Estimates for the Differences of Certain Positive Linear Operators
Abstract
:1. Introduction
2. Baskakov Type Operators
- (i)
- , for every ;
- (ii)
- , for every , .
3. The th Order Kantorovich Modification of the Baskakov Operators
- (i)
- ,
- (ii)
- (i)
- ,
- (ii)
- (i)
- ,
- (ii)
4. The Meyer–König and Zeller Operators
- (i)
- ,
- (ii)
- ,
- (iii)
- .
- (i)
- Let . We have
- (ii)
- UsingIn a similar way one can prove (iii). □
5. The BBH Operators
Author Contributions
Funding
Conflicts of Interest
References
- Lupaş, A. The approximation by means of some linear positive operators. In Approximation Theory; Müller, M.W., Felten, M., Mache., D.H., Eds.; Akademie: Berlin, Germany, 1995; pp. 201–227. [Google Scholar]
- Gonska, H.; Piţul, P.; Raşa, I. On Peano’s form of the Taylor remainder, Voronovskaja’s theorem and the commutator of positive linear operators. In Numerical Analysis and Approximation Theory (Proc. Int. Conf. Cluj-Napoca 2006; Agratini, O., Blaga, P., Eds.; Casa Cărţii de Ştiinţă: Cluj-Napoca, Romania, 2006; pp. 55–80. [Google Scholar]
- Gonska, H.; Piţul, P.; Raşa, I. On differences of positive linear operators. Carpathian J. Math. 2006, 22, 65–78. [Google Scholar]
- Gonska, H.; Raşa, I. Differences of positive linear operators and the second order modulus. Carpathian J. Math. 2008, 24, 332–340. [Google Scholar]
- Acu, A.M.; Rasa, I. New estimates for the differences of positive linear operators. Numer. Algorithms 2016, 73, 775–789. [Google Scholar] [CrossRef]
- Aral, A.; Inoan, D.; Raşa, I. On differences of linear positive operators. Anal. Math. Phys. 2019, 9, 1227–1239. [Google Scholar] [CrossRef]
- Gupta, V.; Tachev, G. A note on the differences of two positive linear operators. Constr. Math. Anal. 2019, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Acu, A.M.; Raşa, I. Estimates for the differences of positive linear operators and their derivatives. Numer. Algor. 2019. [Google Scholar] [CrossRef] [Green Version]
- Acu, A.M.; Hodiş, S.; Raşa, I. A survey on estimates for the differences of positive linear operators. Constr. Math. Anal. 2018, 1, 113–127. [Google Scholar] [CrossRef]
- Gupta, V. Differences of operators of Lupaş type. Constr. Math. Anal. 2018, 1, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Rassias, T.M.; Agrawal, P.N.; Acu, A.M. Estimates for the Differences of Positive Linear Operators. In Recent Advances in Constructive Approximation Theory; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2018; Volume 138. [Google Scholar]
- Birou, M. Discrete operators associated with the Durrmeyer operator. Stud. Univ. Babes-Bolyai Math. 2015, 60, 295–302. [Google Scholar]
- Heilmann, M.; Nasaireh, F.; Raşa, I. Complements to Voronovskaja’s formula, Chapter 11. In Mathematics and Computing; Ghosh, D., Giri, D., Mohapatra, R., Sakurai, K., Savas, E., Som, T., Eds.; Springer Proceedings in Mathematics, & Statistics, 253; Springer Nature Singapore Pte Ltd.: Singapore, 2018; pp. 127–134. [Google Scholar] [CrossRef]
- Raşa, I. Discrete operators associated with certain integral operators. Stud. Univ. Babeş- Bolyai Math. 2011, 56, 537–544. [Google Scholar]
- Baumann, K.; Heilmann, M.; Raşa, I. Further results for kth order Kantorovich modification of linking Baskakov operator. Results. Math. 2016, 69, 297–315. [Google Scholar] [CrossRef]
- Gonska, H.; Heilmann, M.; Raşa, I. Kantorovich operators of order k. Num. Funct. Anal. Opt. 2014, 32, 717–738. [Google Scholar] [CrossRef]
- Heilmann, M.; Raşa, I. k-th order Kantorovich type modification of the operators . J. Appl. Funct. Anal. 2014, 9, 320–334. [Google Scholar]
- Heilmann, M.; Raşa, I. kth order Kantorovich Modification of linking Baskakov operators. Math. Anal. Appl. 2015, 143, 229–242. [Google Scholar]
- Baskakov, V.A. A sequence of linear positive operators in the space of continuous functions. Dokl. Acad. Nauk. SSSR 1957, 113, 249–251. [Google Scholar]
- Heilmann, M.; Raşa, I. A nice representation for a link between Baskakov-and Szasz–Mirakjan-Durrmeyer operators and their Kantorovich variants. Results Math. 2019, 74, 9. [Google Scholar] [CrossRef] [Green Version]
- Heilmann, M.; Raşa, I. Note on a proof for the representation of the kth order Kantorovich modification of linking Baskakov type operators. In Mathematical Analysis I: Approximation Theory; Deo, N., Gupta, V., Acu, A., Agrawal, P., Eds.; ICRAPAM 2018. Springer Proceedings in Mathematics, & Statistics; Springer: Singapore, 2020; Volume 306, pp. 89–93. [Google Scholar]
- Favard, J. Sur les multiplicateurs d’interpolation. J. Math. Pures Appl. 1944, 23, 219–247. [Google Scholar]
- Mirakjan, G.M. Approximation of continuous functions with the aid of polynomials (Russian). Dokl. Akad. Nauk SSSR 1941, 31, 201–205. [Google Scholar]
- Szász, O. Generalization of S. Bernstein’s polynomials to the infinite interval. Res. Nat. Bur. Stand. 1950, 45, 239–245. [Google Scholar] [CrossRef]
- López-Moreno, A.-J. Weighted simultaneous approximation with Baskakov type operators. Acta Math. Hungar. 2004, 104, 143–151. [Google Scholar] [CrossRef]
- DeVore, R.A.; Lorentz, G.G. Constructive Approximation; Springer: Berlin, Germany, 1993. [Google Scholar]
- Ditzian, Z.; Ivanov, K.G. Strong converse inequalities. J. Anal. Math. 1993, 61, 61–111. [Google Scholar] [CrossRef]
- Meyer–Konig, W.; Zeller, K. Bernsteinsche Potenzreihen. Stud. Math. 1960, 19, 89–94. [Google Scholar] [CrossRef]
- Maier, V.; Müller, M.W.; Swetits, J. The local L1 saturation class of the method of integrated Meyer–König and Zeller operators. J. Approx. Theory 1981, 32, 27–31. [Google Scholar] [CrossRef]
- Bleimann, G.; Butzer, P.L.; Hahn, L. A Bernstein-type operator approximating continuous functions of the semi-axis. Indag. Math. 1980, 42, 255–262. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acu, A.M.; Hodiş, S.; Rașa, I. Estimates for the Differences of Certain Positive Linear Operators. Mathematics 2020, 8, 798. https://doi.org/10.3390/math8050798
Acu AM, Hodiş S, Rașa I. Estimates for the Differences of Certain Positive Linear Operators. Mathematics. 2020; 8(5):798. https://doi.org/10.3390/math8050798
Chicago/Turabian StyleAcu, Ana Maria, Sever Hodiş, and Ioan Rașa. 2020. "Estimates for the Differences of Certain Positive Linear Operators" Mathematics 8, no. 5: 798. https://doi.org/10.3390/math8050798
APA StyleAcu, A. M., Hodiş, S., & Rașa, I. (2020). Estimates for the Differences of Certain Positive Linear Operators. Mathematics, 8(5), 798. https://doi.org/10.3390/math8050798