A New Kind of Chemical Nanosensors for Discrimination of Espresso Coffee
Abstract
:1. Introduction
- Discrimination of four different typologies of “Molinari” coffee capsules (Biologico, Deciso, Dolce, Guatemala) using a new innovative technology based on semiconductor metal oxide sensors (MOX).
- To underline differences between coffee extracted with and without capsule packaging.
2. Materials and Methods
2.1. Sample Preparation
2.2. Small Sensor System (S3)
2.2.1. Analysis Conditions
- The sensor steel chamber which contains the six MOX sensors. This allows the sensor to be separated from the environment, except for an inlet and an outlet path for the passage of volatile compounds. Other types of sensors are placed in order to control several parameters during the analysis. These are the temperature, humidity, and flow in the chamber.
- The fluid dynamic circuit is composed of a pump (Knf, model: NMP05B), polyurethane pipes, a solenoid valve and a metal cylinder, which contains activated carbon. The activated carbon is used for filtering any type of odors present in the environment that can alter the final response. The solenoid valve, positioned at the chamber inlet to control the pump flow with a maximum of 250 sccm.
- The electronic board elaborates the sensor responses through the detection of electrical resistance. In addition, it controls the operating temperature of sensors, which is an important parameter for the detection of volatile compounds. Finally, the system is able to send the data to the Web App dedicated to the S3 device through an internet connection.
2.2.2. S3 Data Processing
3. Results and Discussion
3.1. Sensor Response Regarding the Discrimination of Molinari Coffee Capsules
3.2. Coffee with and without Capsule Packaging Comparison
- Aldehyde compounds, which generally add a fruity green aroma
- Furans, which contribute with caramel-like odors
- Pyrazines, which have an earthy scent.
- Guaiacol and related phenolic compounds offer smoky, spicy tones, and pyrroles.
- Alkaloids, as caffeine or trigonelline. Caffeine content is highly variable in a range between 0.64 mg/mL and 4.89 mg/mL [18] considering different parameters (pressure and temperature) values.
- Chlorogenic acids (CGAs), the most important are 3-, 4- and 5-CQA [19].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greco, G.; Núñez-Carmona, E.; Abbatangelo, M.; Fava, P.; Sberveglieri, V. How Coffee Capsules Affect the Volatilome in Espresso Coffee. Separations 2021, 8, 248. [Google Scholar] [CrossRef]
- Nancy, C.; Fernandez-Alduenda, M.; Moreno, F.; Ruiz, Y. Coffee extraction: A review of parameters and their influence on the physicochemical characteristics and flavour of coffee brews. Trends Food Sci. Technol. 2020, 96, 45–60. [Google Scholar]
- Herron, R.; Lipphardt, A.; Euler, L.; Nolvachai, Y.; Marriott, P.L. Person-portable gas chromatography-toroidal ion trap mass spectrometry analysis of coffee bean volatile organic compounds. Int. J. Mass Spectrom. 2022, 473, 116797. [Google Scholar] [CrossRef]
- Illy, A.; Viani, R. (Eds.) Espresso Coffee The Science of Quality; Elsevier Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
- Natnicha, B.; Adhikari, K.; Chambers, E. Evolution of sensory aroma attributes from coffee beans to brewed coffee. LWT-Food Sci. Technol. 2011, 44, 2185–2192. [Google Scholar]
- Bottazzi, D.; Farina, S.; Milani, M.; Montorsi, L. A numerical approach for the analysis of the coffee roasting process. J. Food Eng. 2012, 112, 243–252. [Google Scholar] [CrossRef]
- Núñez-Carmona, E.; Abbatangelo, M.; Sberveglieri, V. Internet of Food (IoF), Tailor-Made Metal Oxide Gas Sensors to Support Tea Supply Chain. Sensors 2021, 21, 4266. [Google Scholar] [CrossRef] [PubMed]
- Navarini, L.; Rivetti, D. Water quality for Espresso coffee. Food Chem. 2010, 122, 424–428. [Google Scholar] [CrossRef]
- Abbatangelo, M.; Núñez-Carmona, E.; Duina, G.; Sberveglieri, V. Multidisciplinary Approach to Characterizing the Fingerprint of Italian EVOO. Molecules 2019, 24, 1457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Núñez-Carmona, E.; Abbatangelo, M.; Zappa, D.; Comini, E.; Sberveglieri, G.; Sberveglieri, V. Nanostructured MOS Sensor for the Detection, Follow up, and Threshold Pursuing of Campylobacter Jejuni Development in Milk Samples. Sensors 2020, 20, 2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez Viejo, C.; Tongson, E.; Fuentes, S. Integrating a Low-Cost Electronic Nose and Machine Learning Modelling to Assess Coffee Aroma Profile and Intensity. Sensors 2021, 21, 2016. [Google Scholar] [CrossRef] [PubMed]
- Eiermann, A.; Smrke, S.; Guélat, L.M.; Wellinger, M.; Rahn, A.; Yeretzian, C. Extraction of single serve coffee capsules: Linking properties of ground coffee to extraction dynamics and cup quality. Sci. Rep. 2020, 10, 17079. [Google Scholar] [CrossRef] [PubMed]
- Petracco, M. The Cup. In Espresso Coffee: The Chemistry of Quality; Illy, A., Viani, R., Eds.; Academic Press: Cambridge, MA, USA, 1995; p. 187. [Google Scholar]
- Kim, N.S.; Lee, J.H.; Han, K.M.; Kim, J.W.; Cho, S.; Kim, J. Discrimination of commercial cheeses from fatty acid profiles and phytosterol contents obtained by GC and PCA. Food Chem. 2014, 143, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Ferini, J.L.; Morales, M.V.; da Silva, T.A.; Pedreira, J.R.M.; de Godoy, N.T.; de Oliveira Garcia, A.; Tfouni, S.A.V. Consumers’ perception of different brewed coffee extractions using the sorting technique. J. Sens. Stud. 2021, 36, e12633. [Google Scholar] [CrossRef]
- The Chemical Compounds behind the Aroma of Coffee. 17 February 2015. Available online: https://www.compoundchem.com/2015/02/17/coffee-aroma/ (accessed on 18 February 2022).
- Wu, C.; Liu, C.; Yan, L.; Chen, H.; Shao, H.; Meng, T. Assessment of odor activity value coefficient and odor contribution based on binary interaction effects in waste disposal plant. Atmos. Environ. 2014, 103, 231–237. [Google Scholar] [CrossRef]
- Gloess, A.; Vietri, A.; Wieland, F.; Smrke, S.; Schönbächler, B.; Sánchez López, J.A.; Petrozzi, S.; Bongers, S.; Koziorowski, T.; Yeretzian, C. Evidence of different flavour formation dynamics by roasting coffee from different origins: On-line analysis with PTR-ToF-MS. Int. J. Mass Spectrom. 2014, 365–366, 324–337. [Google Scholar] [CrossRef] [Green Version]
- Angelino, D.; Tassotti, M.; Brighenti, F.; Del Rio, D.; Mena, P. Niacin, alkaloids and (poly)phenolic compounds in the most widespread Italian capsule-brewed coffees. Sci. Rep. 2018, 8, 17874. [Google Scholar] [CrossRef] [PubMed]
- Crozier, T.W.M.; Stalmach, A.; Lean, M.E.J.; Crozier, A. Espresso coffees, caffeine and chlorogenic acid intake: Potential health implications. Food Funct. 2012, 3, 30–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angeloni, S.; Mustafa, A.M.; Abouelenein, D.; Alessandroni, L.; Acquaticci, L.; Nzekoue, F.K.; Petrelli, R.; Sagratini, G.; Vittori, S.; Torregiani, E.; et al. Characterization of the Aroma Profile and Main Key Odorants of Espresso Coffee. Molecules 2021, 26, 3856. [Google Scholar] [CrossRef] [PubMed]
- Lolli, V.; Acharjee, A.; Angelino, D.; Tassotti, M.; Del Rio, D.; Mena, P.; Caligiani, A. Chemical Characterization of Capsule-Brewed Espresso Coffee Aroma from the Most Widespread Italian Brands by HS-SPME/GC-MS. Molecules 2020, 25, 1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakaya, D.; Ulucan, O.; Turkan, M. Electronic Noseand Its Applications: A Survey. Int. J. Autom. Comput. 2020, 17, 179–209. [Google Scholar] [CrossRef] [Green Version]
Sample | With Capsule | Without Capsule |
---|---|---|
Biologico | 36 | 36 |
Deciso | 36 | 36 |
Dolce | 36 | 36 |
Guatemala | 36 | 36 |
Total | 144 | 144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, G.; Carmona, E.N.; Sberveglieri, G.; Genzardi, D.; Sberveglieri, V. A New Kind of Chemical Nanosensors for Discrimination of Espresso Coffee. Chemosensors 2022, 10, 186. https://doi.org/10.3390/chemosensors10050186
Greco G, Carmona EN, Sberveglieri G, Genzardi D, Sberveglieri V. A New Kind of Chemical Nanosensors for Discrimination of Espresso Coffee. Chemosensors. 2022; 10(5):186. https://doi.org/10.3390/chemosensors10050186
Chicago/Turabian StyleGreco, Giuseppe, Estefanía Núñez Carmona, Giorgio Sberveglieri, Dario Genzardi, and Veronica Sberveglieri. 2022. "A New Kind of Chemical Nanosensors for Discrimination of Espresso Coffee" Chemosensors 10, no. 5: 186. https://doi.org/10.3390/chemosensors10050186
APA StyleGreco, G., Carmona, E. N., Sberveglieri, G., Genzardi, D., & Sberveglieri, V. (2022). A New Kind of Chemical Nanosensors for Discrimination of Espresso Coffee. Chemosensors, 10(5), 186. https://doi.org/10.3390/chemosensors10050186