Pt/Au Nanoparticles@Co3O4 Cataluminescence Sensor for Rapid Analysis of Methyl Sec-Butyl Ether Impurity in Methyl Tert-Butyl Ether Gasoline Additive
Abstract
:1. Introduction
2. Experiment
2.1. Chemicals
2.2. Instruments
2.3. Synthesis of Pt/Au NPs@Co3O4
2.4. Cataluminescence Method
2.5. Gas Chromatography Method
2.6. Sample Preparation
3. Results
3.1. Synthesis and Characterization of Pt/Au NPs@Co3O4
3.1.1. Synthesis of Pt/Au NPs@Co3O4
3.1.2. Characterization of Pt/Au NPs@Co3O4
3.2. Cataluminescence Sensor
3.2.1. CTL Signal Enhancement by Pt/Au NPs@Co3O4
3.2.2. The Catalytic Performance of the Cataluminescence Sensor
3.3. Analytical Characteristics of the Sensor
3.3.1. Selectivity and Stability
3.3.2. Linear Range and Limit of Detection
3.3.3. Sample Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chow, J.C.; Yu, J.Z.; Watson, J.G.; Ho, S.S.H.; Bohannan, T.L.; Hays, M.D.; Fung, K.K. The application of thermal methods for determining chemical composition of carbonaceous aerosols: A review. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2007, 42, 1521–1541. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Huang, W.; Zhang, C.; Zhang, R.; Hu, Y.; Xiao, X.; Li, G. Study of cyclic cataluminescence virtual sensor array for gasoline quality monitoring. Sens. Actuators B Chem. 2022, 364, 131901. [Google Scholar] [CrossRef]
- Seddon, D. Reformulated gasoline, opportunities for new catalyst technology. Catal. Today 1992, 15, 1–21. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, L.; Lv, Y. Recent advances in cataluminescence gas sensor: Materials and methodologies. Appl. Spectrosc. Rev. 2019, 54, 306–324. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Lu, C. Detection of oxygen vacancies in oxides by defect-dependent cataluminescence. Anal. Chem. 2015, 87, 7313–7320. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-H.; Wu, J.; Yu, Y.-X. DFT exploration of sensor performances of two-dimensional WO3 to ten small gases in terms of work function and band gap changes and I-V responses. Appl. Surf. Sci. 2021, 546, 149104. [Google Scholar] [CrossRef]
- Pragya, S.; Firman, M.S.; Hu, L.-L.; Tseng, T.-Y.; Zan, H.; Chu, J.P. Negative effects of annealed seed layer on the performance of ZnO-nanorods based nitric oxide gas sensor. Sensors 2022, 22, 390. [Google Scholar]
- Goto, T.; Itoh, T.; Akamatsu, T.; Izu, N.; Shin, W. CO sensing properties of Au/SnO2-Co3O4 catalysts on a micro thermoelectric gas sensor. Sens. Actuators B-Chem. 2016, 223, 774–783. [Google Scholar] [CrossRef]
- Yoon, J.-W.; Kim, H.-J.; Jeong, H.-M.; Lee, J.-H. Gas sensing characteristics of p-type Cr2O3 and Co3O4 nanofibers depending on inter-particle connectivity. Sens. Actuators B-Chem. 2014, 202, 263–271. [Google Scholar] [CrossRef]
- Dong, X.; Su, Y.; Lu, T.; Zhang, L.; Wu, L.; Lv, Y. MOFs-derived dodecahedra porous Co3O4: An efficient cataluminescence sensing material for H2S. Sens. Actuators B Chem. 2018, 258, 349–357. [Google Scholar] [CrossRef]
- Kumarage, G.W.C. Elisabetta Comini, Low-dimensional nanostructures based on cobalt oxide (Co3O4) in chemical-gas sensing. Chemosensors 2021, 9, 197. [Google Scholar] [CrossRef]
- Guo, Q.; Song, H.; Sun, M.; Yuan, X.; Su, Y.; Lv, Y. Co3O4 modified polymeric carbon nitride for external light-free chlorine activating degradation of organic pollutants. J. Hazard. Mater. 2022, 429, 128193. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, J. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B-Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Song, X.-Z.; Qiao, L.; Sun, K.-M.; Wang, X.-F. Triple-shelled ZnO/Zn Fe2O4 heterojunctional hollow microspheres derived from Prussian Blue analogue as high-performance acetone sensors. Sens. Actuators B-Chem. 2018, 256, 374–382. [Google Scholar] [CrossRef]
- Koo, W.-T.; Choi, S.-J.; Kim, S.-J.; Jang, J.-S.; Tuller, H.L.; Kim, I.-D. Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold towards superior gas sensors. J. Am. Chem. Soc. 2016, 138, 13431–13437. [Google Scholar] [CrossRef]
- Yu, L.; Li, N. Noble metal nanoparticles-based colorimetric biosensor for visual quantification: A mini review. Chemosensors 2019, 7, 53. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xi, W.; Lu, C. Hydrotalcite-supported gold nanoparticle catalysts as a low temperature cataluminescence sensing platform. Sens. Actuators B Chem. 2015, 219, 354–360. [Google Scholar] [CrossRef]
- Bai, S.; Liu, H.; Sun, J.; Tian, Y.; Luo, R.; Li, D.; Chen, A. Mechanism of enhancing the formaldehyde sensing properties of Co3O4 via Ag modification. RSC Adv. 2015, 5, 48619–48625. [Google Scholar] [CrossRef]
- Matsumiya, M.; Qiu, F.; Shin, W.; Izu, N.; Matsubara, I.; Murayama, N.; Kanzaki, S. Thermoelectric CO gas sensor using thin-film catalyst of Au and Co3O4. J. Electrochem. Soc. 2004, 151, H7–H10. [Google Scholar] [CrossRef]
- Zhou, J.; Tang, D.; Hou, L.; Cui, Y.; Chen, H.; Chen, G. Nanoplatinum-enclosed gold nanocores as catalytically promoted nanolabels for sensitive electrochemical immunoassay. Anal. Chim. Acta 2012, 751, 52–58. [Google Scholar] [CrossRef]
- Galvanin, F.; Sankar, M.; Cattaneo, S.; Bethell, D.; Dua, V.; Hutchings, G.J.; Gavriilidis, A. On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. Chem. Eng. J. 2018, 342, 196–210. [Google Scholar] [CrossRef]
- Hong, Y.; Jing, X.; Huang, J.; Sun, D.; Odoom-Wubah, T.; Yang, F.; Du, M.; Li, Q. Biosynthesized bimetallic Au-Pd nanoparticles supported on TiO2 for solvent-free oxidation of benzyl alcohol. ACS Sustain. Chem. Eng. 2014, 2, 1752–1759. [Google Scholar] [CrossRef]
- Liu, L.; Wei, Q.; Yu, X.; Zhang, Y. Metal-organic framework-derived Co3O4/Au heterostructure as a catalyst for efficient oxygen reduction. ACS Appl. Mater. Interfaces 2018, 10, 34068–34076. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, M.; Xu, W.; Chen, J.; Hong, Z.; Jia, H. Incorporating Mn cation as anchor to atomically disperse Pt on TiO2 for low-temperature removal of formaldehyde. Appl. Catal. B-Environ. 2019, 259, 118013. [Google Scholar] [CrossRef]
- Qamar, M.T.; Gondal, M.A.; Yamani, Z.H. Removal of rhodamine 6G induced by laser and catalyzed by Pt/WO3 nanocomposite. Catal. Commun. 2010, 11, 768–772. [Google Scholar] [CrossRef]
- Dablemont, C.; Lang, P.; Mangeney, C.; Piquemal, J.Y.; Petkov, V.; Herbst, F.; Viau, G. FTIR and XPS study of Pt nanoparticle functionalization and interaction with alumina. Langmuir 2008, 24, 5832–5841. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Sun, S.; Jiang, D.; Gao, E. Selective transport of electron and hole among {001} and {110} facets of BiOCl for pure water splitting. Appl. Catal. B-Environ. 2015, 162, 470–474. [Google Scholar] [CrossRef]
- Huang, B.; Zheng, X.; Lu, M.; Dong, S.; Qiao, Y. Novel spherical Li3V2(PO4)3/C cathode material for application in high-power lithium ion battery. Int. J. Electrochem. Sci. 2012, 7, 437–444. [Google Scholar]
- Wang, L.; Liu, B.; Ran, S.; Huang, H.; Wang, X.; Liang, B.; Chen, D.; Shen, G. Nanorod-assembled Co3O4 hexapods with enhanced electrochemical performance for lithium-ion batteries. J. Mater. Chem. 2012, 22, 23541–23546. [Google Scholar] [CrossRef]
- Yang, M.; Zhong, Y.; Zhou, X.; Ren, J.; Su, L.; Wei, J.; Zhou, Z. Ultrasmall MnO@N-rich carbon nanosheets for high-power asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 12519–12525. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Z.; Zhang, Y.; Sun, L.; Tian, H.; Yang, X. Synthesis of a highly active and stable Pt/Co3O4 catalyst and its application for the catalytic combustion of toluene. Eur. J. Inorg. Chem. 2019, 24, 2933–2939. [Google Scholar] [CrossRef]
- Zhao, J.; Zou, Y.; Zou, X.; Bai, T.; Liu, Y.; Gao, R.; Wang, D.; Li, G.-D. Self-template construction of hollow Co3O4 microspheres from porous ultrathin nanosheets and efficient noble metal-free water oxidation catalysts. Nanoscale 2014, 6, 7255–7262. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhuo, S.; Liang, Y.; Han, X.; Zhang, B. General self-template synthesis of transition-metal oxide and chalcogenide mesoporous nanotubes with enhanced electrochemical performances. Angew. Chem.-Int. Ed. 2016, 55, 9055–9059. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Kumasaki, M.; Liu, X.; Ren, F.; Nishiwaki, Y.; Wang, B.; Matsue, S. Hydroperoxide formation and thermal oxidation of methyl tert-butyl ether oxidation at low temperature. Energy Fuels 2019, 33, 12894–12904. [Google Scholar] [CrossRef]
- Yazdani, D.; Zinatizadeh, A.A.; Joshaghani, M. One-step synthesis of NiO nano-photocatalyst by wire explosion process and its application in photocatalytic degradation of Methyl tert-butyl ether. Water Environ. J. 2019, 33, 167–178. [Google Scholar] [CrossRef]
Sample (wt%) | The CTL Method | GC (mg/L) | Relative Error (%) | ||||
---|---|---|---|---|---|---|---|
Amount (mg/L) | RSD (%) (n = 5) | Recovery (%) | |||||
0.500 (mg/L) | 1.00 (mg/L) | 3.00 (mg/L) | |||||
95% MTBE | 0.31 | 2.6 | 106.2 | 92.0 | 94.4 | 0.29 ± 0.013 | +3.7 |
98% MTBE | ND | - | 92.0 | 98.0 | 108.6 | ND | - |
99% MTBE | ND | - | 106.8 | 93.0 | 99.4 | ND | - |
99.9% MTBE | ND | - | 103.5 | 93.4 | 105.3 | ND | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Xia, L.; Li, G.; Hu, Y. Pt/Au Nanoparticles@Co3O4 Cataluminescence Sensor for Rapid Analysis of Methyl Sec-Butyl Ether Impurity in Methyl Tert-Butyl Ether Gasoline Additive. Chemosensors 2022, 10, 260. https://doi.org/10.3390/chemosensors10070260
Shi Z, Xia L, Li G, Hu Y. Pt/Au Nanoparticles@Co3O4 Cataluminescence Sensor for Rapid Analysis of Methyl Sec-Butyl Ether Impurity in Methyl Tert-Butyl Ether Gasoline Additive. Chemosensors. 2022; 10(7):260. https://doi.org/10.3390/chemosensors10070260
Chicago/Turabian StyleShi, Zhaoxia, Ling Xia, Gongke Li, and Yufei Hu. 2022. "Pt/Au Nanoparticles@Co3O4 Cataluminescence Sensor for Rapid Analysis of Methyl Sec-Butyl Ether Impurity in Methyl Tert-Butyl Ether Gasoline Additive" Chemosensors 10, no. 7: 260. https://doi.org/10.3390/chemosensors10070260
APA StyleShi, Z., Xia, L., Li, G., & Hu, Y. (2022). Pt/Au Nanoparticles@Co3O4 Cataluminescence Sensor for Rapid Analysis of Methyl Sec-Butyl Ether Impurity in Methyl Tert-Butyl Ether Gasoline Additive. Chemosensors, 10(7), 260. https://doi.org/10.3390/chemosensors10070260