A Review of Wrapped Distributions for Circular Data
Abstract
:1. Introduction
2. A Review of Continuous Wrapped Distributions
2.1. Wrapped Akash Distribution
2.2. Wrapped Aradhana Distribution
2.3. Wrapped Binormal Distribution
2.4. Wrapped Birnbaum–Saunders Distribution
2.5. Wrapped Cauchy Distribution
2.6. Wrapped Chi-Square Distribution
2.7. Wrapped Exponential Distribution
2.8. Wrapped Exponentiated Inverted Weibull Distribution
2.9. Wrapped Gamma Distribution
2.10. Wrapped Generalized Geometric Stable Distribution
2.11. Wrapped Generalized Gompertz Distribution
2.12. Wrapped Generalized Normal Laplace Distribution
2.13. Wrapped Generalized Skew Normal Distribution [10]
2.14. Wrapped Generalized Skew Normal Distribution [11]
2.15. Wrapped Half-Logistic Distribution
2.16. Wrapped Half-Normal Distribution
2.17. Wrapped [12]’s Skew Laplace Distribution
2.18. Wrapped Hypoexponential Distribution
2.19. Wrapped Ishita Distribution
2.20. Wrapped Laplace Distribution
2.21. Wrapped Length-Biased Weighted Exponential Distribution
2.22. Wrapped Levy Distribution
2.23. Wrapped Lindley Distribution
2.24. Wrapped Linnik Distribution
2.25. Wrapped Lomax Distribution
2.26. Wrapped Modified Lindley Distribution
2.27. Wrapped New Weibull–Pareto Distribution
2.28. Wrapped Normal Distribution
2.29. Wrapped Pareto Distribution
2.30. Wrapped Quasi-Lindley Distribution
2.31. Wrapped Rama Distribution
2.32. Wrapped Richard Distribution
2.33. Wrapped Shanker Distribution
2.34. Wrapped Skew Laplace Distribution
2.35. Wrapped Skew Normal Distribution
2.36. Wrapped Stable Distribution
2.37. Wrapped Student’s t Distribution
2.38. Wrapped Transmuted Exponential Distribution
2.39. Wrapped Two-Parameter Lindley Distribution
2.40. Wrapped Two-Sided Lindley Distribution
2.41. Wrapped Variance Gamma Distribution
2.42. Wrapped Weighted Exponential Distribution
2.43. Wrapped Weibull Distribution
2.44. Wrapped XGamma Distribution
2.45. Wrapped XLindley Distribution
3. A Review of Discrete Wrapped Distributions
3.1. Wrapped Binomial Distribution
3.2. Wrapped Discrete Cauchy Distribution
3.3. Wrapped Discrete Exponential Distribution
3.4. Wrapped Discrete Mittag–Leffler Distribution
3.5. Wrapped Discrete Skew Laplace Distribution
3.6. Wrapped Geometric Distribution
3.7. Wrapped Negative Binomial Distribution
3.8. Wrapped Poisson Distribution
3.9. Wrapped Poisson–Lindley Distribution
3.10. Wrapped Zero-Inflated Poisson Distribution
4. Data Applications
4.1. Dataset 1
4.2. Dataset 2
4.3. Dataset 3
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fisher, N.I. Statistical Analysis of Circular Data; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Fisher, N.I. Statistical Analysis of Circular Data; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Jones, M.C. On families of distributions with shape parameters. Int. Stat. Rev. 2015, 83, 175–192. [Google Scholar] [CrossRef]
- Ley, C.; Verdebout, T. Modern Directional Statistics; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Pewsey, A.; Garcia-Portugues, E. Recent advances in directional statistics. Test 2021, 30, 1–58. [Google Scholar] [CrossRef]
- Ley, C.; Babic, S.; Craens, D. Flexible models for complex data with applications. Annu. Rev. Stat. Its Appl. 2021, 8, 369–391. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1986; Volumes 1–3. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 6th ed.; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Nadarajah, S.; Zhang, Y. Wrapped: An R package for circular data. PLoS ONE 2017, 12, e0188512. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.S.; Alex, R. Wrapped generalized skew normal distribution. Stoch. Model. Appl. 2021, 25, 1–7. [Google Scholar]
- Hernandez-Sanchez, E.; Scarpa, B. A wrapped flexible generalized skew-normal model for a bimodal circular distribution of wind directions. Chil. J. Stat. 2012, 3, 129–141. [Google Scholar]
- Holla, M.S.; Bhattacharya, S.K. On a compound Gaussian distribution. Ann. Inst. Stat. Math. 1968, 20, 331–336. [Google Scholar] [CrossRef]
- Al-Khazaleh, A.; Al-Meanazel, T.R. Wrapped Akash distribution. Electron. J. Appl. Stat. Anal. 2021, 14, 305–317. [Google Scholar]
- Ganaie, R.; Rajagopalan, V.; Rather, A. Weighted Aradhana distribution: Properties and applications. J. Inf. Technol. Res. 2019, IX, 392–406. [Google Scholar]
- Ramabhadra Sarma, I.; Dattatreya Rao, A.V.; Girija, S.V.S. On characteristic functions of wrapped half logistic and binormal distributions. Int. J. Stat. Syst. 2009, 4, 33–45. [Google Scholar]
- Saraiva, M.A.; de Azevedo Cysneiros, F.J. Wrapped Birnbaum-Saunders distribution: Definition and estimation. Nexus Math. 2022, 5, 200010. [Google Scholar] [CrossRef]
- Jander, R. Die optische Richtungsorientierung derroten Waldameise (Formica rufa). Z. Fur-Vergle-Ichende Physiol. 1957, 40, 162–238. [Google Scholar] [CrossRef]
- Levy, P. L’addition des variables aléatoires définies sur une circonférence. Bull. SociéTé MathéMatique Fr. 1939, 67, 1–41. [Google Scholar] [CrossRef]
- Roy, S.; Adnan, M.A.S. Wrapped Chi-Square Distribution. Available online: https://www.researchgate.net/publication/263080292_Wrapped_Chi-square_distribution (accessed on 3 August 2024).
- Rao, J.S.; Kozubowski, T.J. A wrapped exponential circular model. Proc. AP Acad. Sci. 2001, 5, 43–56. [Google Scholar]
- Subrahmanyam, P.S.; Dattatreya Rao, A.V.; Girija, S.V.S. On wrapping of exponentiated inverted Weibull distribution. Int. J. Innov. Res. Sci. Technol. 2017, 3, 18–25. [Google Scholar]
- Coelho, C.A. The wrapped gamma distribution and wrapped sums and linear combinations of independent gamma and Laplace distributions. J. Stat. Theory Pract. 2007, 1, 1–29. [Google Scholar] [CrossRef]
- Jayakumar, K.; Sajayan, T. Wrapped generalized geometric stable distributions with an application to wind direction. Far East J. Theor. Stat. 2022, 66, 147–166. [Google Scholar]
- Cameron, M.A. The comparison of time series recorders. Technometrics 1983, 25, 9–22. [Google Scholar] [CrossRef]
- Roy, S.; Adnan, M.A.S. Wrapped generalized Gompertz distribution: An application to ornithology. J. Biom. Biostat. 2012, 3, 153–156. [Google Scholar] [CrossRef]
- Reed, W.J.; Pewsey, A. Two nested families of skew-symmetric circular distributions. Test 2009, 18, 516–528. [Google Scholar] [CrossRef]
- Bruderer, B.; Jenni, L. Migration across the alps. In Bird Migration; Springer: Berlin/Heidelberg, Germany, 1990; pp. 60–77. [Google Scholar]
- Varghese, J.; Jose, K.K. Wrapped hb-skewed laplace distribution and its application in meteorology. Biom. Biostat. Int. J. 2018, 7, 525–530. [Google Scholar]
- Adnan, M.A.S.; Roy, S. Wrapped hypo-exponential distribution. J. Stat. Manag. Syst. 2013, 16, 1–11. [Google Scholar] [CrossRef]
- Al-Meanazel, T.R.; Al-Khazaleh, A. Wrapped Ishita distribution. J. Stat. Appl. Probab. 2021, 10, 293–299. [Google Scholar]
- Jammalamadaka, S.R.; Kozubowski, T. A new family of circular models: The wrapped Laplace distributions. Adv. Appl. Stat. 2003, 3, 77–103. [Google Scholar]
- Bhattacharjee, S.; Borah, D. Wrapped length biased weighted exponential distribution. Thail. Stat. 2019, 17, 223–234. [Google Scholar]
- Smith, N.M. Reconstruction of the Tertiary Drainage Systems of the Inverell Region. Unpublished B.Sc. (Honours) Thesis, Department of Geography, University of Sydney, Sydney, Australia, 1988. [Google Scholar]
- Joshi, S.; Jose, K.K. Wrapped Lindley distribution. Commun. Stat.-Theory Methods 2018, 47, 1013–1021. [Google Scholar] [CrossRef]
- Jacob, S. Study on Circular Distributions. Ph.D. Thesis, Department of Statistics, University of Calicut, Calicut, India, 2012. [Google Scholar]
- Subba Rao, R.; Ravindranath, V.; Dattatreya Rao, A.V.; Prasad, G.; Ravi Kishore, P. Wrapped Lomax distribution: A new circular probability model. Int. J. Eng. Technol. 2018, 7, 150–152. [Google Scholar] [CrossRef]
- Chesneau, C.; Tomy, L.; Jose, M. Wrapped modified Lindley distribution. J. Stat. Manag. Syst. 2021, 24, 1025–1040. [Google Scholar] [CrossRef]
- Subrahmanyam, P.S.; Dattatreya Rao, A.V.; Girija, S.V.S. On wrapping of new Weibull Pareto distribution. Int. J. Adv. Res. Rev. 2017, 2, 10–20. [Google Scholar]
- Mardia, K.V. Statistics of Directional Data. In Probability and Mathematical Statistics; Academic Press: London, UK, 1972. [Google Scholar]
- Jammalamadaka, S.R.; Kozubowski, T.J. A general approach for obtaining wrapped circular distributions via mixtures. Sankhyā A 2017, 79, 133–157. [Google Scholar] [CrossRef]
- Bhattacharjee, S. Exploration of some distributional properties, parameter estimates and applications of the wrapped quasi Lindley distribution. J. Math. Comput. Sci. 2020, 10, 2390–2407. [Google Scholar]
- Bell, W.; Nadarajah, S. The wrapped Rama distribution. Preprint 2023. [Google Scholar]
- Demirelli, A.E.; Gürcan, M. New wrapped distribution via Richard link function. AIP Conf. Proc. 2017, 1863, 350002. [Google Scholar]
- Al-Meanazel, T.R.; Al-Khazaleh, A. Wrapped Shanker distribution. Ital. J. Pure Appl. Math. 2021, 46, 184–194. [Google Scholar]
- Yilmaz, A. Wrapped flexible skew Laplace distribution. J. Turk. Stat. Assoc. 2018, 11, 53–64. [Google Scholar]
- Fernandez-Duran, J.J. Circular distributions based on nonnegative trigonometric sums. Biometrics 2004, 60, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Pewsey, A. The wrapped skew-normal distribution on the circle. Commun. Stat.-Theory Methods 2000, 29, 2459–2472. [Google Scholar] [CrossRef]
- Pewsey, A. The wrapped stable family of distributions as a flexible model for circular data. Comput. Stat. Data Anal. 2008, 52, 1516–1523. [Google Scholar] [CrossRef]
- Pewsey, A.; Lewis, T.; Jones, M. The wrapped t family of circular distributions. Aust. N. Z. J. Stat. 2007, 49, 79–91. [Google Scholar]
- Yilmaz, A.; Bicer, C. A new wrapped exponential distribution. Math. Sci. 2018, 12, 285–293. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Ahmed, I.; Das, K.K. Wrapped two-parameter Lindley distribution for modelling circular data. Thail. Stat. 2020, 19, 81–94. [Google Scholar]
- Mardia, K.V.; Jupp, P.E. Directional Statistics; John Wiley and Sons: New York, NY, USA, 2000. [Google Scholar]
- Bicer, C.; Yilmaz, A. Wrapped two sided Lindley distribution. In Research and Reviews in Science and Mathematics; Iyit, N., Dogan, H.H., Akgul, H., Eds.; Gece Academy Publishing: Ankara, Turkey, 2022; pp. 1–13. [Google Scholar]
- Adnan, M.A.S.; Roy, S. Wrapped variance gamma distribution with an application to wind direction. J. Environ. Stat. 2014, 6, 1–10. [Google Scholar]
- Roy, S.; Adnan, M.A.S. Wrapped weighted exponential distributions. Stat. Probab. Lett. 2012, 82, 77–83. [Google Scholar] [CrossRef]
- Al-Mofleh, H.; Sen, S. The wrapped Xgamma distribution for modeling circular data appearing in geological context. arXiv 2019, arXiv:1903.00177. [Google Scholar]
- Zinhom, E.; Nassar, M.M.; Radwan, S.S.; Elmasry, A. The wrapped XLindley distribution. Environ. Ecol. Stat. 2023, 30, 669–686. [Google Scholar] [CrossRef]
- Bahnsen, A.C.; Stojanovic, A.; Aouada, D.; Ottersten, B. Improving credit card fraud detection with calibrated probabilities. In Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, PA, USA, 24–26 April 2014; pp. 677–685. [Google Scholar]
- Girija, S.V.S.; Dattatreya Rao, A.V.; Srihari, V.L.N. On wrapped binomial model characteristics. Math. Stat. 2014, 2, 231–234. [Google Scholar] [CrossRef]
- Girija, S.V.S.; Srihari, G.V.L.N.; Srinivas, R. On discrete wrapped Cauchy model. Math. Theory Model. 2019, 9, 15–23. [Google Scholar]
- Srinivas, R.; Srihari, G.V.L.N.; Girija, S.V.S. On construction of discrete wrapped Lindley distribution. i-Manag. J. Math. 2008, 7, 10–19. [Google Scholar] [CrossRef]
- Jacob, S.; Jayakumar, K. Wrapped geometric distribution: A new probability model for circular data. J. Stat. Theory Appl. 2013, 12, 348–355. [Google Scholar] [CrossRef]
- Jayakumar, K.; Jacob, S. Wrapped skew Laplace distribution on integers: A new probability model for circular data. Open J. Stat. 2012, 2, 106–114. [Google Scholar] [CrossRef]
- Srihari, G.V.L.N.; Girija, S.V.S.; Rao, A.V.D. On wrapped negative binomial model. Int. J. Math. Arch. 2018, 9, 148–153. [Google Scholar]
- Chesneau, C.; Bakouch, H.S.; Hussain, T. Modeling and applications to circular data with a wrapped Poisson-Lindley model. J. Math. Study 2022, 55, 139–157. [Google Scholar] [CrossRef]
- Fisher, N.I.; Lewis, T.; Embleton, B.J.J. Statistical Analysis of Spherical Data; Cambridge University Press: New York, NY, USA, 1987. [Google Scholar]
- Thavaneswaran, A.; Mandal, S.; Pathmanathan, D. Estimation for wrapped zero inflated Poisson and wrapped Poisson distributions. Int. J. Stat. Probab. 2016, 5, 1–8. [Google Scholar] [CrossRef]
Distribution | AIC | BIC | |
---|---|---|---|
Wrapped exponential | −468.6 | 939.2 | 942.8 |
Wrapped gamma | −436.9 | 877.8 | 884.9 |
Wrapped Weibull | −441.0 | 886.1 | 893.1 |
Wrapped Pareto | −446.1 | 896.2 | 903.3 |
Wrapped normal | −438.5 | 881.1 | 888.1 |
Wrapped Cauchy | −443.6 | 891.2 | 898.2 |
Wrapped Laplace | −443.4 | 890.8 | 897.9 |
Wrapped t | −438.5 | 883.1 | 893.7 |
Distribution | AIC | BIC | |
---|---|---|---|
Wrapped exponential | −122.3 | 246.7 | 249.0 |
Wrapped gamma | −119.6 | 243.2 | 247.9 |
Wrapped Weibull | −120.6 | 245.3 | 249.9 |
Wrapped Pareto | −135.9 | 275.8 | 280.5 |
Wrapped normal | −125.1 | 254.1 | 258.8 |
Wrapped Cauchy | −113.9 | 231.9 | 236.6 |
Wrapped Laplace | −116.7 | 237.3 | 242.0 |
Wrapped t | −113.7 | 233.5 | 240.5 |
Distribution | AIC | BIC | |
---|---|---|---|
Wrapped exponential | −243.9 | 489.8 | 492.6 |
Wrapped gamma | −243.9 | 491.8 | 497.5 |
Wrapped Weibull | −243.9 | 491.8 | 497.5 |
Wrapped Pareto | −247.6 | 499.2 | 505.0 |
Wrapped normal | −242.4 | 488.7 | 494.5 |
Wrapped Cauchy | −242.7 | 489.5 | 495.3 |
Wrapped Laplace | −243.9 | 491.9 | 497.6 |
Wrapped t | −242.4 | 490.7 | 499.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bell, W.; Nadarajah, S. A Review of Wrapped Distributions for Circular Data. Mathematics 2024, 12, 2440. https://doi.org/10.3390/math12162440
Bell W, Nadarajah S. A Review of Wrapped Distributions for Circular Data. Mathematics. 2024; 12(16):2440. https://doi.org/10.3390/math12162440
Chicago/Turabian StyleBell, William, and Saralees Nadarajah. 2024. "A Review of Wrapped Distributions for Circular Data" Mathematics 12, no. 16: 2440. https://doi.org/10.3390/math12162440
APA StyleBell, W., & Nadarajah, S. (2024). A Review of Wrapped Distributions for Circular Data. Mathematics, 12(16), 2440. https://doi.org/10.3390/math12162440