Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk
Abstract
:1. Introduction
2. SFA
2.1. Short, Medium and Long Chain SFA & CVD Risk
2.2. Dairy Fatty Acids
2.2.1. The Association Between Dairy Fat and CVD Risk
2.2.2. Replacing Dairy Fat with PUFA and Carbohydrate
3. MUFA
3.1. The Association between MUFA and CVD Risk
3.2. Replacing SFA with MUFA
4. PUFA
4.1. The Association between Total PUFA and CVD Risk
Replacing SFA with n-3 + n-6 PUFA
4.2. The Association between n-6 PUFA and CVD Risk
Replacing SFA with n-6 PUFA
4.3. The Association between n-3 PUFA and CVD Risk
4.3.1. ALA (18:3 n-3)
4.3.2. EPA (20:5 n-3) and DHA (22:6 n-3)
4.3.3. Replacement of SFA with n-3 PUFA
5. Carbohydrate
5.1. Carbohydrate and CVD Risk
5.2. Replacing SFA with Carbohydrates
6. Protein
6.1. Protein and CVD Risk
6.2. Replacement of SFA with Protein
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ACC | American College of Cardiology |
AHA | American Heart Association |
ALA | alpha linolenic acid (n-3) |
AMDR | Acceptable Macronutrient Distribution Ranges |
CAD | coronary artery disease |
CHD | coronary heart disease |
CVD | cardiovascular disease |
DGAs | Dietary Guidelines for Americans |
DHA | docosahexaenoic acid |
EPA | eicosapentaenoic acid |
EPIC | European Prospective Investigation into Cancer and Nutrition |
GI | glycemic index |
GL | glycemic load |
HDL | high-density lipoprotein |
HPFS | Health Professionals Follow-Up Study |
hs-CRP | high sensitivity C-reactive protein |
IHD | ischemic heart disease |
LCFA | long chain fatty acids |
LDL | low-density lipoprotein |
MCFA | medium chain fatty acids |
MUFA | monounsaturated fatty acids |
MI | myocardial infarction |
NHS | Nurse’s Health Study |
PREDIMED | Prevención con Dieta Mediterránea |
PUFA | polyunsaturated fatty acids |
SCD | sudden cardiac death |
SFA | saturated fatty acids |
References
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F.J.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef]
- Feigin, V.L.; Roth, G.A.; Naghavi, M.; Parmar, P.; Krishnamurthi, R.; Chugh, S.; Mensah, G.A.; Norrving, B.; Shiue, I.; Ng, M.; et al. Global burden of stroke and risk factors in 188 countries, during 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol. 2016, 15, 913–924. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvado, J.; Covas, M.I.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 2013, 368, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Mensink, R. Effects of Saturated Fatty Acids on Serum Lipids and Lipoproteins: A Systematic Review and Regression Analysis; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; De Jesus, J.M.; Miller, N.H.; Hubbard, V.S.; Lee, I.-M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2960–2984. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, T.A.; Maki, K.C.; Orringer, C.E.; Jones, P.H.; Kris-Etherton, P.; Sikand, G.; La Forge, R.; Daniels, S.R.; Wilson, D.P.; Morris, P.B. National Lipid Association recommendations for patient-centered management of dyslipidemia: Part 2. J. Clin. Lipidol. 2015, 9, S1–S122. [Google Scholar] [CrossRef] [PubMed]
- Rehm, C.D.; Peñalvo, J.L.; Afshin, A.; Mozaffarian, D. Dietary intake among US adults, 1999–2012. JAMA 2016, 315, 2542–2553. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Warnakula, S.; Kunutsor, S.; Crowe, F.; Ward, H.A.; Johnson, L.; Franco, O.H.; Butterworth, A.S.; Forouhi, N.G.; Thompson, S.G.; et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Ann. Intern. Med. 2014, 160, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am. J. Clin. Nutr. 2010, 91, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, Nutrients, and Dietary Patterns: Interconnections and Implications for Dietary Guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Schonfeld, P.; Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J. Lipid. Res. 2016, 57, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Papamandjaris, A.A.; MacDougall, D.E.; Jones, P.J. Medium chain fatty acid metabolism and energy expenditure: Obesity treatment implications. Life Sci. 1998, 62, 1203–1215. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Jones, P.J.H. Physiological Effects of Medium-Chain Triglycerides: Potential Agents in the Prevention of Obesity. J. Nutr. 2002, 132, 329–332. [Google Scholar] [PubMed]
- Kris-Etherton, P.M.; Fleming, J.A. Emerging nutrition science on fatty acids and cardiovascular disease: Nutritionists’ perspectives. Adv. Nutr. 2015, 6, 326s–337s. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Ascherio, A.; Colditz, G.A.; Speizer, F.E.; Hennekens, C.H.; Willett, W.C. Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. Am. J. Clin. Nutr. 1999, 70, 1001–1008. [Google Scholar] [PubMed]
- Zong, G.; Li, Y.; Wanders, A.J.; Alssema, M.; Zock, P.L.; Willett, W.C.; Hu, F.B.; Sun, Q. Intake of individual saturated fatty acids and risk of coronary heart disease in US men and women: Two prospective longitudinal cohort studies. BMJ 2016, 355, i5796. [Google Scholar] [CrossRef] [PubMed]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [PubMed]
- Micha, R.; Mozaffarian, D. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: A fresh look at the evidence. Lipids 2010, 45, 893–905. [Google Scholar] [CrossRef] [PubMed]
- Mensink, R.P. Effects of stearic acid on plasma lipid and lipoproteins in humans. Lipids 2005, 40, 1201–1205. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.E.; Zhang, J.; Kris-Etherton, P.M. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: A systematic review. Am. J. Clin. Nutr. 2010, 91, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Sampath, H.; Ntambi, J.M. The fate and intermediary metabolism of stearic acid. Lipids 2005, 40, 1187–1191. [Google Scholar] [CrossRef] [PubMed]
- Goff, D.C.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2935–2959. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, T.A.; Ito, M.K.; Maki, K.C.; Orringer, C.E.; Bays, H.E.; Jones, P.H.; McKenney, J.M.; Grundy, S.M.; Gill, E.A.; Wild, R.A. National Lipid Association recommendations for patient-centered management of dyslipidemia: Part 1—Full report. J. Clin. Lipidol. 2015, 9, 129–169. [Google Scholar] [CrossRef] [PubMed]
- Huth, P.J.; Fulgoni, V.L.; Keast, D.R.; Park, K.; Auestad, N. Major food sources of calories, added sugars, and saturated fat and their contribution to essential nutrient intakes in the U.S. diet: Data from the National Health and Nutrition Examination Survey (2003–2006). Nutr. J. 2013, 12, 116. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services. 2015–2020 Dietary Guidelines for Americans. Available online: https://health.gov/dietaryguidelines/2015/resources/2015-2020_Dietary_Guidelines.pdf (accessed on 12 March 2017).
- Rice, B.H. Dairy and Cardiovascular Disease: A Review of Recent Observational Research. Curr. Nutr. Rep. 2014, 3, 130–138. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, T.A.; Hafekost, K.; Mitrou, F.; Lawrence, D. Food sources of saturated fat and the association with mortality: A meta-analysis. Am. J. Public Health 2013, 103, e31–e42. [Google Scholar] [CrossRef] [PubMed]
- Kratz, M.; Baars, T.; Guyenet, S. The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease. Eur. J. Nutr. 2013, 52, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Pimpin, L.; Wu, J.H.Y.; Haskelberg, H.; Del Gobbo, L.; Mozaffarian, D. Is Butter Back? A Systematic Review and Meta-Analysis of Butter Consumption and Risk of Cardiovascular Disease, Diabetes, and Total Mortality. PLoS ONE 2016, 11, e0158118. [Google Scholar] [CrossRef] [PubMed]
- Praagman, J.; Beulens, J.W.; Alssema, M.; Zock, P.L.; Wanders, A.J.; Sluijs, I.; van der Schouw, Y.T. The association between dietary saturated fatty acids and ischemic heart disease depends on the type and source of fatty acid in the European Prospective Investigation into Cancer and Nutrition–Netherlands cohort. Am. J. Clin. Nutr. 2016, 103, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Lorenzen, J.K.; Astrup, A. Dairy calcium intake modifies responsiveness of fat metabolism and blood lipids to a high-fat diet. Br. J. Nutr. 2011, 105, 1823–1831. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.; Rachappaji, K.; Nandini, C.; Sambaiah, K.; Salimath, P. Modulatory effect of butyric acid-a product of dietary fiber fermentation in experimentally induced diabetic rats. J. Nutr. Biochem. 2002, 13, 522–527. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Cao, H.; King, I.B.; Lemaitre, R.N.; Song, X.; Siscovick, D.S.; Hotamisligil, G.S. Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in U.S. adults: A cohort study. Ann. Intern. Med. 2010, 153, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Parodi, P.W. Cooperative action of bioactive components in milk fat with PPARs may explain its anti-diabetogenic properties. Med. Hypotheses 2016, 89, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; de Oliveira Otto, M.C.; Lemaitre, R.N.; Fretts, A.M.; Hotamisligil, G.; Tsai, M.Y.; Siscovick, D.S.; Nettleton, J.A. trans-Palmitoleic acid, other dairy fat biomarkers, and incident diabetes: The Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Clin. Nutr. 2013, 97, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Djousse, L.; Weir, N.L.; Hanson, N.Q.; Tsai, M.Y.; Gaziano, J.M. Plasma phospholipid concentration of cis-palmitoleic acid and risk of heart failure. Circ. Heart Fail. 2012, 5, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Brassard, D.; Tessier-Grenier, M.; Allaire, J.; Rajendiran, E.; She, Y.; Ramprasath, V.; Gigleux, I.; Talbot, D.; Levy, E.; Tremblay, A.; et al. Comparison of the impact of SFAs from cheese and butter on cardiometabolic risk factors: A randomized controlled trial. Am. J. Clin. Nutr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Raziani, F.; Tholstrup, T.; Kristensen, M.D.; Svanegaard, M.L.; Ritz, C.; Astrup, A.; Raben, A. High intake of regular-fat cheese compared with reduced-fat cheese does not affect LDL cholesterol or risk markers of the metabolic syndrome: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 104, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Engel, S.; Tholstrup, T. Butter increased total and LDL cholesterol compared with olive oil but resulted in higher HDL cholesterol compared with a habitual diet. Am. J. Clin. Nutr. 2015, 102, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, Y.; Sun, Q.; Pan, A.; Manson, J.E.; Rexrode, K.M.; Willett, W.C.; Rimm, E.B.; Hu, F.B. Dairy fat and risk of cardiovascular disease in 3 cohorts of US adults. Am. J. Clin. Nutr. 2016, 104, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, M.U.; O’Reilly, E.J.; Heitmann, B.L.; Pereira, M.A.; Balter, K.; Fraser, G.E.; Goldbourt, U.; Hallmans, G.; Knekt, P.; Liu, S.; et al. Major types of dietary fat and risk of coronary heart disease: A pooled analysis of 11 cohort studies. Am. J. Clin. Nutr. 2009, 89, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Babio, N.; Martínez-González, M.A.; Corella, D.; Ros, E.; Martín-Peláez, S.; Estruch, R.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; et al. Dietary fat intake and risk of cardiovascular disease and all-cause mortality in a population at high risk of cardiovascular disease. Am. J. Clin. Nutr. 2015, 102, 1563–1573. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hruby, A.; Bernstein, A.M.; Ley, S.H.; Wang, D.D.; Chiuve, S.E.; Sampson, L.; Rexrode, K.M.; Rimm, E.B.; Willett, W.C.; et al. Saturated Fats Compared With Unsaturated Fats and Sources of Carbohydrates in Relation to Risk of Coronary Heart Disease: A Prospective Cohort Study. J. Am. Coll. Cardiol. 2015, 66, 1538–1548. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Li, Y.; Chiuve, S.E.; Stampfer, M.J.; Manson, J.E.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Association of specific dietary fats with total and cause-specific mortality. JAMA Intern. Med. 2016, 176, 1134–1145. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Martin, N.; Abdelhamid, A.; Davey Smith, G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Micha, R.; Wallace, S. Effects on Coronary Heart Disease of Increasing Polyunsaturated Fat in Place of Saturated Fat: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLoS Med. 2010, 7, e1000252. [Google Scholar] [CrossRef] [PubMed]
- Farvid, M.S.; Ding, M.; Pan, A.; Sun, Q.; Chiuve, S.E.; Steffen, L.M.; Willett, W.C.; Hu, F.B. Dietary Linoleic Acid and Risk of Coronary Heart Disease: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Circulation 2014, 130, 1568–1578. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, M.U.; Dethlefsen, C.; Joensen, A.M.; Stegger, J.; Tjonneland, A.; Schmidt, E.B.; Overvad, K. Intake of carbohydrates compared with intake of saturated fatty acids and risk of myocardial infarction: Importance of the glycemic index. Am. J. Clin. Nutr. 2010, 91, 1764–1768. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Virtamo, J.; Wolk, A. Dietary fats and dietary cholesterol and risk of stroke in women. Atherosclerosis 2012, 221, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M. AHA science advisory. Monounsaturated fatty acids and risk of cardiovascular disease. American Heart Association. Nutrition committee. Circulation 1999, 100, 1253–1258. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Strasser, B.; Hoffmann, G. Effects of monounsaturated fatty acids on cardiovascular risk factors: A systematic review and meta-analysis. Ann. Nutr. Metab. 2011, 59, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Gillingham, L.G.; Harris-Janz, S.; Jones, P.J.H. Dietary Monounsaturated Fatty Acids Are Protective Against Metabolic Syndrome and Cardiovascular Disease Risk Factors. Lipids 2011, 46, 209–228. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Kris-Etherton, P.M.; West, S.G.; Lamarche, B.; Jenkins, D.J.A.; Fleming, J.A.; McCrea, C.E.; Pu, S.; Couture, P.; Connelly, P.W.; et al. Effects of Canola and High-Oleic Acid Canola Oils on Abdominal Fat Mass in Individuals with Central Obesity. Obesity 2016, 24, 2261–2268. [Google Scholar] [CrossRef] [PubMed]
- Skeaff, C.M.; Miller, J. Dietary fat and coronary heart disease: Summary of evidence from prospective cohort and randomised controlled trials. Ann. Nutr. Metab. 2009, 55, 173–201. [Google Scholar] [CrossRef] [PubMed]
- Mente, A.; de Koning, L.; Shannon, H.S.; Anand, S.S. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch. Intern. Med. 2009, 169, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Hammad, S.; Pu, S.; Jones, P.J. Current Evidence Supporting the Link Between Dietary Fatty Acids and Cardiovascular Disease. Lipids 2016, 51, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Kien, C.L.; Bunn, J.Y.; Stevens, R.; Bain, J.; Ikayeva, O.; Crain, K.; Koves, T.R.; Muoio, D.M. Dietary intake of palmitate and oleate has broad impact on systemic and tissue lipid profiles in humans. Am. J. Clin. Nutr. 2014, 99, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Cooper, J.A. Effect of dietary fatty acid composition on substrate utilization and body weight maintenance in humans. Eur. J. Nutr. 2014, 53, 691–710. [Google Scholar] [CrossRef] [PubMed]
- Ramsden, C.E.; Hibbeln, J.R.; Majchrzak, S.F.; Davis, J.M. n-6 fatty acid-specific and mixed polyunsaturate dietary interventions have different effects on CHD risk: A meta-analysis of randomised controlled trials. Br. J. Nutr. 2010, 104, 1586–1600. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, J.K.; Mursu, J.; Tuomainen, T.; Voutilainen, S. Dietary Fatty Acids and Risk of Coronary Heart Disease in Men: The Kuopio Ischemic Heart Disease Risk Factor Study. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2679–2687. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Rimm, E.; Colditz, G.A.; Rosner, B.A.; Hennekens, C.H.; Willett, W.C. Dietary fat intake and the risk of coronary heart disease in women. N. Engl. J. Med. 1997, 337, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.; Hu, F.B.; Manson, J.E.; Stampfer, M.J.; Willett, W.C. Dietary fat intake and risk of coronary heart disease in women: 20 years of follow-up of the nurses’ health study. Am. J. Epidemiol. 2005, 161, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Pietinen, P.; Ascherio, A.; Korhonen, P.; Hartman, A.M.; Willett, W.C.; Albanes, D.; Virtamo, J. Intake of fatty acids and risk of coronary heart disease in a cohort of Finnish men. The alpha-tocopherol, beta-carotene cancer prevention study. Am. J. Epidemiol. 1997, 145, 876–887. [Google Scholar] [CrossRef] [PubMed]
- Chiuve, S.E.; Rimm, E.B.; Sandhu, R.K.; Bernstein, A.M.; Rexrode, K.M.; Manson, J.E.; Willett, W.C.; Albert, C.M. Dietary fat quality and risk of sudden cardiac death in women. Am. J. Clin. Nutr. 2012, 96, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Lemaitre, R.N.; King, I.B.; Song, X.; Psaty, B.M.; Siscovick, D.S.; Mozaffarian, D. Circulating omega-6 polyunsaturated fatty acids and total and cause-specific mortality: The Cardiovascular Health Study. Circulation 2014, 130, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Ramsden, C.E.; Zamora, D.; Leelarthaepin, B.; Majchrzak-Hong, S.F.; Faurot, K.R.; Suchindran, C.M.; Ringel, A.; Davis, J.M.; Hibbeln, J.R. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: Evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ 2013, 346, e8707. [Google Scholar] [CrossRef] [PubMed]
- Ramsden, C.E.; Zamora, D.; Majchrzak-Hong, S.; Faurot, K.R.; Broste, S.K.; Frantz, R.P.; Davis, J.M.; Ringel, A.; Suchindran, C.M.; Hibbeln, J.R. Re-evaluation of the traditional diet-heart hypothesis: Analysis of recovered data from Minnesota Coronary Experiment (1968–1973). BMJ 2016, 353, i1246. [Google Scholar] [CrossRef] [PubMed]
- Frantz, I.D., Jr.; Dawson, E.A.; Ashman, P.L.; Gatewood, L.C.; Bartsch, G.E.; Kuba, K.; Brewer, E.R. Test of effect of lipid lowering by diet on cardiovascular risk. The Minnesota Coronary Survey. Arteriosclerosis 1989, 9, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D. Does alpha-linolenic acid intake reduce the risk of coronary heart disease? A review of the evidence. Altern. Ther. Health Med. 2005, 11, 24–30. [Google Scholar] [PubMed]
- Pan, A.; Chen, M.; Chowdhury, R.; Wu, J.H.; Sun, Q.; Campos, H.; Mozaffarian, D.; Hu, F.B. α-Linolenic acid and risk of cardiovascular disease: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1262–1273. [Google Scholar] [CrossRef] [PubMed]
- Albert, C.M.; Oh, K.; Whang, W.; Manson, J.E.; Chae, C.U.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Dietary alpha-linolenic acid intake and risk of sudden cardiac death and coronary heart disease. Circulation 2005, 112, 3232–3238. [Google Scholar] [CrossRef] [PubMed]
- Kromhout, D.; Giltay, E.J.; Geleijnse, J.M. n-3 fatty acids and cardiovascular events after myocardial infarction. N. Engl. J. Med. 2010, 363, 2015–2026. [Google Scholar] [CrossRef] [PubMed]
- Eussen, S.R.B.M.; Geleijnse, J.M.; Giltay, E.J.; Rompelberg, C.J.M.; Klungel, O.H.; Kromhout, D. Effects of n-3 fatty acids on major cardiovascular events in statin users and non-users with a history of myocardial infarction. Eur. Heart. J. 2012, 33, 1582–1588. [Google Scholar] [CrossRef] [PubMed]
- Kotwal, S.; Jun, M.; Sullivan, D.; Perkovic, V.; Neal, B. Omega 3 Fatty acids and cardiovascular outcomes: Systematic review and meta-analysis. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Lista, J.; Perez-Martinez, P.; Lopez-Miranda, J.; Perez-Jimenez, F. Long chain omega-3 fatty acids and cardiovascular disease: A systematic review. Br. J. Nutr. 2012, 107 (Suppl. 2), S201–S213. [Google Scholar] [CrossRef] [PubMed]
- Rizos, E.C.; Ntzani, E.E.; Bika, E.; Kostapanos, M.S.; Elisaf, M.S. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: A systematic review and meta-analysis. JAMA 2012, 308, 1024–1033. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.M.; Myung, S.K.; Lee, Y.J.; Seo, H.G. Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: A meta-analysis of randomized, double-blind, placebo-controlled trials. Arch. Intern. Med. 2012, 172, 686–694. [Google Scholar] [PubMed]
- Chowdhury, R.; Stevens, S.; Gorman, D.; Pan, A.; Warnakula, S.; Chowdhury, S.; Ward, H.; Johnson, L.; Crowe, F.; Hu, F.B.; et al. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: Systematic review and meta-analysis. BMJ 2012, 345, e6698. [Google Scholar] [CrossRef] [PubMed]
- Bowen, K.J.; Harris, W.S.; Kris-Etherton, P.M. Omega-3 Fatty Acids and Cardiovascular Disease: Are There Benefits? Curr. Treat. Options Cardiovasc. Med. 2016, 18, 69. [Google Scholar] [CrossRef] [PubMed]
- De Lorgeril, M.; Renaud, S.; Mamelle, N.; Salen, P.; Martin, J.L.; Monjaud, I.; Guidollet, J.; Touboul, P.; Delaye, J. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 1994, 343, 1454–1459. [Google Scholar] [CrossRef]
- Halton, T.L.; Willett, W.C.; Liu, S.; Manson, J.E.; Albert, C.M.; Rexrode, K.; Hu, F.B. Low-carbohydrate-diet score and the risk of coronary heart disease in women. N. Engl. J. Med. 2006, 355, 1991–2002. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Wang, C.; Wang, S.; Cao, G.; Jin, C.; Yu, J.; Li, X.; Yan, J.; Wang, F.; Yu, W.; et al. Carbohydrate Intake, Glycemic Index, Glycemic Load, and Stroke: A Meta-analysis of Prospective Cohort Studies. Asia Pac. J. Public Health 2015, 27, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.; Frost, G.; Whittaker, V.; Summerbell, C. Low glycaemic index diets for coronary heart disease. Cochrane Database Syst. Rev. 2004. [Google Scholar] [CrossRef]
- Sacks, F.M.; Carey, V.J.; Anderson, C.A.; Miller, E.R., 3rd; Copeland, T.; Charleston, J.; Harshfield, B.J.; Laranjo, N.; McCarron, P.; Swain, J.; et al. Effects of high vs low glycemic index of dietary carbohydrate on cardiovascular disease risk factors and insulin sensitivity: The OmniCarb randomized clinical trial. JAMA 2014, 312, 2531–2541. [Google Scholar] [PubMed]
- Fan, J.; Song, Y.; Wang, Y.; Hui, R.; Zhang, W. Dietary Glycemic Index, Glycemic Load, and Risk of Coronary Heart Disease, Stroke, and Stroke Mortality: A Systematic Review with Meta-Analysis. PLoS ONE 2012, 7, e52182. [Google Scholar] [CrossRef] [PubMed]
- Mirrahimi, A.; de Souza, R.J.; Chiavaroli, L.; Sievenpiper, J.L.; Beyene, J.; Hanley, A.J.; Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A. Associations of Glycemic Index and Load With Coronary Heart Disease Events: A Systematic Review and Meta-Analysis of Prospective Cohorts. J. Am. Heart Assoc. 2012, 1, e000752. [Google Scholar] [CrossRef] [PubMed]
- Matthan, N.R.; Ausman, L.M.; Meng, H.; Tighiouart, H.; Lichtenstein, A.H. Estimating the reliability of glycemic index values and potential sources of methodological and biological variability. Am. J. Clin. Nutr. 2016, 104, 1004–1013. [Google Scholar] [CrossRef] [PubMed]
- Vega-López, S.; Ausman, L.M.; Griffith, J.L.; Lichtenstein, A.H. Interindividual Variability and Intra-Individual Reproducibility of Glycemic Index Values for Commercial White Bread. Diabetes Care 2007, 30, 1412–1417. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Wang, D.; Long, J.; Yang, F.; Si, L. Meta-Analysis of the Association Between Whole Grain Intake and Coronary Heart Disease Risk. Am. J. Cardiol. 2015, 115, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Benisi-Kohansal, S.; Saneei, P.; Salehi-Marzijarani, M.; Larijani, B.; Esmaillzadeh, A. Whole-Grain Intake and Mortality from All Causes, Cardiovascular Disease, and Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2016, 7, 1052–1065. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, Z.; Gregg, E.W.; Flanders, W.D.; Merritt, R.; Hu, F.B. Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Intern. Med. 2014, 174, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Xi, B.; Huang, Y.; Reilly, K.H.; Li, S.; Zheng, R.; Barrio-Lopez, M.T.; Martinez-Gonzalez, M.A.; Zhou, D. Sugar-sweetened beverages and risk of hypertension and CVD: A dose–response meta-analysis. Br. J. Nutr. 2015, 113, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.; Heitmann, B.L.; Olsen, N. Sugar-sweetened beverages, vascular risk factors and events: A systematic literature review. Public Health Nutr. 2015, 18, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Huang, J.; Tian, Y.; Yang, X.; Gu, D. Sugar sweetened beverages consumption and risk of coronary heart disease: A meta-analysis of prospective studies. Atherosclerosis 2014, 234, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Te Morenga, L.A.; Howatson, A.J.; Jones, R.M.; Mann, J. Dietary sugars and cardiometabolic risk: Systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am. J. Clin. Nutr. 2014, 100, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S. The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 2002, 287, 2414–2423. [Google Scholar] [CrossRef] [PubMed]
- Horton, J.D.; Goldstein, J.L.; Brown, M.S. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Investig. 2002, 109, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, M.; Gerstein, H.C.; Wang, Y.; Yusuf, S. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 1999, 22, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, L.B.; Raben, A.; Stender, S.; Astrup, A. Effect of sucrose on inflammatory markers in overweight humans. Am. J. Clin. Nutr. 2005, 82, 421–427. [Google Scholar] [PubMed]
- Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Scientific Report of the 2015 Dietary Guidelines Advisory Committee. Available online: https://health.gov/dietaryguidelines/2015-scientific-report/pdfs/scientific-report-of-the-2015-dietary-guidelines-advisory-committee.pdf (accessed on 12 March 2017).
- Jennings, A.; MacGregor, A.; Welch, A.; Chowienczyk, P.; Spector, T.; Cassidy, A. Amino Acid Intakes Are Inversely Associated with Arterial Stiffness and Central Blood Pressure in Women. J. Nutr. 2015, 145, 2130–2138. [Google Scholar] [CrossRef] [PubMed]
- Stamler, R. Implications of the INTERSALT study. Hypertension 1991, 17, I16–I20. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Alonso, P.; Salas-Salvado, J.; Ruiz-Canela, M.; Corella, D.; Estruch, R.; Fito, M.; Aros, F.; Gomez-Gracia, E.; Fiol, M.; Lapetra, J.; et al. High dietary protein intake is associated with an increased body weight and total death risk. Clin. Nutr. 2016, 35, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, L.E.; Kushi, L.H.; Jacobs, D.R., Jr.; Cerhan, J.R. Associations of dietary protein with disease and mortality in a prospective study of postmenopausal women. Am. J. Epidemiol. 2005, 161, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Preis, S.R.; Stampfer, M.J.; Spiegelman, D.; Willett, W.C.; Rimm, E.B. Dietary protein and risk of ischemic heart disease in middle-aged men. Am. J. Clin. Nutr. 2010, 92, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Preis, S.R.; Stampfer, M.J.; Spiegelman, D.; Willett, W.C.; Rimm, E.B. Lack of association between dietary protein intake and risk of stroke among middle-aged men. Am. J. Clin. Nutr. 2010, 91, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Longo, V.D.; Chan, A.T.; Giovannucci, E.L. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern. Med. 2016, 176, 1453–1463. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Protein, body weight, and cardiovascular health. Am. J. Clin. Nutr. 2005, 82, 242s–247s. [Google Scholar] [PubMed]
- Sinha, R.; Cross, A.J.; Graubard, B.I.; Leitzmann, M.F.; Schatzkin, A. Meat intake and mortality: A prospective study of over half a million people. Arch. Intern. Med. 2009, 169, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Sun, Q.; Bernstein, A.M.; Schulze, M.B.; Manson, J.E.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Red meat consumption and mortality: Results from 2 prospective cohort studies. Arch. Intern. Med. 2012, 172, 555–563. [Google Scholar] [PubMed]
- Rohrmann, S.; Overvad, K.; Bueno-de-Mesquita, H.B.; Jakobsen, M.U.; Egeberg, R.; Tjonneland, A.; Nailler, L.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Krogh, V.; et al. Meat consumption and mortality--results from the European Prospective Investigation into Cancer and Nutrition. BMC Med. 2013, 11, 63. [Google Scholar] [CrossRef] [PubMed]
- Kaluza, J.; Akesson, A.; Wolk, A. Processed and unprocessed red meat consumption and risk of heart failure: Prospective study of men. Circ. Heart Fail. 2014, 7, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.M.; Sun, Q.; Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Willett, W.C. Major dietary protein sources and risk of coronary heart disease in women. Circulation 2010, 122, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Richter, C.K.; Skulas-Ray, A.C.; Champagne, C.M.; Kris-Etherton, P.M. Plant protein and animal proteins: Do they differentially affect cardiovascular disease risk? Adv. Nutr. 2015, 6, 712–728. [Google Scholar] [CrossRef] [PubMed]
- Bo, S.; Pisu, E. Role of dietary magnesium in cardiovascular disease prevention, insulin sensitivity and diabetes. Curr. Opin. Lipidol. 2008, 19, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.R.; Obarzanek, E.; Cutler, J.A.; Buring, J.E.; Rexrode, K.M.; Kumanyika, S.K.; Appel, L.J.; Whelton, P.K.; for the Trials of Hypertension Prevention Collaborative Research Group. Joint Effects of Sodium and Potassium Intake on Subsequent Cardiovascular Disease: The Trials of Hypertension Prevention Follow-up Study. Arch. Intern. Med. 2009, 169, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S.; Venkataraman, K.; Hollingsworth, A.; Piche, M.; Tai, T. Polyphenols: Benefits to the Cardiovascular System in Health and in Aging. Nutrients 2013, 5, 3779. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71S–88S. [Google Scholar] [CrossRef]
- Ras, R.T.; Geleijnse, J.M.; Trautwein, E.A. LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: A meta-analysis of randomised controlled studies. Br. J. Nutr. 2014, 112, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Krajcovicova-Kudlackova, M.; Babinska, K.; Valachovicova, M. Health benefits and risks of plant proteins. Bratisl. Lek. Listy 2005, 106, 231–234. [Google Scholar] [PubMed]
- Giroux, I.; Kurowska, E.M.; Carroll, K.K. Role of dietary lysine, methionine, and arginine in the regulation of hypercholesterolemia in rabbits. J. Nutr. Biochem. 1999, 10, 166–171. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Z.; Meininger, C.J.; Wu, G. L-Leucine and NO-mediated cardiovascular function. Amino Acids 2015, 47, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Keogh, J.; Clifton, P. A review of potential metabolic etiologies of the observed association between red meat consumption and development of type 2 diabetes mellitus. Metabolism 2015, 64, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Wolk, A. Potential health hazards of eating red meat. J. Intern. Med. 2016, 281, 106–122. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; An, P.; Wang, H.; Wang, X.; Shen, X.; Li, X.; Min, J.; Liu, S.; Wang, F. Dietary intake of heme iron and risk of cardiovascular disease: A dose-response meta-analysis of prospective cohort studies. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Micha, R.; Wallace, S.K.; Mozaffarian, D. Red and Processed Meat Consumption and Risk of Incident Coronary Heart Disease, Stroke, and Diabetes Mellitus: A Systematic Review and Meta-Analysis. Circulation 2010, 121, 2271–2283. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Fahimi, S.; Singh, G.M.; Micha, R.; Khatibzadeh, S.; Engell, R.E.; Lim, S.; Danaei, G.; Ezzati, M.; Powles, J. Global sodium consumption and death from cardiovascular causes. N. Engl. J. Med. 2014, 371, 624–634. [Google Scholar] [CrossRef] [PubMed]
- De la Monte, S.M.; Tong, M.; Lawton, M.; Longato, L. Nitrosamine exposure exacerbates high fat diet-mediated type 2 diabetes mellitus, non-alcoholic steatohepatitis, and neurodegeneration with cognitive impairment. Mol. Neurodegener. 2009, 4, 54. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.E.; Dordevic, A.L.; Tan, S.M.; Ryan, L.; Coughlan, M.T. Dietary Advanced Glycation End Products and Risk Factors for Chronic Disease: A Systematic Review of Randomised Controlled Trials. Nutrients 2016, 8, 125. [Google Scholar] [CrossRef] [PubMed]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Trends in intake of energy and macronutrients–United States, 1971-2000. MMWR Wkly. Rep. 2004, 53, 80–82. [Google Scholar]
Study | Design | n | Mean Follow-Up Time (Years) | Outcome | Substitution | Result | Effect Size (95% CI) | Covariates Included in Analyses |
---|---|---|---|---|---|---|---|---|
Substitution of Saturated Fat for MUFA | ||||||||
Jakobsen 2009 [42] | Pooled analysis of prospective cohort studies | 11 studies (n = 344,696) | Range 4 to 10 | Coronary events | 5% of energy from SFA → MUFA | ↔ | HR 1.19 (1.00–1.42) | Age; BMI; year survey completed; percentage of energy from MUFA, PUFA, trans-fat, protein and carbohydrates; energy intake; smoking; physical activity; education; alcohol intake; fiber intake; cholesterol intake; hypertension |
Coronary deaths | ↔ | HR 1.01 (0.73–1.41) | ||||||
Guasch-Ferré 2015 [43] [PREDIMED] | Prospective cohort | 7038 | 6 | CVD | 5% of energy from SFA → MUFA | ↓ | HR 0.63 (0.43–0.94) | Age; sex; BMI; intake of subtypes of fat, protein, and carbohydrates; energy intake; smoking; physical activity; education; alcohol intake; fiber intake; cholesterol intake; hypertension; intervention group; diabetes; hyper-cholesterolemia; family history of CHD; antihypertensive medication; oral antidiabetic agents; lipid lowering drugs |
All-cause death | ↔ | HR 0.91 (0.65–1.26) | ||||||
Li 2015 [44] [NHS; HPFS] | Prospective cohort | 127,536 | Range 24–30 | CHD | 5% of energy from SFA → MUFA | ↓ | HR 0.85 (0.74–0.97) | BMI, percentage of energy from protein; energy intake; smoking; physical activity; alcohol intake; cholesterol intake; hypertension at baseline; hypercholesterolemia at baseline; family history of myocardial infarction and diabetes; use of vitamins and aspirin |
Praagman 2016 [31] [EPIC-Netherlands] | Prospective cohort | 35,597 | 12 | IHD | 5% of energy from SFA → cis-MUFA | ↑ | HR 1.30 (1.02–1.65) | Age, sex, BMI, waist circumference; intake of carbohydrate, cis-MUFA, PUFA, trans-fat, animal protein and vegetable (per 5% of energy); energy intake (excluding alcohol); smoking, physical activity; education; alcohol intake; fiber intake (energy adjusted); cholesterol intake (energy adjusted); vitamin c (energy adjusted) |
Wang 2016 [45] [NHS; HPFS] | Prospective cohort | 126,233 | NHS ≤ 32; HPFS ≤ 26 | CVD mortality | 5% of energy from SFA → MUFA | ↔ | HR 0.96 (0.84–1.09) | Age; BMI, percentage of energy intake from protein, remaining fatty acids (saturated fat, PUFA, MUFA, trans-fat, ω-6 PUFAs, ω-3 PUFAs, linoleic acid, arachidonic acid, α-linolenic acid, and marine ω-3 fats); energy intake; smoking; physical activity; alcohol intake; cholesterol intake; family history of myocardial infarction, diabetes, cancer, hypertension, hyper-cholesterolemia; multivitamin use; vitamin E supplement; aspirin use; white race; marital status; menopausal status and hormone use in women |
Total mortality | ↓ | HR 0.87 (0.82–0.93) | ||||||
Zong 2016 [17] [NHS; HPFS] | Prospective cohort | 115,782 | NHS 25.8; HPFS 21.2 | CHD | 1% of energy from 12:0–18:0 SFA → MUFA | ↔ | HR 0.95 (0.90, 1.01) | Age; BMI; ethnicity; total energy; energy from trans-fat; energy from carbohydrates of non-whole grain sources; energy from non-plant sources; smoking status; physical activity; alcohol intake; family history of MI; menopausal status; postmenopausal hormone use; aspirin use; multivitamin use; baseline hypertension; baseline hypercholesterolemia; PUFA intake; whole grains intake; plant proteins intake; intake of other SFA |
Hooper 2015 [46] Cochrane review | Meta-analysis of randomized controlled trials | 15 studies (n > 59,000) | >2 | CVD events | SFA → MUFA | ↔ | RR 1.00 (0.53–1.89) | Aggregate meta-analysis—no overall adjustment |
Substitution of saturated fat for PUFA | ||||||||
Mozaffarian 2010 [47] | Meta-analysis of randomized controlled trials | 8 studies (n = 13,614) | Median of all trials 4.25 | CHD | 5% of energy from SFA → total PUFA | ↓ | RR 0.90 (0.83–0.97) | Aggregate meta-analysis—no overall adjustment |
Jakobsen 2009 [42] | Pooled analysis of prospective cohort studies | 11 studies (n = 344,696) | Range 4 to 10 | Coronary events | 5% of energy from SFA → total PUFA | ↓ | HR 0.87 (0.77–0.97) | Age; BMI; year survey completed; percentage of energy from MUFA, PUFA, trans-fat, protein and carbohydrates; energy intake; smoking; physical activity; education; alcohol intake; fiber intake; cholesterol intake; hypertension |
Coronary deaths | ↓ | HR 0.74 (0.61–0.89) | ||||||
Farvid 2014 [48] | Meta-analysis of prospective cohort studies | 13 studies (n = 310,602) | Range 5.3 to 30 | Coronary events | 5% of energy from SFA → linoleic acid | ↓ | RR 0.91 (0.87–0.96) | Aggregate meta-analysis—analyses in the individuals studies adjusted but no overall adjustment |
Coronary deaths | ↓ | RR 0.87 (0.82–0.94) | ||||||
Li 2015 [44] [NHS; HPFS] | Prospective cohort | 127,536 | Range 24–30 | CHD | 5% of energy from SFA → total PUFA | ↓ | HR 0.75 (0.67–0.84) | BMI, percentage of energy from protein; energy intake; smoking; physical activity; alcohol intake; cholesterol intake; hypertension at baseline; hypercholesterolemia at baseline; family history of myocardial infarction and diabetes; use of vitamins and aspirin |
Guasch-Ferré 2015 [43] [PREDIMED] | Prospective cohort | 7038 | 6 | CVD | 5% of energy from SFA → PUFA | ↓ | HR 0.67 (0.45–0.98) | Age; sex; BMI; intake of subtypes of fat, protein, and carbohydrates; energy intake; smoking; physical activity; education; alcohol intake; fiber intake; cholesterol intake; hypertension; intervention group; diabetes; hyper-cholesterolemia; family history of CHD; antihypertensive medication; oral antidiabetic agents; lipid lowering drugs |
All-cause mortality | ↓ | HR 0.61 (0.39–0.97) | ||||||
Chen 2016 [41] [NHS; NHS II; HPFS] | Prospective cohort | 134,327 | NHS ≤ 32; NHS II ≤; HPFS ≤ 24 | CVD | 5% of energy from dairy fat → total PUFA | ↓ | HR 0.76 (0.71–0.81) | Age, BMI, intake of protein; energy intake; smoking; physical activity; intake of fruit, vegetables, coffee; alcohol intake; baseline hypertension; baseline hyper-cholesterolemia; race; menopausal status and menopausal hormone use (NHS and NHS II); oral contraceptive use (NHS II only) |
CHD | ↓ | HR 0.74 (0.68–0.81) | ||||||
Stroke | ↓ | HR 0.78 (0.70–0.88) | ||||||
CVD | 5% of energy from dairy fat → n-6 PUFA | ↓ | HR 0.75 (0.70–0.81) | |||||
CHD | ↓ | HR 0.75 (0.69–0.82) | ||||||
Stroke | ↓ | HR 0.76 (0.68–0.86) | ||||||
CVD | 0.3% of energy from dairy fat → α-linolenic acid | ↓ | HR 0.86 (0.82–0.90) | |||||
CHD | ↓ | HR 0.83 (0.78–0.88) | ||||||
Stroke | ↓ | HR 0.89 (0.83–0.96) | ||||||
CVD | 0.3% of energy from dairy fat → marine n-3 | ↓ | HR 0.89 (0.84–0.94) | |||||
CHD | ↓ | HR 0.87 (0.81–0.93) | ||||||
Stroke | ↔ | HR 0.92 (0.84–1.01) | ||||||
Praagman 2016 [31] [EPIC-Netherlands] | Prospective cohort | 35,597 | 12 | IHD | 5% of energy from SFA → PUFA | ↑ | HR 1.35 (1.14–1.61) | Age, sex, BMI, waist circumference; intake of carbohydrate, cis-MUFA, PUFA, trans-fat, animal protein and vegetable (per 5% of energy); energy intake (excluding alcohol); smoking, physical activity; education; alcohol intake; fiber intake (energy adjusted); cholesterol intake (energy adjusted); vitamin c (energy adjusted) |
Wang 2016 [45] [NHS; HPFS] | Prospective cohort | 126,233 | NHS ≤ 32; HPFS ≤ 26 | CVD mortality | 5% of energy from SFA → total PUFA | ↓ | HR 0.72 (0.65–0.80) | Age; BMI, percentage of energy intake from protein, remaining fatty acids (saturated fat, PUFA, MUFA, trans-fat, ω-6 PUFAs, ω-3 PUFAs, linoleic acid, arachidonic acid, α-linolenic acid, and marine ω-3 fats); energy intake; smoking; physical activity; alcohol intake; cholesterol intake; family history of myocardial infarction, diabetes, cancer, hypertension, hyper-cholesterolemia; multivitamin use; vitamin E supplement; aspirin use; white race; marital status; menopausal status and hormone use in women |
Total mortality | ↓ | HR 0.73 (0.70–0.77) | ||||||
CVD mortality | 2% of energy from SFA → n-6 PUFA | ↓ | HR 0.89 (0.85–0.94) | |||||
Total mortality | ↓ | HR 0.93 (0.91–0.96) | ||||||
CVD mortality | 0.3% of energy from SFA → n-3 PUFA | ↔ | HR 1.01 (0.97–1.05) | |||||
Total mortality | ↓ | HR 0.95 (0.93-0.96) | ||||||
Zong 2016 [17] [NHS; HPFS] | Prospective cohort | 115,782 | NHS 25.8; HPFS 21.2 | CHD | 1% of energy from 12:0–18:0 SFA → PUFA | ↓ | HR 0.92 (0.89, 0.96) | Age; BMI; ethnicity; total energy; energy from trans-fat; energy from carbohydrates of non-whole grain sources; energy from non-plant sources; smoking status; physical activity; alcohol intake; family history of MI; menopausal status; postmenopausal hormone use; aspirin use; multivitamin use; baseline hypertension; baseline hypercholesterolemia; MUFA intake; whole grain intake; plant protein intake; intake of other SFA |
Hooper 2015 [46] Cochrane review | Meta-analysis of randomized controlled trials | 15 studies (n > 59,000) | >2 | CVD events | SFA → PUFA | ↓ | RR 0.73 (0.58–0.92) | Aggregate meta-analysis—no overall adjustment |
Substitution of Saturated Fat for Carbohydrate | ||||||||
Jakobsen 2009 [42] | Pooled analysis of prospective cohort studies | 11 studies (n = 344,696) | Range 4 to 10 | Coronary events | 5% of energy from SFA → total carbohydrate | ↑ | HR 1.07 (1.01–1.14) | Age; BMI; year survey completed; percentage of energy from MUFA, PUFA, trans-fat, protein and carbohydrates; energy intake; smoking; physical activity; education; alcohol intake; fiber intake; cholesterol intake; hypertension |
Coronary deaths | 5% of energy from SFA → total carbohydrate | ↔ | HR 0.96 (0.82–1.13) | |||||
Jakobsen 2010 [49] | Prospective cohort | 53,644 | Median 12 | MI | 5% of energy from SFA → total carbohydrates | ↔ | HR 1.04 (0.92–1.17) | Age, sex, BMI; percentage of energy from glycemic carbohydrates, proteins, MUFA, PUFA; energy intake; smoking; physical activity; education; alcohol consumer; intake of alcohol; hypertension |
5% of energy from SFA → carbohydrates with low-GI (median GI 82) | ↔ | HR 0.88 (0.72–1.07) | ||||||
5% of energy from SFA → carbohydrates with medium-GI (median GI 88) | ↔ | HR 0.98 (0.80–1.21) | ||||||
5% of energy from SFA → carbohydrates with high-GI (median GI 93) | ↑ | HR 1.33 (1.08–1.64) | ||||||
Guasch-Ferré 2015 [43] [PREDIMED] | Prospective cohort | 7038 | 6 | CVD | 5% of energy from SFA→ total carbohydrate | ↔ | HR 0.83 (0.63–1.10) | Age; sex; BMI; intake of subtypes of fat, protein, and carbohydrates; energy intake; smoking; physical activity; education; alcohol intake; fiber intake; cholesterol intake; hypertension; intervention group; diabetes; hyper-cholesterolemia; family history of CHD; antihypertensive medication; oral antidiabetic agents; lipid lowering drugs |
All-cause death | ↔ | HR 1.04 (0.81–1.33) | ||||||
Li 2015 [44] [NHS; HPFS] | Prospective cohort | 127,536 | Range 24–30 | CHD | 5% of energy from SFA → whole grains | ↓ | HR 0.91 (0.85–0.98) | BMI, percentage of energy from protein; energy intake; smoking; physical activity; alcohol intake; cholesterol intake; hypertension at baseline; hypercholesterolemia at baseline; family history of myocardial infarction and diabetes; use of vitamins and aspirin |
5% of energy from SFA → refined starches/added sugar | ↔ | Not reported | ||||||
Zong 2016 [17] [NHS; HPFS] | Prospective cohort | 115,782 | NHS 25.8; HPFS 21.2 | CHD | 1% of energy from 12:0–18:0 SFA → whole grains | ↓ | HR 0.94 (0.91, 0.97) | Age; BMI; ethnicity; total energy; energy from trans-fat; energy from carbohydrates of non-whole grain sources; energy from non-plant sources; smoking status; physical activity; alcohol intake; family history of MI; menopausal status; postmenopausal hormone use; aspirin use; multivitamin use; baseline hypertension; baseline hypercholesterolemia; MUFA intake; PUFA intake; plant protein intake; intake of other SFA |
Chen 2016 [41] [NHS; NHS II; HPFS] | Prospective cohort | 134,327 | NHS ≤ 32; NHS II ≤ 20; HPFS ≤ 24 | CVD | 5% of energy from dairy fat → carbohydrate from whole grains | ↓ | HR 0.72 (0.69–0.75) | Age, BMI, intake of protein; energy intake; smoking; physical activity; intake of fruit, vegetables, coffee; alcohol intake; baseline hypertension; baseline hyper-cholesterolemia; race; menopausal status and menopausal hormone use (NHS and NHS II); oral contraceptive use (NHS II only) |
CHD | ↓ | HR 0.66 (0.62–0.70) | ||||||
Stroke | ↓ | HR 0.84 (0.78–0.91) | ||||||
CVD | 5% of energy from dairy fat → carbohydrate from refined starch and added sugar | ↔ | HR 0.97 (0.94–1.00) | |||||
CHD | ↔ | HR 0.96 (0.93–1.00) | ||||||
Stroke | ↔ | HR 0.98 (0.94–1.03) | ||||||
Praagman 2016 [31] [EPIC-NL] | Prospective cohort | 35,597 | 12 | IHD | 5% of energy from SFA → total carbohydrates | ↑ | HR (1.23 (1.09–1.40) | Age, sex, BMI, waist circumference; intake of carbohydrate, cis-MUFA, PUFA, trans-fat, animal protein and vegetable (per 5% of energy); energy intake (excluding alcohol); smoking, physical activity; education; alcohol intake; fiber intake (energy adjusted); cholesterol intake (energy adjusted); vitamin c (energy adjusted) |
5% of energy from SFA → carbohydrates with low GI (GI < 53) | ↔ | HR 1.14 (0.91–1.43) | ||||||
5% of energy from SFA → carbohydrates with medium GI | ↑ | HR 1.35 (1.05–1.73) | ||||||
5% of energy from SFA → carbohydrates with high GI (GI > 56) | ↑ | HR 1.27 (1.03–1.56) | ||||||
Hooper 2015 [46] Cochrane review | Meta-analysis of randomized controlled trials | 15 studies (n > 59,000) | >2 | CVD events | SFA → carbohydrate | ↔ | RR 0.93 (0.79–1.08) | Aggregate meta-analysis—no overall adjustment |
Substitution of Saturated Fat for Protein | ||||||||
Larsson 2012 [50] | Prospective cohort | 34,670 | Median 10.4 | Stroke | 5% of energy from SFA → protein | ↓ | 13% lower risk (0–26%) | Age, BMI; intake of fat; energy intake; smoking status and smoking pack years; physical activity; education; alcohol intake; intake of cholesterol, calcium, fruits and vegetables; hypertension; diabetes; aspirin use; family history of myocardial infarction |
Praagman 2016 [31] [EPIC-NL] | Prospective cohort | 35,597 | 12 | IHD | 5% of energy from SFA → total protein | ↑ | HR 1.29 (1.08–1.54) | Age, sex, BMI, waist circumference; intake of carbohydrate, cis-MUFA, PUFA, trans-fat, animal protein and vegetable (per 5% of energy); energy intake (excluding alcohol); smoking, physical activity; education; alcohol intake; fiber intake (energy adjusted); cholesterol intake (energy adjusted); vitamin c (energy adjusted) |
5% of energy from SFA → animal protein | ↑ | HR 1.37 (1.14–1.65) | ||||||
5% of energy from SFA → vegetable protein | ↔ | HR 0.81 (0.57–1.17) | ||||||
Zong 2016 [17] [NHS; HPFS] | Prospective cohort | 115,782 | NHS 25.8; HPFS 21.2 | CHD | 1% of energy from 12:0–18:0 SFA → plant protein | ↓ | HR 0.93 (0.89, 0.97) | Age; BMI; ethnicity; total energy; energy from trans-fat; energy from carbohydrates of non-whole grain sources; energy from non-plant sources; smoking status; physical activity; alcohol intake; family history of MI; menopausal status; postmenopausal hormone use; aspirin use; multivitamin use; baseline hypertension; baseline hypercholesterolemia; MUFA intake; whole grain intake; intake of other SFA |
Hooper 2015 [46] Cochrane review | Meta-analysis of randomized controlled trials | 15 studies (n > 59,000) | >2 | CVD events | SFA → protein | ↔ | RR 0.98 (0.90–1.06) | Aggregate meta-analysis—no overall adjustment |
Study | Design | n | Follow-Up Time | Outcome | Substitution | Result | Effect Size | Covariates Included in Analyses |
---|---|---|---|---|---|---|---|---|
Substitution of Saturated Fat for MUFA | ||||||||
Mensink 2016 [4] | Systematic review and meta-analysis of randomized controlled trials | 74 studies | Range 13–91 days | Total cholesterol | 1% of energy from SFA → cis-MUFA | −0.046 mmol/L (−0.051 to−0.040; p < 0.001) | ↓ | No adjustment |
69 studies | LDL cholesterol | −0.042 mmol/L (−0.047 to −0.037; p < 0.001) | ↓ | |||||
68 studies | HDL cholesterol | −0.002 mmol/L (−0.00 to 0.000; p = 0.014)) | ↓ | |||||
72 studies | Triglycerides | −0.004 mmol/L (−0.007 to −0.001; p = 0.022) | ↓ | |||||
Substitution of Saturated Fat for PUFA | ||||||||
Mensink 2016 [4] | Systematic review and meta-analysis of randomized controlled trials | 74 studies | Range 13–91 days | Total cholesterol | 1% of energy from SFA → cis-PUFA | −0.064 mmol/L (−0.070 to −0.058; p < 0.001) | ↓ | No adjustment |
69 studies | LDL cholesterol | −0.055 mmol/L (−0.061 to −0.050; p < 0.001) | ↓ | |||||
68 studies | HDL cholesterol | −0.005 mmol/L (−0.006 to −0.003; p < 0.001) | ↓ | |||||
72 studies | Triglycerides | −0.010 mmol/L (−0.014 to −0.007; p < 0.001) | ↓ | |||||
Substitution of Saturated Fat for Carbohydrate | ||||||||
Mensink 2016 [4] | Systematic review and meta-analysis of randomized controlled trials | 74 studies | Range 13–91 days | Total cholesterol | 1% of energy from SFA → carbohydrates | −0.041 mmol/L (−0.047 to −0.035; p < 0.001) | ↓ | No adjustment |
69 studies | LDL cholesterol | −0.033 mmol/L (−0.039 to −0.027; p < 0.001) | ↓ | |||||
68 studies | HDL cholesterol | −0.010 mmol/L (−0.012 to −0.008; p < 0.001) | ↓ | |||||
72 studies | Triglycerides | 0.011 mmol/L (0.007 to 0.014; p = 0.842) | ↔ |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briggs, M.A.; Petersen, K.S.; Kris-Etherton, P.M. Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare 2017, 5, 29. https://doi.org/10.3390/healthcare5020029
Briggs MA, Petersen KS, Kris-Etherton PM. Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare. 2017; 5(2):29. https://doi.org/10.3390/healthcare5020029
Chicago/Turabian StyleBriggs, Michelle A., Kristina S. Petersen, and Penny M. Kris-Etherton. 2017. "Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk" Healthcare 5, no. 2: 29. https://doi.org/10.3390/healthcare5020029
APA StyleBriggs, M. A., Petersen, K. S., & Kris-Etherton, P. M. (2017). Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare, 5(2), 29. https://doi.org/10.3390/healthcare5020029