Majorization Problem for q-General Family of Functions with Bounded Radius Rotations
Abstract
:1. Introduction and Preliminaries
- (a)
- with ,
- (b)
- is starlike with respect to ,
- (c)
- is symmetric about the real axis,
- (d)
- .
S/N | ||
(i) | [3] | |
(ii) | [4] | |
(iii) | [5] | |
(iv) | [6] | |
(v) | [7] | |
(vi) | [8,9] . |
- (i)
- ;
- (ii)
- , for .
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shanmugam, T.N. Convolution and differential subordination. Int. J. Math. Math. Sci. 1989, 12, 333–340. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis; International Press: St. Paul, MN, USA, 1992; pp. 157–169. [Google Scholar]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly Starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Masih, V.S.; Kanas, S. Subclasses of starlike and convex functions associated with the limaçon domain. Symmetry 2020, 12, 942. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokół, J. Some properties related to a certain class of starlike functions. Comptes Rendus Math. 2015, 353, 973–978. [Google Scholar] [CrossRef]
- Janowski, W. Some extremal problems for certain families of analytic functions I. Ann. Pol. Math. 1973, 3, 297–326. [Google Scholar] [CrossRef]
- Robertson, M.I. On the theory of univalent functions. Ann. Math. 1936, 37, 374–408. [Google Scholar] [CrossRef]
- Jabeen, K.; Saliu, A. A Study of q-Analogue of the Analytic Characterization of limaçon Functions. Miskolc Math. Notes 2023, 24, 179–195. [Google Scholar] [CrossRef]
- Saliu, A.; Jabeen, K.; Al-Shbeil, I.; Aloraini, N.; Malik, S.N. On q-limaçon functions. Symmetry 2022, 14, 2422. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. Int. J. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Saliu, A.; Noor, K.I.; Hussain, S.; Darus, M. On quantum differential subordination related with certain family of analytic functions. J. Math. 2020, 2020, 6675732. [Google Scholar] [CrossRef]
- Mohammed, N.H.; Adegani, E.A. Majorization problems for class of q-starlike functions. Afr. Mat. 2023, 34, 66. [Google Scholar] [CrossRef]
- Loewner, K. Untersuchungen über die Verzerrung bei konformen Abbildungen des Einheitskreises |z|. Verh. Sächs. Ges. Wiss. Leipzig 1917, 69, 89–106. [Google Scholar]
- Paatero, V. Über die konforme Abbildung von Gebieten deren Ränder von beschränkter Drehung sind. Ann. Acad. Sci. Fenn. Ser. A 1931, 33, 1–79. [Google Scholar]
- Paatero, V. Über Gebiete von beschrÄnkter Randdrehung. Ann. Acad. Sci. Fenn. A 1933, 37, 20. [Google Scholar]
- Pinchuk, B. Functions of bounded boundary rotation. Isr. J. Math. 1971, 10, 6–16. [Google Scholar] [CrossRef]
- Afis, S.; Noor, K.I. On subclasses of functions with boundary and radius rotations associated with crescent domains. Bull. Korean Math. Soc. 2020, 57, 1529–1539. [Google Scholar] [CrossRef]
- Jabeen, K.; Saliu, A. Properties of functions with bounded rotation associated with limaçon class. Commun. Korean Math. Soc. 2022, 37, 995–1007. [Google Scholar] [CrossRef]
- Noor, K.I.; Malik, B.; Mustafa, S. A survey on functions of bounded boundary and bounded radius rotation. Appl. Math. E-Notes 2012, 12, 136–152. [Google Scholar]
- MacGregor, T.H. Majorization by univalent functions. Duke Math. J. 1967, 34, 95–102. [Google Scholar] [CrossRef]
- Cho, N.E.; Oroujy, Z.; Adegani, E.A.; Ebadian, A. Majorization and coefficient problems for a general class of starlike functions. Symmetry 2020, 12, 476. [Google Scholar] [CrossRef]
- Gangania, K.; Kumar, S.S. On Certain Generalizations of S*(ψ). Comput. Methods Funct. Theory 2022, 22, 215–227. [Google Scholar] [CrossRef]
- Adegani, E.A.; Alimohammadi, D.; Bulboacă, T.; Cho, N.E. Majorization problems for a class of analytic functions defined by subordination. J. Math. Inequal. 2022, 16, 1259–1274. [Google Scholar] [CrossRef]
- Jabeen, K.; Saliu, A.; Hussain, S. Majorization Problem for General Family of Functions with Bounded Radius Rotations. Arab. J. Basic Appl. Sci. 2024, 31, 388–392. [Google Scholar] [CrossRef]
- Noor, K.I.; Riaz, S. Generalized q-starlike functions. Stud. Sci. Math. Hung. 2017, 54, 509–522. [Google Scholar] [CrossRef]
- Khan, N.; Shafiq, M.; Darus, M.; Khan, B.; Ahmad, Q.Z. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with lemniscate of Bernoulli. J. Math. Inequal. 2020, 14, 51–63. [Google Scholar] [CrossRef]
- Nehari, Z. Conformal Mapping; McGraw-Hill: New York, NY, USA, 1952; p. 164. [Google Scholar]
- Adegani, E.A.; Mohammed, N.H.; Bulboacă, T. Majorizations for subclasses of analytic functions connected with the q-difference operator. Rend. Circ. Mat. Palermo II Ser. 2024, 1–18. [Google Scholar] [CrossRef]
- Vijaya, K.; Murugusundaramoorthy, G.; Cho, N.E. Majorization problems for uniformly starlike functions based on Ruscheweyh q-differential operator defined with exponential function. Nonlinear Funct. Anal. Appl. 2021, 26, 71–81. [Google Scholar] [CrossRef]
- Kanas, S.; Sugawa, T. On conformal representations of the interior of an ellipse. Ann. Fenn. Math. 2006, 31, 329–348. [Google Scholar]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Mat. 2015, 27, 923–939. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabeen, K.; Saliu, A.; Gong, J.; Hussain, S. Majorization Problem for q-General Family of Functions with Bounded Radius Rotations. Mathematics 2024, 12, 2605. https://doi.org/10.3390/math12172605
Jabeen K, Saliu A, Gong J, Hussain S. Majorization Problem for q-General Family of Functions with Bounded Radius Rotations. Mathematics. 2024; 12(17):2605. https://doi.org/10.3390/math12172605
Chicago/Turabian StyleJabeen, Kanwal, Afis Saliu, Jianhua Gong, and Saqib Hussain. 2024. "Majorization Problem for q-General Family of Functions with Bounded Radius Rotations" Mathematics 12, no. 17: 2605. https://doi.org/10.3390/math12172605
APA StyleJabeen, K., Saliu, A., Gong, J., & Hussain, S. (2024). Majorization Problem for q-General Family of Functions with Bounded Radius Rotations. Mathematics, 12(17), 2605. https://doi.org/10.3390/math12172605