21 , 17 ( 4 ) X 21 , 18 ( 4 ) X 21 , 19 ( 4 ) X 21 , 20 ( 4 ) X 21 , 21 ( 4 ) . X 5 ^ = ( Y 1 ( 5 ) , Y 2 ( 5 ) ) , (71) where Y 1 ( 5 ) = X 11 ( 5 ) ω 13 ( 4 ) − ω 15 ( 3 ) + ω 17 ( 2 ) − ω 19 ( 1 ) X 13 ( 5 ) ω 17 ( 4 ) − ω 1 , 13 ( 3 ) + ω 1 , 19 ( 2 ) ω 31 ( 4 ) − ω 51 ( 3 ) + ω 71 ( 2 ) − ω 91 ( 1 ) ω 33 ( 4 ) − ω 55 ( 3 ) + ω 77 ( 2 ) − ω 99 ( 1 ) X 23 ( 5 ) ω 37 ( 4 ) − ω 5 , 13 ( 3 ) + ω 7 , 19 ( 2 ) X 31 ( 5 ) X 32 ( 5 ) X 33 ( 5 ) ω 57 ( 4 ) − ω 9 , 13 ( 3 ) + ω 13 , 19 ( 2 ) ω 71 ( 4 ) − ω 13 , 1 ( 3 ) + ω 19 , 1 ( 2 ) ω 73 ( 4 ) − ω 13 , 5 ( 3 ) + ω 19 , 7 ( 2 ) ω 75 ( 4 ) − ω 13 , 9 ( 3 ) + ω 19 , 13 ( 2 ) ω 77 ( 4 ) − ω 13 , 13 ( 3 ) + ω 19 , 19 ( 2 ) X 51 ( 5 ) X 52 ( 5 ) X 53 ( 5 ) X 54 ( 5 ) ω 11 , 1 ( 4 ) − ω 21 , 1 ( 3 ) ω 11 , 3 ( 4 ) − ω 21 , 5 ( 3 ) ω 11 , 5 ( 4 ) − ω 21 , 9 ( 3 ) ω 11 , 7 ( 4 ) − ω 21 , 13 ( 3 ) X 71 ( 5 ) X 72 ( 5 ) X 73 ( 5 ) X 74 ( 5 ) ω 15 , 1 ( 4 ) ω 15 , 3 ( 4 ) ω 15 , 5 ( 4 ) ω 15 , 7 ( 4 ) X 91 ( 5 ) X 92 ( 5 ) X 93 ( 5 ) X 94 ( 5 ) , Y 2 ( 5 ) = X 15 ( 5 ) ω 1 , 11 ( 4 ) − ω 1 , 21 ( 3 ) X 17 ( 5 ) ω 1 , 15 ( 4 ) X 19 ( 5 ) X 25 ( 5 ) ω 3 , 11 ( 4 ) − ω 5 , 21 ( 3 ) X 27 ( 5 ) ω 3 , 15 ( 4 ) X 29 ( 5 ) X 35 ( 5 ) ω 5 , 11 ( 4 ) − ω 9 , 21 ( 3 ) X 37 ( 5 ) ω 5 , 15 ( 4 ) X 39 ( 5 ) X 45 ( 5 ) ω 7 , 11 ( 4 ) − ω 13 , 21 ( 3 ) X 47 ( 5 ) ω 7 , 15 ( 4 ) X 49 ( 5 ) X 55 ( 5 ) ω 9 , 11 ( 4 ) − ω 17 , 21 ( 3 ) X 57 ( 5 ) ω 9 , 15 ( 4 ) X 59 ( 5 ) ω 11 , 9 ( 4 ) − ω 21 , 17 ( 3 ) ω 11 , 11 ( 4 ) − ω 21 , 21 ( 3 ) X 67 ( 5 ) ω 11 , 15 ( 4 ) X 69 ( 5 ) X 75 ( 5 ) X 76 ( 5 ) X 77 ( 5 ) ω 13 , 15 ( 4 ) X 79 ( 5 ) ω 15 , 9 ( 4 ) ω 15 , 11 ( 4 ) ω 15 , 13 ( 4 ) ω 15 , 15 ( 4 ) X 89 ( 5 ) X 95 ( 5 ) X 96 ( 5 ) X 97 ( 5 ) X 98 ( 5 ) X 99 ( 5 ) . Algorithm 1: An algorithm to Find the General Solution to System (1)1.Input A i ∈ H p i × q i , B i ∈ H p i × q i + 1 , C i ∈ H t i × s i , D i ∈ H t i + 1 × s i , Ω i ∈ H p i × s i , i = 1 , 2 , 3 , 4 .2.Compute the decompositions of (3) and (4) and derive the invertible quaternion matrices P i , S i , Q j , T j , i = 1 , 2 , 3 , 4 and j = 1 , 2 , 3 , 4 , 5 .3.Compute X j ^ and Ω i ^ by X j ^ = Q j − 1 X j T j − 1 and Ω i ^ = P i Ω i S i , j = 1 , 2 , 3 , 4 , 5 and i = 1 , 2 , 3 , 4 .4.Partition X j ^ , j = 1 , 2 , 3 , 4 , 5 and Ω i ^ , i = 1 , 2 , 3 , 4 .5.Check whether (12)–(39) or (40)–(66) hold or not. If one of them holds, then proceed to the following steps.6.Compute X j ^ by (67)–(71), j = 1 , 2 , 3 , 4 , 5 .7.Compute X j by X j = Q j X j ^ T j , j = 1 , 2 , 3 , 4 , 5 . 4. A Numerical Example of System (1)In this section, we show a numerical example of system (1). Example 1. Let A 1 = 1 − i k 2 − 2 i 2 k j − k − i , A 2 = 1 − j 2 + k j 0 3 + i − k 2 − k 3 − i + k 3 , A 3 = 1 j 2 + 2 j − j 0 3 + i 2 − j 3 − i 3 , A 4 = − 1 j i − k k 2 − k − i j j + k − 2 + i , B 1 = 2 − i j 3 k 1 − 2 i 0 k , B 2 = 0 i j j 1 2 k − i 3 − 1 B 3 = j k i k i j i j k , B 4 = 1 2 − 1 i 2 i − i 1 + i 2 + 2 i − 1 − i , C 1 = 1 2 j i 2 i − k k 2 k i , C 2 = 1 j 2 − k − j 0 3 + k 2 + k i − k − 3 , C 3 = 1 j − 1 j 0 j 2 + 2 j 2 j − 2 + 2 j , C 4 = − 1 k j j 2 − k j + k − i − k i − 2 − i , D 1 = 2 2 i − 2 j − i − 1 k j k 1 , D 2 = 0 j i − i j − k − 1 − i + k 1 + i − k 3 k k , D 3 = − i j k j 2 + k 4 − j k i + 2 j j , D 4 = 1 − i k 2 3 − 2 i 2 k − 1 i − k , Ω 1 = − i + 7 j − k − 12 − 3 k 5 − 1 i + 3 k − 7 + 6 i + 14 j + 4 k − 24 − 9 i + 6 j − 2 k 10 + 4 i + 7 j − 2 k − 5 i + 16 j − 6 k − 8 − 2 i + 13 j 12 − 8 i − 2 j + 5 k , Ω 2 = 9 + 3 i + 13 j + 7 k − 7 − i + 7 j − 18 + 13 i − 9 j − 15 k 12 + 8 i + 13 j + 3 k − 2 + 3 i + 8 j + 3 k − 35 + 11 i − 11 j − 4 k 10 − 4 i − 2 j − 17 k − 14 + 6 i + 18 j + k 3 + 21 i + 10 j + 14 k , Ω 3 = 5 + 3 i + 14 j + 7 k − 20 + 4 j − 7 k − 17 + 11 i − 10 j − 9 k 12 + 10 i − 3 j − 2 k − 5 − 10 i + 6 j − 3 k − 12 − 6 i − 7 j − 2 k 27 − 10 i + 24 j − 6 k − 5 + 16 j − 9 k − 23 + 18 i , Ω 4 = 10 + i − j + 2 k 18 + 2 i − 9 j − 10 k 5 − 3 j + 13 k 1 + 3 i − j − 4 k − 6 + 9 i − 4 j + 9 k 5 − 7 i − 7 j − 4 k 7 + 8 i − j − k 12 + 15 i − j − 15 k 5 − 14 j + 11 k . Upon examination, (12)–(39) hold. Then, system (1) has a general solution. Note that X 1 = 1 + j − 2 − i + j i + 2 k − 2 + i − 1 + 2 k i − j j + 2 k − i − j 2 , X 2 = j + k i 2 − j i 1 − k − 3 − k 2 i − j − 2 − k 1 + j , X 3 = 0 2 + i 3 + k 2 − i 1 − i + j 3 + k i − j j − k , X 4 = 2 − i + j 1 + i i + j − 2 − j i − k 1 + j k 0 , X 5 = − 2 − j 2 + i j − k 2 − i 1 − k 1 − i k 1 − k k , is a solution that satisfies system (1).This experiment is conducted using MATLAB R2023B (MathWorks, Natick, MA, USA) running on a computer with the Windows 10 operating system. 5. Application of System (1) in Color Image Encryption and DecryptionIn section, we make use of system (1) to develop a model which can be used to simultaneously encrypt four color images; this idea is similar to the idea put forward in [19].The model simultaneously encrypting four color images is shown in Figure 1.Let X 1 , X 2 , X 3 and X 4 stand for the four encrypted color images, and X 5 stand for a key used for encryption and decryption. It should be noted that X 5 can be a color image and can also be a general quaternion matrix with a proper size). The cipher consists of the invertible quaternion matrices A i , B i , C i and D i , where i = 1 , 2 , 3 , 4 .Then, we explain the encryption process. First, we randomly select an invertible A i , B i , C i , D i ( i = 1 , 2 , 3 , 4 ) with a proper size, and select a key X 5 . Then, we perform numerical calculations on X i ( i = 1 , 2 , 3 , 4 , 5 ) and A i , B i , C i , D i ( i = 1 , 2 , 3 , 4 ) to obtain Ω i ( i = 1 , 2 , 3 , 4 ) according to system (1). In this way, we can obtain the encrypted quaternion numerical matrices Ω i ( i = 1 , 2 , 3 , 4 ) . Based on this encryption process and the general solution to system (1), shown in Section 3. It is very difficult to correctly find the original color images when the keys are not disclosed. Hence, the encryption model is effective and secure, since there are an infinite number of choices of the free terms in the general solution.In terms of the decryption process, we have utilized a picture to illustrate it. The model simultaneously decrypting four color images is shown in Figure 2.In the decryption process, D P X i ( i = 1 , 2 , 3 , 4 ) represent the decrypted color images. Once the “Key” is given, we can reconstruct the original color images, starting with D P X 4 and going through to D P X 1 based on the process depicted in Figure 2.Next, we give a numerical example. First, we select four color images to be encrypted and a key from the set of the sample pictures of MATLAB R2023B. The four images are “Indiancorn”, “Llama”, “Sevilla” and “Strawberries”, with the key “Yellowlily”. These original color images are shown in Figure 3.Then we carry out the encryption process. Figure 4 shows that the encryption process makes the original image unrecognizable.Next, we carry out the decryption process. The decrypted color images are shown in Figure 5.It is easy to see from Figure 5 that the decrypted images are consistent with the original image in Figure 3. We use the Structural Similarity Index (SSIM) as an indicator to measure the decryption effect. Upon computation, the SSIM between the original images and the decrypted images is 1. This shows that the decryption process is effective and the decrypted images are of excellent quality.Finally, it should be pointed out that encryption process based on the system of two-sided coupled generalized Sylvester quaternion matrix equations makes the decryption process more difficult without a key, and makes the decrypted color images have a stronger similarity with the original images.This experiment is conducted using MATLAB R2023B (MathWorks, Natick, MA, USA) running on a computer with the Windows 10 operating system.He et al. [19] made use of a system of Sylvester-type quaternion matrix equations X 1 A 1 − B 1 X 2 = C 1 , X 3 A 2 − B 2 X 2 = C 2 , X 3 A 3 − B 3 X 4 = C 3 , X 4 A 4 − B 4 X 5 = C 4 , X 6 A 5 − B 5 X 5 = C 5 , (72) to develop a frame to encrypt five color images simultaneously, where A i , B i , and C i are given quaternion matrices. The advantages of the encrypted frame developed by system (1) is more complex and safe than system (72). Beyond that, the decrypted images of the frame developed by system (1) is much more similar to the original images than the those of system (72), indicated by comparing the PSNR. The PSNR of the result of our frame is over 200, and is much larger than the result of the frame referred in [19]. The disadvantage of our frame is that it deals with four images simultaneously, which is less than the frame referred in [19]. If one wants to deal with more images, the simultaneous decomposition for more quaternion matrices should be considered. 6. ConclusionsIn this paper, we study the solvability conditions and general solutions to a system of two-sided coupled Sylvester-type quaternion matrix equations A i X i C i + B i X i + 1 D i = Ω i , i = 1 , 2 , 3 , 4 , in terms of the partition of quaternion matrices. Meanwhile, we show the equivalent relationship between the rank conditions of the coefficient matrices and the partitioned matrix conditions of the quaternion matrices. We also develop an algorithm to compute the general solution to the system. In addition, we give a numerical example. We also make use of system (1) to build a model that can be used to simultaneously encrypt and decrypt four color images.We have shown that the simultaneous decomposition of multiple quaternion matrices play an important role in data storage and transmission. Our future work will include extending the simultaneous decomposition of eight quaternion matrices to the simultaneous decomposition of nine quaternion matrices or more, using the simultaneous decomposition of eight quaternion matrices to study the variations of system (1) to adapt to some specific physical systems. Author ContributionsConceptualization, Z.-H.H.; methodology, Z.-H.H. and S.-W.Y.; software, J.T.; validation, Z.-H.H., J.T. and S.-W.Y.; formal analysis, Z.-H.H.; investigation, S.-W.Y.; resources, Z.-H.H.; data curation, J.T.; writing—original draft preparation, J.T.; writing—review and editing, Z.-H.H., J.T. and S.-W.Y.; visualization, Z.-H.H., J.T. and S.-W.Y.; supervision, Z.-H.H. and S.-W.Y.; project administration, Z.-H.H. and S.-W.Y.; funding acquisition, Z.-H.H. All authors have read and agreed to the published version of the manuscript.FundingThis research was supported by the National Natural Science Foundation of China (Grant no. 12271338 and 12371023).Data Availability StatementData are contained within the article.Conflicts of InterestThe authors declare no conflict of interest.ReferencesAbiad, A.; Brimkov, B.; Hayat, S.; Khramova, A.P.; Koolen, J.H. Extending a conjecture of Graham and Lovász on the distance characteristic polynomial. Linear Algebra Appl. 2024, 693, 63–82. [Google Scholar] [CrossRef]Chen, Y.; Jia, Z.G.; Peng, Y.; Peng, Y.X.; Zhang, D. A new structure-preserving quaternion QR decomposition method for color image blind watermarking. Signal Process. 2021, 185, 108088. [Google Scholar] [CrossRef]Dmytryshyn, A.; Kågström, B. Coupled Sylvester-type matrix equations and block diagonalization. SIAM J Matrix Anal Appl. 2015, 36, 580–593. [Google Scholar] [CrossRef]He, X.; Feng, L.; Stevanović, D. The maximum spectral radius of graphs with a large core. Electron. J. Linear Algebra 2023, 39, 78–89. [Google Scholar] [CrossRef]He, Z.H.; Qin, W.L.; Wang, X.X. Some applications of a decomposition for five quaternion matrices in control system and color image processing. Comput. Appl. Math. 2021, 40, 205. [Google Scholar] [CrossRef]Jia, Z.G. The Eigenvalue Problem of Quaternion Matrix: Structure-Preserving Algorithms and Applications; Science Press: Beijing, China, 2019. [Google Scholar]Jia, Z.; Ng, M.K.; Song, G.J. Robust quaternion matrix completion with applications to image inpainting. Numer. Linear Algebra Appl. 2019, 26, e2245. [Google Scholar] [CrossRef]Bihan, N.L.; Sangwine, S.J. Quaternion principal component analysis of color images. ICIP 2003, 1, I-809. [Google Scholar]Bihan, N.L.; Mars, J. Singular value decomposition of quaternion matrices: A new tool for vector-sensor signal processing. Signal Process. 2004, 84, 1177–1199. [Google Scholar] [CrossRef]Li, J.; Yu, C.; Gupta, B.B.; Ren, X. Color image watermarking scheme based on quaternion Hadamard transform and Schur decomposition. Multimed. Tools Appl. 2018, 77, 4545–4561. [Google Scholar] [CrossRef]Li, T.; Wang, Q.W. Structure Preserving Quaternion Biconjugate Gradient Method. SIAM J. Matrix Anal. Appl. 2024, 45, 306–326. [Google Scholar] [CrossRef]Miao, J.; Kou, K.I.; Cheng, D.; Liu, W. Quaternion higher-order singular value decomposition and its applications in color image processing. Inform. Fusion 2023, 92, 139–153. [Google Scholar] [CrossRef]Morais, J.P.; Georgiev, S.; Sprößig, W. Real Quaternionic Calculus Handbook; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]Pan, S.; Pati, S.; Kirkland, S. Dominant eigenvalue and universal winners of digraphs. Linear Algebra Appl. 2024, 695, 79–106. [Google Scholar] [CrossRef]Rather, B.A.; Ganie, H.A.; Das, K.C.; Shang, Y. The general extended adjacency eigenvalues of chain graphs. Mathematics 2024, 12, 192. [Google Scholar] [CrossRef]Rodman, L. Topics in Quaternion Linear Algebra; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]Took, C.C.; Mandic, D.P. The quaternion LMS algorithm for adaptive filtering of hypercomplex processes. IEEE Trans. Signal Process. 2008, 57, 1316–1327. [Google Scholar] [CrossRef]Zhang, F.Z. Quaternions and matrices of quaternions. Linear Algebra Appl. 1997, 251, 21–57. [Google Scholar] [CrossRef]He, Z.H.; Qin, W.L.; Tian, J.; Wang, X.X.; Zhang, Y. A new Sylvester-type quaternion matrix equation model for color image data transmission. Comput. Appl. Math. 2024, 43, 227. [Google Scholar] [CrossRef]Chen, Y.; Wang, Q.W.; Xie, L.M. Dual Quaternion Matrix Equation AXB=C with Applications. Symmetry 2024, 16, 287. [Google Scholar] [CrossRef]He, Z.H.; Zhang, X.N.; Zhao, Y.F.; Yu, S.W. The Solvability of a System of Quaternion Matrix Equations Involving ϕ-Skew-Hermicity. Symmetry 2022, 14, 1273. [Google Scholar] [CrossRef]Kyrchei, I. Determinantal representations of the Moore–Penrose inverse over the quaternion skew field and corresponding Cramer’s rules. Linear Multilinear Algebra 2011, 59, 413–431. [Google Scholar] [CrossRef]Kyrchei, I. Determinantal representations of solutions to systems of quaternion matrix equations. Adv. Appl. Clifford Algebr. 2018, 28, 1–16. [Google Scholar] [CrossRef]Si, K.W.; Wang, Q.W. The General Solution to a Classical Matrix Equation AXB=C over the Dual Split Quaternion Algebra. Symmetry 2024, 16, 491. [Google Scholar] [CrossRef]Wimmer, H.K. Consistency of a pair of generalized Sylvester equations. IEEE Trans. Automat. Control 1994, 39, 1014–1016. [Google Scholar] [CrossRef]Wang, Q.W.; Li, C.K. Ranks and the least-norm of the general solution to a system of quaternion matrix equations. Linear Algebra Appl. 2009, 430, 1626–1640. [Google Scholar] [CrossRef]Wang, Q.W.; der Woude, J.W.V.; Chang, H.X. A system of real quaternion matrix equations with applications. Linear Algebra Appl. 2009, 431, 2291–2303. [Google Scholar] [CrossRef]Wang, Q.W.; Chang, H.X.; Lin, C.Y. P-(skew) symmetric common solutions to a pair of quaternion matrix equations. Appl. Math. Comput. 2008, 195, 721–732. [Google Scholar] [CrossRef]Xu, Y.F.; Wang, Q.W.; Liu, L.S.; Mehany, M.S. A constrained system of matrix equations. Comput. Appl. Math. 2022, 41, 166. [Google Scholar] [CrossRef]Yuan, S.F.; Wang, Q.W.; Zhang, X. Least-squares problem for the quaternion matrix equation AXB + CYD = E over different constrained matrices. Int. J. Comput. Math. 2013, 90, 565–576. [Google Scholar] [CrossRef]Zhang, C.Q.; Wang, Q.W.; Dmytryshyn, A.; He, Z.H. Investigation of some Sylvester-type quaternion matrix equations with multiple unknowns. Comput. Appl. Math. 2024, 43, 181. [Google Scholar] [CrossRef]Zhang, Y.; Wang, Q.W.; Xie, L.M. The Hermitian solution to a new system of commutative quaternion matrix equations. Symmetry 2024, 16, 361. [Google Scholar] [CrossRef]Xie, M.Y.; Wang, Q.W.; He, Z.H.; Saad, M.M. A system of Sylvester-type quaternion matrix equations with ten variables. Acta Math. Sin. 2022, 38, 1399–1420. [Google Scholar] [CrossRef] Figure 1. Simultaneous encryption of four color images based on system (1). Figure 1. Simultaneous encryption of four color images based on system (1). Figure 2. Simultaneous decryption of four color images based on system (1). Figure 2. Simultaneous decryption of four color images based on system (1). Figure 3. The required encrypted original four color images and key. Figure 3. The required encrypted original four color images and key. Figure 4. Images display of encrypted data. Figure 4. Images display of encrypted data. Figure 5. Decrypted color image after algorithm restoration. Figure 5. Decrypted color image after algorithm restoration. Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Share and Cite MDPI and ACS Style He, Z.-H.; Tian, J.; Yu, S.-W. A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra. Mathematics 2024, 12, 2341. https://doi.org/10.3390/math12152341 AMA Style He Z-H, Tian J, Yu S-W. A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra. Mathematics. 2024; 12(15):2341. https://doi.org/10.3390/math12152341 Chicago/Turabian Style He, Zhuo-Heng, Jie Tian, and Shao-Wen Yu. 2024. "A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra" Mathematics 12, no. 15: 2341. https://doi.org/10.3390/math12152341 APA Style He, Z. -H., Tian, J., & Yu, S. -W. (2024). A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra. Mathematics, 12(15), 2341. https://doi.org/10.3390/math12152341 Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here. Article Metrics No No Article Access Statistics For more information on the journal statistics, click here. Multiple requests from the same IP address are counted as one view.