Surrounding Rock Squeezing Classification in Underground Engineering Using a Hybrid Paradigm of Generative Artificial Intelligence and Deep Ensemble Learning
Abstract
:1. Introduction
2. Proposed Hybrid Modeling Paradigm
2.1. Conditional Tabular Generative Adversarial Network
2.2. Deep Random Forest
2.3. Benchmark Comparison
2.4. Evaluation Metric
3. Data Collection and Augmentation
3.1. Data Collection
3.2. Data Augmentation
4. Results and Discussion
4.1. Prediction Results of CTGAN-DRF Model
4.2. Comparison Analysis with Benchmark Models
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, S.T.; Zhang, Z.X.; Luo, X.D.; Niu, S.S.; Jiang, N.; Yao, Y.K. Developing a hybrid CEEMDAN-PE-HE-SWT method to remove the noise of measured carbon dioxide blast wave. Measurement 2023, 223, 113797. [Google Scholar] [CrossRef]
- Yin, X.; Cheng, S.; Yu, H.; Pan, Y.; Liu, Q.; Huang, X.; Gao, F.; Jing, G. Probabilistic assessment of rockburst risk in TBM-excavated tunnels with multi-source data fusion. Tunn. Undergr. Space Technol. 2024, 152, 105915. [Google Scholar] [CrossRef]
- Zhu, H.H.; Yan, J.X.; Liang, W.H. Challenges and Development Prospects of Ultra-Long and Ultra-Deep Mountain Tunnels. Engineering 2019, 5, 384–392. [Google Scholar] [CrossRef]
- Gong, Q.M.; Yin, L.J.; Ma, H.S.; Zhao, J. TBM tunnelling under adverse geological conditions: An overview. Tunn. Undergr. Space Technol. 2016, 57, 4–17. [Google Scholar] [CrossRef]
- Yin, X.; Liu, Q.; Huang, X.; Pan, Y. Perception model of surrounding rock geological conditions based on TBM operational big data and combined unsupervised-supervised learning. Tunn. Undergr. Space Technol. 2022, 120, 104285. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Q.; Zhang, X.; Li, M.; Qi, G. How Do We Analyze the Accident Causation of Shield Construction of Water Conveyance Tunnels? A Method Based on the N-K Model and Complex Network. Mathematics 2024, 12, 3222. [Google Scholar] [CrossRef]
- Fathipour-Azar, H. Multi-level Machine Learning-Driven Tunnel Squeezing Prediction: Review and New Insights. Arch. Comput. Methods Eng. 2022, 29, 5493–5509. [Google Scholar] [CrossRef]
- Huang, X.; Yin, X.; Liu, B.; Ding, Z.W.; Zhang, C.F.; Jing, B.Y.; Guo, X.S. A Gray Wolf Optimization-Based Improved Probabilistic Neural Network Algorithm for Surrounding Rock Squeezing Classification in Tunnel Engineering. Front. Earth Sci. 2022, 10, 857463. [Google Scholar] [CrossRef]
- Ramoni, M.; Anagnostou, G. Tunnel boring machines under squeezing conditions. Tunn. Undergr. Space Technol. 2010, 25, 139–157. [Google Scholar] [CrossRef]
- Arora, K.; Gutierrez, M.; Hedayat, A.; Xia, C.C. Tunnels in squeezing clay-rich rocks. Undergr. Space 2021, 6, 432–445. [Google Scholar] [CrossRef]
- Aydan, O.; Akagi, T.; Kawamoto, T. The squeezing potential of rock around tunnels: Theory and prediction with examples taken from Japan. Rock Mech. Rock Eng. 1996, 29, 125–143. [Google Scholar] [CrossRef]
- Barla, G. Tunnelling under squeezing rock conditions. Eurosummer-Sch. Tunn. Mech. Innsbr. 2001, 169–268. [Google Scholar]
- Farhadian, H.; Nikvar-Hassani, A. Development of a new empirical method for Tunnel Squeezing Classification (TSC). Q. J. Eng. Geol. Hydrogeol. 2020, 53, 655–660. [Google Scholar] [CrossRef]
- Singh, B.; Jethwa, J.L.; Dube, A.K.; Singh, B. Correlation Between Observed Support Pressure and Rock Mass Quality. Tunn. Undergr. Space Technol. 1992, 7, 59–74. [Google Scholar] [CrossRef]
- Jimenez, R.; Recio, D. A linear classifier for probabilistic prediction of squeezing conditions in Himalayan tunnels. Eng. Geol. 2011, 121, 101–109. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, W.Z.; Tian, H.M.; Tan, X.J.; Li, Z.; Lei, J. Parameter design of yielding layers for squeezing tunnels. Tunn. Undergr. Space Technol. 2021, 108, 103694. [Google Scholar] [CrossRef]
- Cao, C.Y.; Shi, C.H.; Lei, M.F.; Yang, W.C.; Liu, J.W. Squeezing failure of tunnels: A case study. Tunn. Undergr. Space Technol. 2018, 77, 188–203. [Google Scholar] [CrossRef]
- Arora, K.; Gutierrez, M.; Hedayat, A. New Physical Model to Study Tunnels in Squeezing Clay-Rich Rocks. Geotech. Test. J. 2021, 44, 1055–1078. [Google Scholar] [CrossRef]
- Yin, X.; Liu, Q.; Lei, J.; Pan, Y.; Huang, X.; Lei, Y. Hybrid deep learning-based identification of microseismic events in TBM tunnelling. Measurement 2024, 238, 115381. [Google Scholar] [CrossRef]
- Zhou, S.T.; Lei, Y.; Zhang, Z.X.; Luo, X.D.; Aladejare, A.; Ozoji, T. Estimating dynamic compressive strength of rock subjected to freeze-thaw weathering by data-driven models and non-destructive rock properties. Nondestruct. Test. Eval. 2024. [Google Scholar] [CrossRef]
- Liu, Q.S.; Lei, Y.M.; Yin, X.; Lei, J.S.; Pan, Y.C.; Sun, L. Development and application of a novel probabilistic back-analysis framework for geotechnical parameters in shield tunneling based on the surrogate model and Bayesian theory. ACTA Geotech. 2023, 18, 4899–4921. [Google Scholar] [CrossRef]
- Zhang, J.F.; Li, D.; Wang, Y.H. Predicting tunnel squeezing using a hybrid classifier ensemble with incomplete data. Bull. Eng. Geol. Environ. 2020, 79, 3245–3256. [Google Scholar] [CrossRef]
- Bo, Y.; Huang, X.; Pan, Y.C.; Feng, Y.F.; Deng, P.H.; Gao, F.; Liu, P.; Liu, Q.S. Robust model for tunnel squeezing using Bayesian optimized classifiers with partially missing database. Undergr. Space 2023, 10, 91–117. [Google Scholar] [CrossRef]
- Feng, X.D.; Jimenez, R. Predicting tunnel squeezing with incomplete data using Bayesian networks. Eng. Geol. 2015, 195, 214–224. [Google Scholar] [CrossRef]
- Azizi, F.; Koopialipoor, M.; Khoshrou, H. Estimation of Rock Mass Squeezing Potential in Tunnel Route (Case Study: Kerman Water Conveyance Tunnel). Geotech. Geol. Eng. 2019, 37, 1671–1685. [Google Scholar] [CrossRef]
- Shafiei, A.; Parsaei, H.; Dusseault, M.B. Rock Squeezing Prediction By a Support Vector Machine Classifier. In Proceedings of the 46th U.S. Rock Mechanics/Geomechanics Symposium, Chicago, IL, USA, 24–27 June 2012. [Google Scholar]
- Sun, Y.; Feng, X.D.; Yang, L.Q. Predicting Tunnel Squeezing Using Multiclass Support Vector Machines. Adv. Civ. Eng. 2018, 2018, 4543984. [Google Scholar] [CrossRef]
- Huang, Z.; Liao, M.X.; Zhang, H.L.; Zhang, J.B.; Ma, S.K.; Zhu, Q.X. Predicting Tunnel Squeezing Using the SVM-BP Combination Model. Geotech. Geol. Eng. 2022, 40, 1387–1405. [Google Scholar] [CrossRef]
- Zhou, J.; Zhu, S.L.; Qiu, Y.G.; Armaghani, D.; Zhou, A.N.; Yong, W.X. Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm. Acta Geotech. 2022, 17, 1343–1366. [Google Scholar] [CrossRef]
- Ghasemi, E.; Gholizadeh, H. Prediction of Squeezing Potential in Tunneling Projects Using Data Mining-Based Techniques. Geotech. Geol. Eng. 2019, 37, 1523–1532. [Google Scholar] [CrossRef]
- Chen, Y.; Li, T.B.; Zeng, P.; Ma, J.J.; Patelli, E.; Edwards, B. Dynamic and Probabilistic Multi-class Prediction of Tunnel Squeezing Intensity. Rock Mech. Rock Eng. 2020, 53, 3521–3542. [Google Scholar] [CrossRef]
- He, B.; Armaghani, D.J.; Lai, S.H.; Samui, P.; Mohamad, E.T. Applying data augmentation technique on blast-induced overbreak prediction: Resolving the problem of data shortage and data imbalance. Expert Syst. Appl. 2024, 237, 121616. [Google Scholar] [CrossRef]
- Du, W.; Zhu, P.; Pu, Z.; Gong, X.; Li, C. Data augmentation on fault diagnosis of wind turbine gearboxes with an enhanced flow-based generative model. Measurement 2024, 225, 113985. [Google Scholar] [CrossRef]
- Liang, M.; Peng, H.; Xie, W.W.; Yu, B.; Han, Y.; Zhu, M.L.; Song, G.X.; Huang, N.H. Dynamic multiclass prediction of tunnel squeezing intensity with stacking model and Markov process. Tunn. Undergr. Space Technol. 2024, 146, 105632. [Google Scholar] [CrossRef]
- Ma, H.A.; Geng, M.Y.; Wang, F.; Zheng, W.Y.; Ai, Y.B.; Zhang, W.D. Data Augmentation of a Corrosion Dataset for Defect Growth Prediction of Pipelines Using Conditional Tabular Generative Adversarial Networks. Materials 2024, 17, 1142. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.B.; Yi, J.S.; Lee, D.H. CTGAN-Based Model to Mitigate Data Scarcity for Cost Estimation in Green Building Projects. J. Manag. Eng. 2024, 40, 04024024. [Google Scholar] [CrossRef]
- Talekar, B.; Agrawal, S. A Detailed Review on Decision Tree and Random Forest. Biosci. Biotechnol. Res. Commun. 2020, 13, 245–248. [Google Scholar] [CrossRef]
- Loh, W.Y. Fifty Years of Classification and Regression Trees. Int. Stat. Rev. 2014, 82, 329–348. [Google Scholar] [CrossRef]
- Guehairia, O.; Ouamane, A.; Dornaika, F.; Taleb-Ahmed, A. Feature fusion via Deep Random Forest for facial age estimation. Neur. Net. 2020, 130, 238–252. [Google Scholar] [CrossRef]
- Tong, F.; Zhang, Y. Exploiting Spectral-Spatial Information Using Deep Random Forest for Hyperspectral Imagery Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5509505. [Google Scholar] [CrossRef]
- Wythoff, B.J. Backpropagation neural networks: A tutorial. Chemom. Intell. Lab. Syst. 1993, 18, 115–155. [Google Scholar] [CrossRef]
- Pisner, D.A.; Schnyer, D.M. Chapter 6–Support vector machine. In Machine Learning; Mechelli, A., Vieira, S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 101–121. [Google Scholar]
- Kapoor, A.; Grauman, K.; Urtasun, R.; Darrell, T. Gaussian Processes for Object Categorization. Int. J. Comput. Vis. 2010, 88, 169–188. [Google Scholar] [CrossRef]
- Xu, S. Bayesian Naïve Bayes classifiers to text classification. J. Inf. Sci. 2016, 44, 48–59. [Google Scholar] [CrossRef]
- Kramer, O. (Ed.) K-Nearest Neighbors. In Dimensionality Reduction with Unsupervised Nearest Neighbors; Springer: Berlin/Heidelberg, Germany, 2013; pp. 13–23. [Google Scholar]
- Jiao, Y.; Ou, G.; Wang, H.; Zhang, G.; Zou, J.; Tan, F. Prediction of Tunnel Squeezing Based on Evidence Theory. J. Appl. Basic Eng. Sci. 2021, 29, 1156–1170. [Google Scholar]
- Hoek, E.; Marinos, P. Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunn. Tunn. Int. 2000, 32, 45–51. [Google Scholar]
Squeezing Grade of the Surrounding Rock | Relative Strain of the Surrounding Rock |
---|---|
No | <1.0% |
Mild | 1.0%~2.5% |
Moderate | 2.5%~5.0% |
Strong | 5.0%~10.0% |
Extremely strong | >10.0% |
Squeezing Intensity | Sample Size | |
---|---|---|
Before Data Augmentation | After Data Augmentation | |
No | 20 | 200 |
Mild | 29 | 200 |
Moderate | 25 | 200 |
Strong | 17 | 200 |
Extremely strong | 6 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.; Yin, X.; Gao, F.; Pan, Y. Surrounding Rock Squeezing Classification in Underground Engineering Using a Hybrid Paradigm of Generative Artificial Intelligence and Deep Ensemble Learning. Mathematics 2024, 12, 3832. https://doi.org/10.3390/math12233832
Cheng S, Yin X, Gao F, Pan Y. Surrounding Rock Squeezing Classification in Underground Engineering Using a Hybrid Paradigm of Generative Artificial Intelligence and Deep Ensemble Learning. Mathematics. 2024; 12(23):3832. https://doi.org/10.3390/math12233832
Chicago/Turabian StyleCheng, Shouye, Xin Yin, Feng Gao, and Yucong Pan. 2024. "Surrounding Rock Squeezing Classification in Underground Engineering Using a Hybrid Paradigm of Generative Artificial Intelligence and Deep Ensemble Learning" Mathematics 12, no. 23: 3832. https://doi.org/10.3390/math12233832
APA StyleCheng, S., Yin, X., Gao, F., & Pan, Y. (2024). Surrounding Rock Squeezing Classification in Underground Engineering Using a Hybrid Paradigm of Generative Artificial Intelligence and Deep Ensemble Learning. Mathematics, 12(23), 3832. https://doi.org/10.3390/math12233832