η-∗-Ricci Solitons and Almost co-Kähler Manifolds
Abstract
:1. Introduction
2. Preliminaries
3. -∗-Ricci Solitons on -s
4. Gradient -∗-Ricci Solitons on -s
5. Examples
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamilton, R.S. The Ricci flow on surfaces. In Mathematics and General Relativity (Santa Cruz, CA, 1988); Contemp. Math.; American Mathematical Society: Providence, RI, USA, 1988; Volume 71, pp. 237–262. [Google Scholar]
- Venkatesha, V.; Kumara, H.A. Ricci soliton and geometrical structure in a perfect fluid spacetime with torse-forming vector field. Africa Math. 2019, 30, 725–736. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, S. Jacobi-type vector fields on Ricci solitons. Bull. Math. Soc. Sci. Math. Roum. 2012, 55, 41–50. [Google Scholar]
- Deshmukh, S.; Alodan, H.; Al-Sodais, H. A note on Ricci solitons. Balkan J. Geom. Appl. 2011, 16, 48–55. [Google Scholar]
- Wang, Y. Ricci solitons on almost Kenmotsu 3-manifolds. Open Math. 2017, 15, 1236–1243. [Google Scholar] [CrossRef]
- Wang, Y. Ricci solitons on 3-dimensional cosymplectic manifolds. Math. Slov. 2017, 67, 979–984. [Google Scholar] [CrossRef]
- Wang, Y. Ricci solitons on almost co-kähler manifolds. Cand. Math. Bull. 2019, 62, 912–922. [Google Scholar] [CrossRef]
- Cho, J.T.; Kimura, M. Ricci solitons and real hypersurfaces in a complex space form. Tohoku Math. J. 2009, 61, 205–212. [Google Scholar] [CrossRef]
- Blaga, A.M. Solitons and geometrical structures in a perfect fluid spacetime. Rocky Mountain J. Math. 2020, 50, 41–53. [Google Scholar] [CrossRef]
- Chaubey, S.K.; Suh, Y.J. Generalized Ricci recurrent spacetimes and GRW spacetimes. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150209. [Google Scholar] [CrossRef]
- Blaga, A.M. Harmonic aspects in an η-Ricci soliton. Int. Elect. J. Geom. 2020, 13, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Blaga, A.M. η-Ricci solitons on para-Kenmotsu manifolds. Balkan J. Geom. Appl. 2015, 20, 1–13. [Google Scholar]
- Blaga, A.M. η-Ricci solitons on Lorentzian para-Sasakian manifolds. Filomat 2016, 30, 489–496. [Google Scholar] [CrossRef]
- Blaga, A.M.; Perktas, S.Y.; Acet, B.E.; Erdogan, F.E. η-Ricci solitons in (ϵ)-almost paracontact metric manifolds. Glasnik Math. 2018, 53, 205–220. [Google Scholar] [CrossRef] [Green Version]
- De, K.; De, U.C. η-Ricci solitons on Kenmotsu 3-manifolds. Anal. Univ. Vest. 2018, 1, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Sardar, A.; De, U.C. η-Ricci solitons on para-Kenmotsu manifolds. Differ. Geom.-Dyn. Syst. 2020, 22, 218–228. [Google Scholar]
- Tachibana, S. On almost-analytic vectors in almost Kahlerian manifolds. Tohoku Math. J. 1959, 11, 247–265. [Google Scholar] [CrossRef]
- Hamada, T. Real hypersurfaces of complex space forms in terms of Ricci ∗-tensor. Tokyo J. Math. 2002, 25, 473–483. [Google Scholar] [CrossRef]
- Kaimakamis, G.; Panagiotidou, K. ∗-Ricci solitons of real hypersurface in non-flat complex space forms. J. Geom. Phy. 2014, 76, 408–413. [Google Scholar] [CrossRef]
- Majhi, P.; De, U.C.; Suh, Y.J. ∗-Ricci solitons on Sasakian 3-manifolds. Publ. Math. Debrecen 2018, 93, 241–252. [Google Scholar] [CrossRef]
- De, K.; Blaga, A.M.; De, U.C. ∗-Ricci solitons on (ϵ)-Kenmotsu manifolds. Palestine J. Math. 2020, 9, 984–990. [Google Scholar]
- Venkatesha, V.; Naik, D.M.; Kumara, H.A. ∗-Ricci solitons and gradient almost ∗-Ricci solitons on Kenmotsu manifolds. Math. Slovaca. 2019, 69, 1447–1458. [Google Scholar] [CrossRef]
- Wang, Y. A generalization of Goldberg conjecture for co-Kähler manifolds. Mediterr. J. Math. 2016, 13, 2679–2690. [Google Scholar] [CrossRef]
- Dai, X.; Zhao, Y.; De, U.C. ∗-Ricci soliton on (k,μ)′-almost Kenmotsu manifolds. Open Math. 2019. [Google Scholar] [CrossRef]
- Venkatesha, V.; Kumara, H.A.; Naik, D.M. Almost ∗-Ricci soliton on para-Kenmotsu manifolds. Arab. J. Math. 2020, 9, 715–726. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. Contact 3-manifolds and ∗-Ricci soliton. Kodai Math. J. 2020, 43, 256–267. [Google Scholar] [CrossRef]
- Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifold; Birkhäuser: Basel, Switzerland, 2010; Volume 203. [Google Scholar]
- Blair, D.E. The theory of quasi-Sasakian structure. J. Diff. Geom. 1967, 1, 331–345. [Google Scholar] [CrossRef]
- De, U.C.; Chaubey, S.K.; Suh, Y.J. A note on almost co-Kähler manifolds. Int. J. Geom. Methods Mod. Phys. 2020, 17, 2050153. [Google Scholar] [CrossRef]
- De, U.C.; Majhi, P.; Suh, Y.J. Semisymmetric properties of almost co-Kähler manifolds. Bull. Korean Math. Soc. 2019, 56, 219–228. [Google Scholar]
- Naik, D.M.; Venkatesh, V.; Kumara, H.A. Ricci solitons and certain related metrics on almost co-Kähler manifolds. J. Math. Phys. Anal. Geom. 2020, 16, 402–417. [Google Scholar]
- Naik, D.M.; Venkatesh, V.; Kumara, H.A. Certain types of metrics on almost co-Kähler manifolds. Annal. Math. 2021. [Google Scholar] [CrossRef]
- Suh, Y.J.; De, U.C. Yamabe solitons and Ricci solitons on almost co-Kähler manifolds. Can. Math. Bull. 2019, 62, 653–661. [Google Scholar] [CrossRef]
- Wang, Y. Almost co-Kähler manifolds satisfying some symmetry conditions. Turkish J. Math. 2016, 40, 740–752. [Google Scholar] [CrossRef]
- Wang, Y. Cotton tensors on almost co-Kähler manifolds. Ann. Polonici Math. 2017, 120, 135–148. [Google Scholar] [CrossRef]
- Wang, Y. Ricci tensors on three-dimensional almost co-Kähler manifolds. Kodai Math. J. 2016, 39, 469–483. [Google Scholar] [CrossRef]
- Balkan, Y.S.; Uddin, S.; Alkhaldi, A.H. A class of φ-recurrent almost cosymplectic space. Honam Math. J. 2018, 40, 293–304. [Google Scholar]
- Cappelletti-Mantano, B.; Nicola, A.D.; Yudin, I. A survey on cosymplectic geometry. Rev. Math. Phys. 2013, 25, 1343002. [Google Scholar] [CrossRef]
- Chen, X.M. Cotton solitons on almost co-Kähler 3-manifolds. Quaest. Math. 2020, 44, 1055–1075. [Google Scholar] [CrossRef]
- Chen, X.M. Einstein-Wely structures on almost cosymplectic manifolds. Period. Math. Hugarica 2019, 79, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Olszak, Z. On almost cosymplectic manifolds. Kodai Math. J. 1981, 4, 239–250. [Google Scholar] [CrossRef]
- Olszak, Z. On almost cosymplectic manifolds with Kählerian leaves. Tensor 1987, 46, 117–124. [Google Scholar]
- Perrone, D. Classification of homogeneous almost cosymplectic three-manifolds. Diff. Geom. Appl. 2012, 30, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Endo, H. Non-existence of almost cosymplectic manifolds satisfying a certain condition. Tensor 2002, 63, 272–284. [Google Scholar]
- Dacko, P. On almost cosymplectic manifolds with the structure vector field ξ belonging to the k-nullity distribution. Balkan J. Geom. Appl. 2000, 5, 47–60. [Google Scholar]
- Dacko, P.; Olszak, Z. On almost cosymplectic (k,μ,ν)-spaces. Banach Center Publ. 2005, 69, 211–220. [Google Scholar]
- Ozturk, H.; Aktan, N.; Murathan, C. Almost α-cosymplectic (k,μ,v)-spaces. arXiv 2010, arXiv:1007.0527v1. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sardar, A.; Khan, M.N.I.; De, U.C. η-∗-Ricci Solitons and Almost co-Kähler Manifolds. Mathematics 2021, 9, 3200. https://doi.org/10.3390/math9243200
Sardar A, Khan MNI, De UC. η-∗-Ricci Solitons and Almost co-Kähler Manifolds. Mathematics. 2021; 9(24):3200. https://doi.org/10.3390/math9243200
Chicago/Turabian StyleSardar, Arpan, Mohammad Nazrul Islam Khan, and Uday Chand De. 2021. "η-∗-Ricci Solitons and Almost co-Kähler Manifolds" Mathematics 9, no. 24: 3200. https://doi.org/10.3390/math9243200
APA StyleSardar, A., Khan, M. N. I., & De, U. C. (2021). η-∗-Ricci Solitons and Almost co-Kähler Manifolds. Mathematics, 9(24), 3200. https://doi.org/10.3390/math9243200