Analysis and Dynamic Monitoring of Indoor Air Quality Based on Laser-Induced Breakdown Spectroscopy and Machine Learning
Abstract
:1. Introduction
2. Experiment
2.1. Experiments Setup
2.2. Sampling Modes
3. Results and Discussion
3.1. Analysis of Spectra
3.2. PCA and KNN of Experimental Results
3.3. Neural Network
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Kindi, S.G.; Brook, R.D.; Biswal, S. Environmental determinants of cardiovascular disease: Lessons learned from air pollution. Nat. Rev. Cardiol. 2020, 17, 656. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, S.H.; Wee, J.H. Short- and long-term exposure to air pollution increases the risk of ischemic heart disease. Sci. Rep. 2021, 11, 5108. [Google Scholar] [CrossRef]
- Lee, D.H.; Han, J.; Jang, M. Association between Meniere’s disease and air pollution in South Korea. Sci. Rep. 2021, 11, 13128. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, Q.; Yin, W.; Hu, Y.; Liu, Y. Real-time in situ detection of the local air pollution with laser-induced breakdown spectroscopy. Optics Express, 27(12), pp.A790-A799. Real-time in situ detection of the local air pollution with laser-induced breakdown spectroscopy. Opt. Express 2019, 27, 790. [Google Scholar] [CrossRef]
- Gupta, A.; Goyal, R.; Kulshreshtha, P. Environmental and of Delhi, CO2 India in Indoor Monitoring Office Spaces of PM2.5. Indoor Environ. Qual. Sel. Proc. 1st ACIEQ 2020, 60, 67. [Google Scholar]
- Passi, A.; Nagendra, S.M.S.; Maiya, M.P. Characteristics of indoor air quality in underground metro stations: A critical review. Build. Environ. 2021, 198, 107907. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, G.; Xie, J. Associations of bedroom air temperature and CO2 concentration with subjective perceptions and sleep quality during transition seasons. Indoor Air 2021, 31, 1004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, T.; Li, H. Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring. Spectrochim. Acta Part B At. Spectrosc. 2021, 181, 106218. [Google Scholar] [CrossRef]
- Ikeda, Y.; Kawahara, N. Measurement of Cyclic Variation of the Air-to-Fuel Ratio of Exhaust Gas in an SI Engine by Laser-Induced Breakdown Spectroscopy. Energies 2022, 15, 3053. [Google Scholar] [CrossRef]
- Minchero, M.M.; Ulloa, L.; Cobo, A. Laser-induced breakdown spectroscopy analysis of copper and nickel in chelating resins for metal recovery in wastewater. Spectrochim. Acta Part B At. Spectrosc. 2021, 180, 106170. [Google Scholar] [CrossRef]
- Yue, Z.; Sun, C.; Chen, F.; Zhang, Y.; Xu, W.; Shabbir, S.; Zou, L.; Lu, W.; Wang, W.; Xie, Z.; et al. Machine learning-based LIBS spectrum analysis of human blood plasma allows ovarian cancer diagnosis. Biomed. Opt. Express 2021, 12, 2559. [Google Scholar] [CrossRef] [PubMed]
- Gaudiuso, R.; Ewusi-Annan, E.; Melikechi, N.; Sun, X.; Liu, B.; Campesato, L.F.; Merghoub, T. Using LIBS to diagnose melanoma in biomedical fluids deposited on solid substrates: Limits of direct spectral analysis and capability of machine learning. Spectrochim. Acta Part B At. Spectrosc. 2018, 146, 106. [Google Scholar] [CrossRef]
- Berlo, K.; Xia, W.; Zwillich, F.; Gibbons, E.; Gaudiuso, R.; Ewusi-Annan, E.; Chiklis, G.R.; Melikechi, N. Laser induced breakdown spectroscopy for the rapid detection of SARS-CoV-2 immune response in plasma. Sci. Rep. 2022, 12, 1614. [Google Scholar] [CrossRef] [PubMed]
- Sabsabi, M.; Cielo, P. Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization. Appl. Spectrosc. 1995, 49, 499. [Google Scholar] [CrossRef]
- Anglos, D. Laser-induced breakdown spectroscopy in art and archaeology. Appl. Spectrosc. 2001, 55, 186. [Google Scholar] [CrossRef]
- Killiny, N.; Etxeberria, E.; Flores, A.P.; Blanco, P.G. Laser-induced breakdown spectroscopy (LIBS) as a novel technique for detecting bacterial infection in insects. Sci. Rep. 2019, 9, 2449. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.Y.; Han, S.H. Fabrication of si negative electrodes for li-ion batteries (LIBS) using cross-linked polymer binders. Sci. Rep. 2016, 6, 38050. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.D.; Osterink, L.M. Thermal effects in a Nd:YAG laser. J. Appl. Phys. 1970, 41, 3656. [Google Scholar] [CrossRef]
- Fan, T.Y. Heat generation in Nd:YAG and Yb: YAG. IEEE J. Quantum Electron. 1993, 29, 1457. [Google Scholar] [CrossRef]
- Lu, J.; Prabhu, M.; Song, J. Optical properties and highly efficient laser oscillation of Nd:YAG ceramics. Appl. Phys. B 2000, 71, 469. [Google Scholar] [CrossRef]
- Zhou, B.; Kane, T.J.; Dixon, G.J. Efficient, frequency-stable laser-diode-pumped Nd:YAG laser. Opt. Lett. 1985, 10, 62. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Afgan, M.S.; Gu, W.; Song, Y.; Wang, Y.; Hou, Z.; Song, W.; Li, Z. Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing. TrAC Trends Anal. Chem. 2021, 143, 116385. [Google Scholar] [CrossRef]
- Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation Forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; IEEE: Piscataway, NJ, USA, 2008; p. 413. [Google Scholar]
- Corel, E.; Lopez, P.; Méheust, R.; Bapteste, E. Network-thinking: Graphs to analyze microbial complexity and evolution. Trends Microbiol. 2016, 24, 224. [Google Scholar] [CrossRef] [PubMed]
- Gentile, T.R.; Houston, J.M.; Hardis, J.E. National Institute of Standards and Technology high-accuracy cryogenic radiometer. Appl. Opt. 1996, 35, 1056. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Song, K.; Zhu, H. Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy. Sci. Rep. 2017, 7, 44551. [Google Scholar] [CrossRef]
- Lee, J.H.; Giannikopoulos, P.; Duncan, S.A. The transcription factor cyclic AMP–responsive element–binding protein H regulates triglyceride metabolism. Nat. Med. 2011, 17, 812. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Chizhik, A.I. Single-particle spectroscopy for functional nanomaterials. Nature 2020, 579, 41. [Google Scholar] [CrossRef]
- Brixner, T.; Stenger, J.; Vaswani, H.M. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 2005, 434, 625. [Google Scholar] [CrossRef]
- Sakakura, T.; Choi, J.C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 2007, 107, 2365. [Google Scholar] [CrossRef]
- Schmalensee, R.; Stoker, T.M.; Judson, R.A. World carbon dioxide emissions: 1950–2050. Rev. Econ. Stat. 1998, 80, 15. [Google Scholar] [CrossRef]
- Siegenthaler, U.; Sarmiento, J.L. Atmospheric carbon dioxide and the ocean. Nature 1993, 365, 119. [Google Scholar] [CrossRef]
- Lim, X.Z. How to make the most of carbon dioxide. Nature 2015, 526, 628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alessandro, D.; Smit, B.; Long, J.R. Carbon dioxide capture: Prospects for new materials. Angew. Chem. Int. Ed. 2010, 49, 6058. [Google Scholar] [CrossRef] [Green Version]
- Fenghour, A.; Wakeham, W.A.; Vesovic, V. The viscosity of carbon dioxide. J. Phys. Chem. Ref. Data 1998, 27, 31. [Google Scholar] [CrossRef]
- Jacobson, T.A.; Kler, J.S. Direct human health risks of increased atmospheric carbon dioxide. Nat. Sustain. 2019, 2, 691. [Google Scholar] [CrossRef]
- Brand, P.; Hinojosa-Díaz, I.A.; Ayala, R. The evolution of sexual signaling is linked to odorant receptor tuning in perfume-collecting orchid bees. Nat. Commun. 2020, 11, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlos, L.J. Two steps closer to the ultimate perfume. Nat. Rev. Neurosci. 2000, 1, 4. [Google Scholar] [CrossRef]
- Cousins, R.J. Metal elements and gene expression. Annu. Rev. Nutr. 1994, 14, 449. [Google Scholar] [CrossRef]
- Waldron, K.J.; Rutherford, J.C.; Ford, D. Metalloproteins and metal sensing. Nature 2009, 460, 823. [Google Scholar] [CrossRef]
- Gutiérrez-Gutiérrez, S.C.; Coulon, F.; Jiang, Y. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities. Waste Manag. 2015, 42, 128. [Google Scholar] [CrossRef]
- Starukh, H.; Praus, P. Doping of graphitic carbon nitride with non-metal elements and its applications in photocatalysis. Catalysts 2020, 10, 1119. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433. [Google Scholar] [CrossRef]
- Ringnér, M. What is principal component analysis? Nat. Biotechnol. 2008, 26, 303. [Google Scholar] [CrossRef]
- Nitze, I.; Schulthess, U.; Asche, H. Comparison of Machine Learning Algorithms Random Forest, Artificial Neural Network and Support Vector Machine to Maximum Likelihood for Supervised Crop Type Classification. In Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 7–9 May 2012; Volume 79, p. 3540. [Google Scholar]
- Lever, J.; Krzywinski, M.; Altman, N. Points of significance: Principal component analysis. Nat. Methods 2017, 14, 641. [Google Scholar] [CrossRef] [Green Version]
- Higham, D.J.; Higham, N.J. MATLAB Guide; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2016. [Google Scholar]
- Leshno, M.; Spector, Y. Neural network prediction analysis: The bankruptcy case. Neurocomputing 1996, 10, 125. [Google Scholar] [CrossRef]
- Raghunath, S.; Ulloa, A.E. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat. Med. 2020, 26, 886. [Google Scholar] [CrossRef]
- Lotter, W.; Kreiman, G.; Cox, D. A neural network trained for prediction mimics diverse features of biological neurons and perception. Nat. Mach. Intell. 2020, 2, 210. [Google Scholar] [CrossRef]
- Li, A.; Chen, R.; Farimani, A.B. Reaction diffusion system prediction based on convolutional neural network. Sci. Rep. 2020, 10, 3894. [Google Scholar] [CrossRef] [Green Version]
- Senior, A.W.; Evans, R.; Jumper, J. Improved protein structure prediction using potentials from deep learning. Nature 2020, 577, 706. [Google Scholar] [CrossRef]
- Taganov, K.I.; Travina, V.G. Some relations between spectral line intensities and the power and concentration of materials in light sources. Appl. Spectrosc. 1971, 15, 841. [Google Scholar] [CrossRef]
- Murari, G.F.; Penido, J.A.; Machado, P.A.L.; de Lemos, L.R.; Lemes, N.H.T.; Virtuoso, L.S.; Rodrigues, G.D.; Mageste, A.B. Phase diagrams of aqueous two-phase systems formed by polyethylene glycol+ ammonium sulfate+ water: Equilibrium data and thermodynamic modeling. Fluid Phase Equilibria 2015, 406, 61. [Google Scholar] [CrossRef]
- Hewitt, R. Air Composition and Chemistry.by Peter Brimblecombe. Appl. Ecol. 1987, 24, 327. [Google Scholar] [CrossRef]
- Koenig, T.S.; Synal, W.H.A. Direct radiocarbon analysis of exhaled air. Anal. At. Spectrom. 2011, 26, 287. [Google Scholar] [CrossRef]
Scenario | Material | Composition |
---|---|---|
Burn carbon | charcoal | 87% carbon + 12% log powder + 1% others |
Burn incense | incense | 80% log powder + 15% artificial mixture + 5% others |
Spray perfume | perfume | 50% alcohol solution (3:7) + 25% menthol + 10% essence + 15% water |
Hot shower | digital heating circulating water bath | steam |
Different Data | KMO | p |
---|---|---|
(a) Five scenarios | 0.555 | 0 |
(b) Three scenarios | 0.650 | 0 |
Wavelength (nm) | PC1 | PC2 | PC3 |
---|---|---|---|
247.863 | −0.343 | 0.544 | 0.963 |
247.896 | −0.216 | 0.531 | 0.959 |
247.960 | −0.321 | 0.498 | 0.957 |
588.996 | 0.833 | −0.577 | 0.269 |
589.592 | 0.824 | −0.512 | 0.213 |
656.210 | 0.771 | 0.500 | −0.076 |
Time/s | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
---|---|---|---|---|---|---|---|
Experimental data/% | 0.006 | 0.212 | 0.437 | 0.790 | 0.724 | 0.783 | 0.749 |
Predict data/% | 0.000 | 0.327 | 0.524 | 0.795 | 0.714 | 0.775 | 0.763 |
Error/% | 0.6 | 11.5 | 8.7 | 0.5 | 1.0 | 0.8 | 1.4 |
Comprehensive accuracy/% | —— | —— | —— | —— | —— | —— | 96.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Sun, Z.; Zhou, Z.; Jamali, S.; Liu, Y. Analysis and Dynamic Monitoring of Indoor Air Quality Based on Laser-Induced Breakdown Spectroscopy and Machine Learning. Chemosensors 2022, 10, 259. https://doi.org/10.3390/chemosensors10070259
Zhang X, Sun Z, Zhou Z, Jamali S, Liu Y. Analysis and Dynamic Monitoring of Indoor Air Quality Based on Laser-Induced Breakdown Spectroscopy and Machine Learning. Chemosensors. 2022; 10(7):259. https://doi.org/10.3390/chemosensors10070259
Chicago/Turabian StyleZhang, Xinyang, Zhongmou Sun, Zhuoyan Zhou, Saifullah Jamali, and Yuzhu Liu. 2022. "Analysis and Dynamic Monitoring of Indoor Air Quality Based on Laser-Induced Breakdown Spectroscopy and Machine Learning" Chemosensors 10, no. 7: 259. https://doi.org/10.3390/chemosensors10070259
APA StyleZhang, X., Sun, Z., Zhou, Z., Jamali, S., & Liu, Y. (2022). Analysis and Dynamic Monitoring of Indoor Air Quality Based on Laser-Induced Breakdown Spectroscopy and Machine Learning. Chemosensors, 10(7), 259. https://doi.org/10.3390/chemosensors10070259