Nonexistence of Global Solutions to Higher-Order Time-Fractional Evolution Inequalities with Subcritical Degeneracy
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
- (i)
- , , ;
- (ii)
- For all and :
- (i)
- , , ;
- (ii)
- For all and :
4. Proof of Theorem 1
5. Proof of Theorem 2
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitidieri, E.; Pohozaev, S.I. Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on ℝN. J. Evol. Equ. 2001, 1, 189–220. [Google Scholar] [CrossRef]
- Fujita, H. On the blowing up of solutions of the Cauchy problem for ut = Δu + uα+1. J. Fac. Sci. Univ. Tokyo Sect. 1996, 13, 109–124. [Google Scholar]
- Mitidieri, E.; Pohozaev, S.I. Nonexistence of weak solutions for degenerate and singular hyperbolic problems on ℝN. Proc. Steklov Inst. Math. 2000, 232, 1–19. [Google Scholar]
- Kato, T. Blow-up of solutions of some nonlinear hyperbolic equations. Commun. Pure Appl. Math. 1980, 33, 501–505. [Google Scholar] [CrossRef]
- Caristi, G. Nonexistence of global solutions of higher order evolution inequalities in ℝN. In Nonlinear Equations: Methods, Models and Applications, Progress in Nonlinear Differential Equations and Their Applications; Lupo, D., Pagani, C.D., Ruf, B., Eds.; Birkhäuser: Basel, Switzerland, 2003; Volume 54, pp. 91–105. [Google Scholar]
- Meng, R. Application of fractional calculus to modeling the non-linear behaviors of ferroelectric polymer composites: Viscoelasticity and dielectricity. Membranes 2021, 11, 409. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, R.; Xu, J.; Xu, F.; Zhang, B.; Dong, X. Fractional modeling and characteristic analysis of hydro-pneumatic suspension for construction vehicles. Processes 2021, 9, 1414. [Google Scholar] [CrossRef]
- Lazopoulos, A.K.; Karaoulanis, D. On Λ-fractional viscoelastic models. Axioms 2021, 10, 22. [Google Scholar] [CrossRef]
- Alcántara-López, F.; Fuentes, C.; Chávez, C.; Brambila-Paz, F.; Quevedo, A. Fractional growth model applied to COVID-19 data. Mathematics 2021, 9, 1915. [Google Scholar] [CrossRef]
- Fino, A.Z.; Kirane, M. Qualitative properties of solutions to a time-space fractional evolution equation. Q. Appl. Math. 2012, 70, 133–157. [Google Scholar] [CrossRef] [Green Version]
- Kirane, M.; Ahmad, B.; Alsaedi, A.; Al-Yami, M. Non-existence of global solutions to a system of fractional diffusion equations. Acta Appl. Math. 2014, 133, 235–248. [Google Scholar] [CrossRef]
- Kirane, M.; Laskri, Y. Nonexistence of global solutions to a hyperbolic equation with a space-time fractional damping. Appl. Math. Comput. 2005, 167, 1304–1310. [Google Scholar] [CrossRef]
- Kirane, M.; Laskri, Y.; Tatar, N.E. Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives. J. Math. Anal. Appl. 2005, 312, 488–501. [Google Scholar] [CrossRef] [Green Version]
- Kirane, M.; Nabti, A. Life span of solutions to a nonlocal in time nonlinear fractional Schrödinger equation. Z. Angew. Math. Phys. 2015, 66, 1473–1482. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Sun, H.R. The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation. Topol. Methods Nonlinear Anal. 2015, 46, 69–92. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B.; Vetro, C. On a fractional in time nonlinear Schrödinger equation with dispersion parameter and absorption coefficient. Symmetry 2020, 12, 1197. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B.; Vetro, C. Large time behavior for inhomogeneous damped wave equations with nonlinear memory. Symmetry 2020, 12, 1609. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B.; Vetro, C. Nonexistence results for higher order fractional differential inequalities with nonlinearities involving Caputo fractional derivative. Mathematics 2021, 9, 1866. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, H.R.; Li, Y. The nonexistence of global solutions for a time fractional nonlinear Schrödinger equation without gauge invariance. Appl. Math. Lett. 2017, 64, 119–124. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, R.P.; Alhumayan, S.M.; Jleli, M.; Samet, B. Nonexistence of Global Solutions to Higher-Order Time-Fractional Evolution Inequalities with Subcritical Degeneracy. Mathematics 2021, 9, 2765. https://doi.org/10.3390/math9212765
Agarwal RP, Alhumayan SM, Jleli M, Samet B. Nonexistence of Global Solutions to Higher-Order Time-Fractional Evolution Inequalities with Subcritical Degeneracy. Mathematics. 2021; 9(21):2765. https://doi.org/10.3390/math9212765
Chicago/Turabian StyleAgarwal, Ravi P., Soha Mohammad Alhumayan, Mohamed Jleli, and Bessem Samet. 2021. "Nonexistence of Global Solutions to Higher-Order Time-Fractional Evolution Inequalities with Subcritical Degeneracy" Mathematics 9, no. 21: 2765. https://doi.org/10.3390/math9212765
APA StyleAgarwal, R. P., Alhumayan, S. M., Jleli, M., & Samet, B. (2021). Nonexistence of Global Solutions to Higher-Order Time-Fractional Evolution Inequalities with Subcritical Degeneracy. Mathematics, 9(21), 2765. https://doi.org/10.3390/math9212765