Existence of a Unique Fixed Point for Nonlinear Contractive Mappings
Abstract
:1. Introduction
2. Main Result
3. Proof of Theorem 1
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Betiuk-Pilarska, A.; Domínguez Benavides, T. Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices. Pure Appl. Funct. Anal. 2016, 1, 343–359. [Google Scholar]
- Butnariu, D.; Reich, S.; Zaslavski, A.J. Convergence to fixed points of inexact orbits of Bregman-monotone and of nonexpansive operators in Banach spaces. In Proceedings of the Seventh International Conference on Fixed Point Theory and its Applications, Guanajuato, Mexico, 17–23 July 2005; pp. 11–32. [Google Scholar]
- De Blasi, F.S.; Myjak, J.; Reich, S.; Zaslavski, A.J. Generic existence and approximation of fixed points for nonexpansive set-valued maps. Set-Valued Var. Anal. 2009, 17, 97–112. [Google Scholar] [CrossRef]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Jachymski, J. Extensions of the Dugundji-Granas and Nadler’s theorems on the continuity of fixed points. Pure Appl. Funct. Anal. 2017, 2, 657–666. [Google Scholar]
- Kirk, W.A. Contraction mappings and extensions. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 1–34. [Google Scholar]
- Kubota, R.; Takahashi, W.; Takeuchi, Y. Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications. Pure Appl. Funct. Anal. 2016, 1, 63–84. [Google Scholar]
- Pustylnyk, E.; Reich, S.; Zaslavski, A.J. Convergence to compact sets of inexact orbits of nonexpansive mappings in Banach and metric spaces. Fixed Point Theory Appl. 2008, 2008, 528614. [Google Scholar] [CrossRef] [Green Version]
- Reich, S.; Zaslavski, A.J. Generic well-posedness of fixed point problems. Vietnam J. Math. 2018, 46, 5–13. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Generic aspects of metric fixed point theory. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 557–575. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Convergence to attractors under perturbations. Commun. Math. Anal. 2011, 10, 57–63. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Genericity in Nonlinear Analysis; Developments in Mathematics; Springer: New York, NY, USA, 2014; Volume 34. [Google Scholar]
- Zaslavski, A.J. Approximate Solutions of Common Fixed Point Problems; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zaslavski, A.J. Algorithms for Solving Common Fixed Point Problems; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Censor, Y.; Zaknoon, M. Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review. Pure Appl. Funct. Anal. 2018, 3, 565–586. [Google Scholar]
- Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2017, 2, 243–258. [Google Scholar]
- Gibali, A.; Reich, S.; Zalas, R. outer approximation methods for solving variational inequalities in Hilbert space. Optimization 2017, 66, 417–437. [Google Scholar] [CrossRef]
- Takahashi, W. The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces. Pure Appl. Funct. Anal. 2017, 2, 685–699. [Google Scholar]
- Takahashi, W. A general iterative method for split common fixed point problems in Hilbert spaces and applications. Pure Appl. Funct. Anal. 2018, 3, 349–369. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Contractivity and genericity results for a class of nonlinear mappings. J. Nonlinear Convex Anal. 2015, 16, 1113–1122. [Google Scholar]
- Gabour, M.; Reich, S.; Zaslavski, A.J. A generic fixed point theorem. Indian J. Math. 2014, 56, 25–32. [Google Scholar]
- De Blasi, F.S.; Myjak, J. Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach. C. R. Acad. Sci. Paris 1976, 283, 185–187. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Well-posedness of generalized best approximation problems. Nonlinear Funct. Anal. Appl. 2002, 7, 115–128. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Porous sets and generalized best approximation problems. Nonlinear Anal. Forum 2004, 9, 135–152. [Google Scholar]
- Rakotch, E. A note on contractive mappings. Proc. Am. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reich, S.; Zaslavski, A.J. Existence of a Unique Fixed Point for Nonlinear Contractive Mappings. Mathematics 2020, 8, 55. https://doi.org/10.3390/math8010055
Reich S, Zaslavski AJ. Existence of a Unique Fixed Point for Nonlinear Contractive Mappings. Mathematics. 2020; 8(1):55. https://doi.org/10.3390/math8010055
Chicago/Turabian StyleReich, Simeon, and Alexander J. Zaslavski. 2020. "Existence of a Unique Fixed Point for Nonlinear Contractive Mappings" Mathematics 8, no. 1: 55. https://doi.org/10.3390/math8010055
APA StyleReich, S., & Zaslavski, A. J. (2020). Existence of a Unique Fixed Point for Nonlinear Contractive Mappings. Mathematics, 8(1), 55. https://doi.org/10.3390/math8010055