Nonlinear Spectrum and Fixed Point Index for a Class of Decomposable Operators
Abstract
:1. Introduction
- (i)
- P is closed, nonempty, and;
- (ii)
- ,,;
- (iii)
- and.
2. Stably-Solvable Maps and Fixed Point Index
- (1)
- is also stably-solvable on P.
- (2)
- Assume thatis compact such thatfor all. LetIfis bounded, then the equationhas a solution.
- (1)
- If, then there existssuch that for all,.
- (2)
- If, then there existssuch that for all,.
- (3)
- If, then there existssuch that for all,.
- (4)
- If, then there existssuch that for all,
3. Positive Solutions and Spectral Interval for BVPs
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Appell, J.; Pascale, E.D.E.; Vignoli, A. Nonlinear Spectral Theory, De Gruyter Series in Nonlinear Analysis and Applications; Walter de Gruyter & Co.: Berlin, Germany, 2004; Volume 10. [Google Scholar]
- Feng, W. Nonlinear spectral theory and operator equations. Nonlinear Funct. Anal. Appl. 2003, 8, 519–534. [Google Scholar]
- Appell, J.; Pascale, E.D.E.; Vignoli, A. A comparison of different spectra for nonlinar operators. Nonlinear Anal. 2000, 40, 73–90. [Google Scholar] [CrossRef]
- Furi, M.; Martelli, M.; Vignoli, A. Contributions to the spectral theory for nonlinear operators in Banach spaces. Ann. Mat. Pura Appl. 1978, 118, 321–343. [Google Scholar] [CrossRef]
- Zhang, Y.; Abdella, K.; Feng, W. Positive solutions for second-order differential equations with singularities and separated integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2020, 75, 1–12. [Google Scholar]
- Feng, W. A new spectral theory for nonlinear operators and its application. Abstr. Appl. Anal. 1997, 2, 163–183. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.J.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press, Inc.: Boston, MA, USA, 1988. [Google Scholar]
- Feng, W. Topological methods on solvability, multiplicity and eigenvalues of a nonlinear fractional boundary value problem. Electron. J. Qual. Theory Differ. Equ. 2015, 70, 1–16. [Google Scholar] [CrossRef]
- Webb, J.R.L. A class of positive linear operators and applications to nonlinear boundary value problems. Topol. Methods Nonlinear Anal. 2012, 39, 221–242. [Google Scholar]
- Yan, B.; O’Regan, D.; Agarwal, R.P. Multiple positive solutions of singular second order boundary value problems with derivative dependence. Aequ. Math. 2007, 74, 62–89. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, L.; Wu, Y. Second-order nonlinear singular Sturm–Liouville problems with integral boundary conditions. Appl. Math. Comput. 2009, 215, 1573–1582. [Google Scholar] [CrossRef]
- Zima, M. Positive solutions of second-order non-local boundary value problems with singularities in space variables, Boundary Value Problems. Bound. Value Probl. 2014, 9, 4–5. [Google Scholar]
- Guidotti, P.; Merino, S. Gradual loss of positivity and hidden invariant cones in a scalar heat equation. Differ. Integral Equ. 2000, 13, 1551–1568. [Google Scholar]
- Infante, G. Positive solutions of nonlocal boundary value problems with singularities. Discrete Contin. Dyn. Syst. Suppl. 2009, 377–384. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, L.; Zhang, J.; Agarwal, R.P. Positive solutions of singular three-point boundary value problems for second-order differential equations. J. Comput. Appl. Math. 2009, 230, 738–750. [Google Scholar] [CrossRef] [Green Version]
- Krasnosel’skii, A.; Zabreiko, P.P. Geometrical Methods of Nonlinear Analysis; Springer: Berlin, Germany, 1984. [Google Scholar]
- Webb, J.R.L. Solutions of nonlinear equations in cones and positive linear operators. J. Lond. Math. Soc. 2010, 82, 420–436. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Zhang, Y.; Feng, W. Nonlinear Spectrum and Fixed Point Index for a Class of Decomposable Operators. Mathematics 2021, 9, 278. https://doi.org/10.3390/math9030278
Kang S, Zhang Y, Feng W. Nonlinear Spectrum and Fixed Point Index for a Class of Decomposable Operators. Mathematics. 2021; 9(3):278. https://doi.org/10.3390/math9030278
Chicago/Turabian StyleKang, Shugui, Yanlei Zhang, and Wenying Feng. 2021. "Nonlinear Spectrum and Fixed Point Index for a Class of Decomposable Operators" Mathematics 9, no. 3: 278. https://doi.org/10.3390/math9030278
APA StyleKang, S., Zhang, Y., & Feng, W. (2021). Nonlinear Spectrum and Fixed Point Index for a Class of Decomposable Operators. Mathematics, 9(3), 278. https://doi.org/10.3390/math9030278