Three-Dimensional Stratigraphic Structure and Property Collaborative Modeling in Urban Engineering Construction
Abstract
:1. Introduction
2. Methods and Materials
2.1. Multivariate Radial Basis Function (MRBF)
2.1.1. RBF Interpolation
2.1.2. MRBF Interpolation
2.2. Verification Experiments
2.2.1. Experiment Models
2.2.2. Interpolation Results
2.2.3. Influence of Number of Sampling Points
2.2.4. Influence of Distribution of Sampling Points
2.3. Dataset
3. Results
3.1. Stratigraphic Structure Models
3.2. Stratigraphic Property Models
3.3. Pile Foundation Bearing Capacities
4. Discussions
5. Conclusions
- (1)
- The proposed MRBF method effectively utilizes ancillary variable for multivariate interpolation, enabling relatively accurate interpolation with a few property sampling points. Experimental results from a 2D model indicate its high accuracy. The MRBF method outperforms several commonly used methods, i.e., IDW, DSI, and kriging, particularly when the number of sampling points is limited. Additionally, the MRBF method’s performance remains stable regardless of the uniformity of sampling point distribution, making it robust for sparse sampling.
- (2)
- A geological structural model was constructed based on profiles. The bearing capacity of each pile foundation was calculated individually rather than using an overall estimate based on average stratum thickness, providing a more precise reference for construction. The GWL surface aligns closely with the bottom surface of the gravel sand stratum, indicating that the site’s groundwater is primarily loose rock pore water stored in the gravel sand stratum’s pore spaces.
- (3)
- By interpolating properties using the MRBF method under structural model constraints, property models, consistent with stratigraphic deposition, were conducted. Integrating the processed surface buildings with the 3D geological models enables the expression of integrated spatial information in a digital city.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Rienzo, F.; Oreste, P.; Pelizza, S. Subsurface geological-geotechnical modelling to sustain underground civil planning. Eng. Geol. 2008, 96, 187–204. [Google Scholar] [CrossRef]
- Dou, F.; Li, X.; Xing, H.; Yuan, F.; Ge, W. 3D geological suitability evaluation for urban underground space development—A case study of Qianjiang Newtown in Hangzhou, Eastern China. Tunn. Undergr. Space Technol. 2021, 115, 104052. [Google Scholar] [CrossRef]
- Caumon, G.; Collon-Drouaillet, P.; Le Carlier de Veslud, C.; Viseur, S.; Sausse, J. Surface-Based 3D Modeling of Geological Structures. Math. Geosci. 2009, 41, 927–945. [Google Scholar] [CrossRef]
- Houlding, S. 3D Geoscience Modeling: Computer Techniques for Geological Characterization; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Lindsay, M.D.; Aillères, L.; Jessell, M.W.; de Kemp, E.A.; Betts, P.G. Locating and quantifying geological uncertainty in three-dimensional models: Analysis of the Gippsland Basin, southeastern Australia. Tectonophysics 2012, 546–547, 10–27. [Google Scholar] [CrossRef]
- de la Varga, M.; Schaaf, A.; Wellmann, F. GemPy 1.0: Open-source stochastic geological modeling and inversion. Geosci. Model Dev. 2019, 12, 1–32. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, Z.; Wei, X.; Song, L.; Shah, S.Y.A.; Khan, U.; Du, L.; Li, X. Deep Subsurface Pseudo-Lithostratigraphic Modeling Based on Three-Dimensional Convolutional Neural Network (3D CNN) Using Inversed Geophysical Properties and Shallow Subsurface Geological Model. Lithosphere 2024, 2024. [Google Scholar] [CrossRef]
- Vollgger, S.A.; Cruden, A.R.; Ailleres, L.; Cowan, E.J. Regional dome evolution and its control on ore-grade distribution: Insights from 3D implicit modelling of the Navachab gold deposit, Namibia. Ore Geol. Rev. 2015, 69, 268–284. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, Y.; Huang, A.; Lu, H.; Cheng, Q. Geochemical Field and Its Roles on the 3D Prediction of Concealed Ore-Bodies. Acta Petrol. Sin. 2018, 34, 352–362. [Google Scholar]
- Wang, L.F.; Wu, X.B.; Zhang, B.Y.; Li, X.F.; Huang, A.S.; Meng, F.; Dai, P.Y. Recognition of Significant Surface Soil Geochemical Anomalies Via Weighted 3D Shortest-Distance Field of Subsurface Orebodies: A Case Study in the Hongtoushan Copper Mine, NE China. Nat. Resour. Res. 2019, 28, 587–607. [Google Scholar] [CrossRef]
- Hillier, M.; de Kemp, E.; Schetselaar, E. 3D form line construction by structural field interpolation (SFI) of geologic strike and dip observations. J. Struct. Geol. 2013, 51, 167–179. [Google Scholar] [CrossRef]
- Laurent, G.; Ailleres, L.; Grose, L.; Caumon, G.; Jessell, M.; Armit, R. Implicit modeling of folds and overprinting deformation. Earth Planet. Sci. Lett. 2016, 456, 26–38. [Google Scholar] [CrossRef]
- Grose, L.; Laurent, G.; Aillères, L.; Armit, R.; Jessell, M.; Cousin-Dechenaud, T. Inversion of structural geology data for fold geometry. J. Geophys. Res. Solid Earth 2018, 123, 6318–6333. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, K.; Khan, U.; Li, X.; Du, L.; Xu, Z. A lightweight convolutional neural network with end-to-end learning for three-dimensional mineral prospectivity modeling: A case study of the Sanhetun Area, Heilongjiang Province, Northeastern China. Ore Geol. Rev. 2023, 163, 105788. [Google Scholar] [CrossRef]
- Basson, I.J.; Anthonissen, C.J.; McCall, M.J.; Stoch, B.; Britz, J.; Deacon, J.; Strydom, M.; Cloete, E.; Botha, J.; Bester, M.; et al. Ore-structure relationships at Sishen Mine, Northern Cape, Republic of South Africa, based on fully-constrained implicit 3D modelling. Ore Geol. Rev. 2017, 86, 825–838. [Google Scholar] [CrossRef]
- Qiao, Z.F.; Shen, A.J.; Zheng, J.F.; Chang, S.Y.; Chen, Y.N. Three-dimensional carbonate reservoir geomodeling based on the digital outcrop model. Pet. Explor. Dev. 2015, 42, 358–368. [Google Scholar] [CrossRef]
- Wang, L.X.; Yin, Y.S.; Zhang, C.M.; Feng, W.J.; Li, G.Y.; Chen, Q.Y.; Chen, M. A MPS-based novel method of reconstructing 3D reservoir models from 2D images using seismic constraints. J. Pet. Sci. Eng. 2022, 209, 10. [Google Scholar] [CrossRef]
- Mitten, A.J.; Mullins, J.; Pringle, J.K.; Howell, J.; Clarke, S.M. Depositional conditioning of three dimensional training images: Improving the reproduction and representation of architectural elements in sand-dominated fluvial reservoir models. Mar. Pet. Geol. 2020, 113, 20. [Google Scholar] [CrossRef]
- Matheron, G. Principles of geostatistics. Econ. Geol. 1963, 58, 1246–1266. [Google Scholar] [CrossRef]
- Marinoni, O. Improving geological models using a combined ordinary–indicator kriging approach. Eng. Geol. 2003, 69, 37–45. [Google Scholar] [CrossRef]
- Sett, S.; Chattopadhyay, K.K.; Ghosh, A. Reliability-based seismic liquefaction hazard mapping of Kolkata Metropolitan City, India, using ordinary kriging technique. Bull. Eng. Geol. Environ. 2024, 83, 152. [Google Scholar] [CrossRef]
- Mallet, J.L. Discrete smooth interpolation in geometric modelling. Comput.-Aided Des. 1992, 24, 178–191. [Google Scholar] [CrossRef]
- Caumon, G.; Sword, C.H.; Mallet, J.-L. Interactive Editing of Sealed Geological 3D Models. In Proceedings of the International Association for Mathematical Geology, Berlin, Germany, 24–28 August 2003. [Google Scholar]
- Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Li, Z. An enhanced dual IDW method for high-quality geospatial interpolation. Sci. Rep. 2021, 11, 9903. [Google Scholar] [CrossRef]
- Powell, M.J.D. Radial basis functions for multivariable interpolation: A review. In Algorithms for Approximation; Picture, J.C., Mason, P.G.C., Eds.; Clarendon Press: Imprint of Oxford University Press: New York, NY, USA, 1987; p. 694. [Google Scholar]
- Hillier, M.J.; Schetselaar, E.M.; de Kemp, E.A.; Perron, G. Three-Dimensional Modelling of Geological Surfaces Using Generalized Interpolation with Radial Basis Functions. Math. Geosci. 2014, 46, 931–953. [Google Scholar] [CrossRef]
- Qian, Y.L.; Shi, J.; Sun, H.Q.; Chen, Y.Y.; Wang, Q. Vector solid texture synthesis using unified RBF-based representation and optimization. Vis. Comput. 2023, 39, 3963–3977. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Gong, P. Use of cokriging to improve estimates of soil salt solute spatial distribution in the Yellow River Delta. Acta Geogr. Sin. 2005, 60, 511–518. [Google Scholar] [CrossRef]
- Guastaldi, E.; Baldoncini, M.; Bezzon, G.; Broggini, C.; Buso, G.; Caciolli, A.; Carmignani, L.; Callegari, I.; Colonna, T.; Dule, K.; et al. A multivariate spatial interpolation of airborne γ-ray data using the geological constraints. Remote Sens. Environ. 2013, 137, 1–11. [Google Scholar] [CrossRef]
- Zhu, L.F.; Li, M.J.; Li, C.L.; Shang, J.G.; Chen, G.L.; Zhang, B.; Wang, X.F. Coupled modeling between geological structure fields and property parameter fields in 3D engineering geological space. Eng. Geol. 2013, 167, 105–116. [Google Scholar] [CrossRef]
- Foehn, A.; Hernández, J.G.; Schaefli, B.; De Cesare, G. Spatial interpolation of precipitation from multiple rain gauge networks and weather radar data for operational applications in Alpine catchments. J. Hydrol. 2018, 563, 1092–1110. [Google Scholar] [CrossRef]
- Liu, Q.L.; Zhu, Y.C.; Yang, J.; Mao, X.C.; Deng, M. CoYangCZ: A new spatial interpolation method for nonstationary multivariate spatial processes. Int. J. Geogr. Inf. Sci. 2024, 38, 48–76. [Google Scholar] [CrossRef]
- Lajaunie, C.; Courrioux, G.; Manuel, L. Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation. Math. Geol. 1997, 29, 571–584. [Google Scholar] [CrossRef]
- Carr, J.C.; Beatson, R.K.; Cherrie, J.B.; Mitchell, T.J.; Fright, W.R.; McCallum, B.C.; Evans, T.R. Reconstruction and representation of 3D objects with radial basis functions. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17 August 2001; pp. 67–76. [Google Scholar]
- Guo, J.; Nie, Y.; Li, S.; Lv, X. Application of Three-Dimensional Interpolation in Estimating Diapycnal Diffusivity in the South China Sea. J. Mar. Sci. Eng. 2020, 8, 832. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiao, R.; Guo, J.; Zhang, Y.; Zhang, S.; Lv, X.; Shi, H. Three-dimensional spatial interpolation for chlorophyll-a and its application in the Bohai Sea. Sci. Rep. 2023, 13, 7930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Du, L.; Khan, U.; Tong, Y.; Wang, L.; Deng, H. AdaHRBF v1. 0: Gradient-adaptive Hermite–Birkhoff radial basis function interpolants for three-dimensional stratigraphic implicit modeling. Geosci. Model Dev. 2023, 16, 3651–3674. [Google Scholar] [CrossRef]
- GB 50021-2001; Code for Investigation of Geotechnical Engineering. Ministry of Construction of the People’s Republic of China: Beijing, China, 2009. Available online: https://www.chinesestandard.net/PDF.aspx/GB50021-2001 (accessed on 1 January 2024).
- GB 5007-2011; Code for Design of Building Foundation. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2011. Available online: https://www.chinesestandard.net/PDF.aspx/GB50007-2011 (accessed on 1 January 2024).
- JGJ 94-2008; Technical Code for Building Pile Foundations. Ministry of Construction of the People’s Republic of China: Beijing, China, 2008. Available online: https://www.chinesestandard.net/PDF/English.aspx/JGJ94-2008 (accessed on 1 January 2024).
- Zhang, S.; Xiang, B. Geologocal Engineering Handbook; China Architecture & Building Press: Beijing, China, 2018. [Google Scholar]
- Oliver, M.A.; Webster, R. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena 2014, 113, 56–69. [Google Scholar] [CrossRef]
- Wu, J.; Norvell, W.A.; Welch, R.M. Kriging on highly skewed data for DTPA-extractable soil Zn with auxiliary information for pH and organic carbon. Geoderma 2006, 134, 187–199. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Stein, A.; Corsten, L.C.A. Universal kriging and cokriging as a regression procedure. Biometrics 1991, 47, 575–587. [Google Scholar] [CrossRef]
- Schiavo, M. Spatial modeling of the water table and its historical variations in Northeastern Italy via a geostatistical approach. Groundw. Sustain. Dev. 2024, 25, 101186. [Google Scholar] [CrossRef]
- Schiavo, M. Entropy, fractality, and thermodynamics of groundwater pathways. J. Hydrol. 2023, 623, 129824. [Google Scholar] [CrossRef]
- Xu, H.; He, B.; Zhang, C.; Lin, H.J.; Kuai, X.; Guo, R.Z. Quality-preserving multilevel mesh generation for building models. Int. J. Digit. Earth 2024, 17, 2376269. [Google Scholar] [CrossRef]
- Zhang, L.M.; Li, Y.S.; Pan, Y.; Ding, L.Y. Advanced informatic technologies for intelligent construction: A review. Eng. Appl. Artif. Intell. 2024, 137, 109104. [Google Scholar] [CrossRef]
- Juda, P.; Straubhaar, J.; Renard, P. Comparison of three recent discrete stochastic inversion methods and influence of the prior choice. C. R. Geosci. 2023, 355, 19–44. [Google Scholar] [CrossRef]
Stratum | Number of Sampling Points | Natural Moisture Content | Water Saturation | Natural Pore Ratio | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean (%) | Std. (%) | Skewness | Mean (%) | Std. (%) | Skewness | Mean | Std. | Skewness | ||
Silty clay | 5 | 27.14 | 1.54 | −0.556 | 88.0 | 5.74 | −0.566 | 0.851 | 1.54 | 0.785 |
Clay | 18 | 42.67 | 8.10 | 0.187 | 98.6 | 2.64 | −2.18 | 1.17 | 0.222 | 0.0919 |
Mudstone | 14 | 34.4 | 5.61 | 0.443 | 97.2 | 3.55 | −0.875 | 0.952 | 0.153 | 0.183 |
Stratum | Volume | Average Thickness | Thickness Range |
---|---|---|---|
Plain fill soil () | 10,901.9 | 0.72 | 0.5–3.4 m |
Silty clay () | 54,567.2 | 3.60 | 0.8–12.3 m |
Gravelly sand () | 74,792.8 | 4.94 | 0.3–16.5 m |
Clay () | 135,235 | 8.93 | 1.2–17.1 m |
Fully weathered mudstone (E) | 170,587 | 11.3 | Partially undissected; maximum control stratum thickness: 15.5 m. |
Strongly weathered mudstone (E) | 298,465 | 20 | Largely undissected. |
Building No. | Number of Piles | Characteristic Value of Pile Bearing Capacity (kN) |
---|---|---|
1# | 236 | 2162.48 |
2# | 166 | 2191.08 |
3# | 89 | 2153.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Zhu, Y.; Zhang, T.; Zhou, X.; Wang, B.; Kablan, O.A.B.K.; Huang, J. Three-Dimensional Stratigraphic Structure and Property Collaborative Modeling in Urban Engineering Construction. Mathematics 2025, 13, 345. https://doi.org/10.3390/math13030345
Zhang B, Zhu Y, Zhang T, Zhou X, Wang B, Kablan OABK, Huang J. Three-Dimensional Stratigraphic Structure and Property Collaborative Modeling in Urban Engineering Construction. Mathematics. 2025; 13(3):345. https://doi.org/10.3390/math13030345
Chicago/Turabian StyleZhang, Baoyi, Yanli Zhu, Tongyun Zhang, Xian Zhou, Binhai Wang, Or Aimon Brou Koffi Kablan, and Jixian Huang. 2025. "Three-Dimensional Stratigraphic Structure and Property Collaborative Modeling in Urban Engineering Construction" Mathematics 13, no. 3: 345. https://doi.org/10.3390/math13030345
APA StyleZhang, B., Zhu, Y., Zhang, T., Zhou, X., Wang, B., Kablan, O. A. B. K., & Huang, J. (2025). Three-Dimensional Stratigraphic Structure and Property Collaborative Modeling in Urban Engineering Construction. Mathematics, 13(3), 345. https://doi.org/10.3390/math13030345