Enhanced Scattering by Wearable Objects in Wireless Power Transfer Links: Case Studies
Abstract
:1. Introduction
2. Geometry of the Scattering Problem and Theoretical Analysis
- : plane-wave incident field;
- : plane-wave reflected field, excited by reflection of the incident field onto the layered half-space ;
- : scattered field by the cylinders;
- : scattered-reflected field, excited by reflection of the scattered field onto the layered half-space ;
- : plane-wave transmitted field, excited by the transmission of the incident field into layered media;
- : scattered-transmitted, excited by transmission of the scattered field into layered media.
3. Numerical Results
3.1. Dielectric Scatterers
3.1.1. Case A: Layout with an Implanted Antenna
3.1.2. Case B: Layout with Tumor Inclusion
3.2. Conducting Scatterers
3.2.1. Case C: Layout with Conducting Cylinders and a Matching Layer
3.2.2. Case D: Layout with Conducting Cylinders without a Matching Layer
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Genovesi, S.; Butterworth, I.R.; Serrallès, J.E.C.; Daniel, L. Metasurface matching layers for enhanced electric field penetration into the human body. IEEE Access 2020, 8, 197745–197756. [Google Scholar] [CrossRef]
- Gasperini, D.; Costa, F.; Daniel, L.; Manara, G.; Genovesi, S. Matching layer design for far-field penetration into a multilayered lossy media. IEEE Antennas Propag. Mag. 2022, 64, 86–96. [Google Scholar] [CrossRef]
- Kiourti, A.; Abbosh, A.M.; Athanasiou, M.; Björninen, T.; Eid, A.; Furse, C.; Ito, K.; Lazzi, G.; Manoufali, M.; Pastorino, M.; et al. Next-generation healthcare: Enabling technologies for emerging biolectromagnetics applications. IEEE Open J. Antennas Propag. 2022, 3, 363–390. [Google Scholar] [CrossRef]
- Basir, A.; Cho, Y.; Shah, I.A.; Hayat, S.; Ullah, S.; Zada, M.; Shah, S.A.A.; Yoo, H. Implantable and Ingestible Antenna Systems: From imagination to realization [Bioelectromagnetics]. IEEE Antennas Propag. Mag. 2023, 65, 70–83. [Google Scholar] [CrossRef]
- Costanzo, A.; Apollonio, F.; Baccarelli, P.; Barbiroli, M.; Benassi, F.; Bozzi, M.; Burghignoli, P.; Campi, T.; Cruciani, S.; Di Meo, S.; et al. Wireless power transfer for wearable and implantable devices: A review focusing on the WPT4WID research project of national relevance. In Proceedings of the 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Rome, Italy, 28 August–4 September 2021. [Google Scholar]
- Chandra, R.; Zhou, H.; Balasingham, I.; Narayanan, R.M. On the opportunities and challenges in microwave medical sensing and imaging. IEEE Trans. Biomed. Eng. 2015, 62, 1667–1682. [Google Scholar] [CrossRef] [PubMed]
- Selvi, C.; Subramaninan, R.; Yogeswari, M.; Subhasini, B.; Priya, G. Role of wireless wearable technologies in recent advancements. In Proceedings of the 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 4–6 February 2021; pp. 1167–1171. [Google Scholar]
- Paolucci, T.; Pezzi, L.; Centra, A.M.; Giannandrea, N.; Bellomo, R.G.; Saggini, R. Electromagnetic field therapy: A rehabilitative perspective in the management of musculoskeletal pain—A systematic review. J. Pain Res. 2020, 13, 1385–1400. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Gong, T.; Ye, N.; Wang, R.; Dou, Y. Private and secured medical data transmission and analysis for wireless sensing healthcare system. IEEE Trans. Ind. Inform. 2017, 13, 1227–1237. [Google Scholar] [CrossRef]
- Cameron, T.; Loeb, G.; Peck, R.; Schulman, J.; Strojnik, P.; Troyk, P. Micromodular implants to provide electrical stimulation of paralyzed muscles and limbs. IEEE Trans. Biomed. Eng. 1997, 44, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Valagiannopoulos, C.A.; Tsitsas, N.L.; Sihvola, A.H. “Unlocking” the ground: Increasing the detectability of buried objects by depositing passive superstrate. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3697–3709. [Google Scholar] [CrossRef]
- Tognolatti, L.; Ponti, C.; Schettini, G. Use of a set of wearable dielectric scatterers to improve electromagnetic transmission for a body power transfer system. IEEE J. Electromagn. RF Microwaves Med. Biol. 2022, 6, 280–286. [Google Scholar] [CrossRef]
- Ponti, C.; Tognolatti, L.; Schettini, G. Electromagnetic scattering by metallic targets above a biological medium with spectral-domain approach. IEEE Open J. Antennas Propag. 2021, 2, 230–237. [Google Scholar] [CrossRef]
- Tognolatti, L.; Ponti, C.; Schettini, G. A Practical Solution to Enhance Electromagnetic Transmission to an Implantable/Wearable Antenna. In Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27 March–1 April 2022; pp. 1–3. [Google Scholar]
- Borghi, R.; Schettini, G.; Santarsiero, M. Numerical study of the reflection of cylindrical waves of arbitrary order by a generic planar interface. J. Electromagn. Waves Appl. 1999, 13, 27–50. [Google Scholar] [CrossRef]
- Borghi, R.; Gori, F.; Santarsiero, M.; Frezza, F.; Schettini, G. Plane-wave scattering by a perfectly conducting cylinder near a plane surface: Cylindrical-wave approach. J. Opt. Soc. Am. A 1996, 13, 483–493. [Google Scholar] [CrossRef]
- Elsherbeni, A.Z. A comparative study of two-dimensional multiple scattering techniques. Radio Sci. 1994, 29, 1023–1033. [Google Scholar] [CrossRef]
- Shampine, L.F. Vectorized adaptive quadrature in MATLAB. J. Comput. Appl. Math. 2008, 211, 131–140. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: I. literature survey. Phys. Med. Biol. 1996, 41, 2231. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996, 41, 2271. [Google Scholar] [CrossRef]
- Lazebnik, M.; Popovic, D.; McCartney, L.; Watkins, C.B.; Lindstrom, M.J.; Harter, J.; Sewall, S.; Ogilvie, T.; Magliocco, A.; Breslin, T.M. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys. Med. Biol. 2007, 52, 6093. [Google Scholar] [CrossRef] [PubMed]
Layers | ||
---|---|---|
skin | 38 | 0.28 |
fat | 5.28 | 0.14 |
muscle | 52.79 | 0.24 |
antenna’s substrate | 11.7 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tognolatti, L.; Ponti, C.; Schettini, G. Enhanced Scattering by Wearable Objects in Wireless Power Transfer Links: Case Studies. Mathematics 2024, 12, 2606. https://doi.org/10.3390/math12172606
Tognolatti L, Ponti C, Schettini G. Enhanced Scattering by Wearable Objects in Wireless Power Transfer Links: Case Studies. Mathematics. 2024; 12(17):2606. https://doi.org/10.3390/math12172606
Chicago/Turabian StyleTognolatti, Ludovica, Cristina Ponti, and Giuseppe Schettini. 2024. "Enhanced Scattering by Wearable Objects in Wireless Power Transfer Links: Case Studies" Mathematics 12, no. 17: 2606. https://doi.org/10.3390/math12172606
APA StyleTognolatti, L., Ponti, C., & Schettini, G. (2024). Enhanced Scattering by Wearable Objects in Wireless Power Transfer Links: Case Studies. Mathematics, 12(17), 2606. https://doi.org/10.3390/math12172606