Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel
Abstract
:1. Introduction
2. Preliminaries
3. Solution Representation
4. Controllability for Linear and Nonlinear Systems
5. Illustrated Examples
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Sci. Publ.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Zhou, Y. Fractional Evolution Equations and Inclusions: Analysis and Control; Academic Press: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Pang, D.H.; Jiang, W.; Liu, S.; Azmat, U.K.N. Well-posedness and iterative formula for fractional oscillator equations with delays. Math. Methods Appl. Sci. 2019, 1–13. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, M.L.; Ye, R.Y.; Cao, J.D. Synchronization stability of Riemann-Liouville fractional delay-coupled complex neural networks. Phys. A 2018, 16, 1404–1414. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, R.Y.; Liu, S.; Cao, J.D.; Alsaedie, A.; Li, X.D. LMI-based approach to stability analysis for fractional-order neural networks with discrete and distributed delays. Int. J. Syst. Sci. 2017, 49, 537–545. [Google Scholar] [CrossRef]
- Ding, X.L.; Nieto, J.J. Controllability of nonlinear fractional delay dynamical systems with prescribed controls. Nonlinear Anal. Model. Control 2018, 23, 1–18. [Google Scholar] [CrossRef]
- Nguyen, L.V.; Qin, X.L. The minimal time function associated with a collection of sets. ESAIM Control Optim. Calc. Var. 2020, 26, 93. [Google Scholar] [CrossRef]
- Vetro, C.; Wardowski, D. Krasnosel’skii-Schaefer type method in the existence problem. Topol. Methods Nonlinear Anal. 2019, 54, 131–139. [Google Scholar] [CrossRef]
- Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
- Khalil, R.; Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 650–670. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Yang, X.J.; Srivastava, H.M.; Machado, J.T. A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow. Therm. Ence 2015, 20, 753–756. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. arXiv 2016, arXiv:1602.03408. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Aguilar, J.F. Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel. Phys. A 2017, 465, 562–572. [Google Scholar]
- Gómez-Aguilar, J.F.; Escobar-Jiménez, R.F.; López-López, M.G.; Alvarado-Martínez, V.M. Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media. J. Electromagn. Waves Appl. 2016, 30, 16. [Google Scholar]
- Atangana, A.; Koca, I. Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos Solitons Fractals 2016, 89, 447–454. [Google Scholar] [CrossRef]
- Alkahtani, B. Chua’s circuit model with Atangana-Baleanu derivative with fractional order. Chaos Solitons Fractals 2016, 89, 547–551. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 2017, 10, 1098–1107. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, A.; Baleanu, D. The mean value theorem and Taylor’s theorem for fractional derivatives with Mittag-Leffler kernel. Adv. Differ. Equ. 2018, 2018, 86. [Google Scholar] [CrossRef]
- Baleanu, D.; Fernandez, A. On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 444–462. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T.; Hammouch, Z. On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative. Chaos Solitons Fractals 2018, 117, 16–20. [Google Scholar] [CrossRef]
- Aimene, D.; Baleanu, D. Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay. Chaos Solitons Fractals 2019, 128, 51–57. [Google Scholar] [CrossRef]
- Ravichandran, C.; Logeswari, K.; Jarad, F. New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations. Chaos Solitons Fractals 2019, 125, 194–200. [Google Scholar] [CrossRef]
- Bahaa, G.M. Optimal control problem for variable-order fractional differential systems with time delay involving Atangana-Baleanu derivatives. Chaos Solitons Fractals 2019, 122, 129–142. [Google Scholar] [CrossRef]
- Klamka, J. Controllability of Dynamical Systems; Kluwer Academic: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Balachandran, K.; Park, J.Y.; Trujillo, J.J. Controllability of nonlinear fractional dynamical systems. Nonlinear Anal. 2012, 75, 1919–1926. [Google Scholar] [CrossRef]
- Balachandran, K.; Govindaraj, V.; Rodriguez-Germa, L.; Trujillo, J.J. Controllability Results for Nonlinear Fractional-Order Dynamical Systems. J. Optim. Theory Appl. 2012, 156, 33–44. [Google Scholar] [CrossRef]
- Balachandran, K.; Govindaraj, V.; Rivero, M.; Trujillo, J.J. Controllability of fractional damped dynamical systems. Appl. Math. Comput. 2015, 257, 66–73. [Google Scholar] [CrossRef]
- Zhou, Y.; Suganya, S.; Mallika, M.; Ahmad, B. Approximate controllability of impulsive fractional integro-differential equation with state-dependent delay in Hilbert spaces. J. Math. Control Inf. 2019, 2, 603–622. [Google Scholar] [CrossRef]
- Anurag, S.; Urvashi, A.; Sukavanam, N. Approximate controllability of retarded semilinear stochastic system with non local conditions. J. Appl. Math. Comput. 2015, 49, 513–527. [Google Scholar]
- Lv, J.; Yang, X. Approximate controllability of Hilfer fractional differential equations. Math. Methods Appl. Sci. 2019, 1–13. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ganesh, R.; Ren, Y.; Anthoni, S.M. Approximate controllability of nonlinear fractional dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 3498–3508. [Google Scholar] [CrossRef]
- Dauer, J.P. Nonlinear perturbations of quasi-linear control systems. J. Math. Anal. Appl. 1976, 54, 717–725. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, J.; Jiang, W.; Pang, D.; Wang, S. Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel. Mathematics 2020, 8, 2139. https://doi.org/10.3390/math8122139
Sheng J, Jiang W, Pang D, Wang S. Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel. Mathematics. 2020; 8(12):2139. https://doi.org/10.3390/math8122139
Chicago/Turabian StyleSheng, Jiale, Wei Jiang, Denghao Pang, and Sen Wang. 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel" Mathematics 8, no. 12: 2139. https://doi.org/10.3390/math8122139
APA StyleSheng, J., Jiang, W., Pang, D., & Wang, S. (2020). Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel. Mathematics, 8(12), 2139. https://doi.org/10.3390/math8122139