High Sensitivity Low-Temperature Hydrogen Sensors Based on SnO2/κ(ε)-Ga2O3:Sn Heterostructure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Properties
3.2. Gas-Sensitive Properties of the SnO2/κ(ε)-Ga2O3:Sn heterostructure
3.3. The Mechanism of the Sensory Effect
NO2− → O−(c) + NO,
O−(c) + O−(c) → O2−(c) + e− + Sa.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 2014, 66, 112–255. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, Z.; Ha, S.; Li, D.; Zhang, K.; Zhang, H.; Feng, J. Gallium Oxide for Gas Sensor Applications: A Comprehensive Review. Materials 2022, 15, 7339. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Wu, Z.; Fang, Z. Recent progress of Ga2O3-based gas sensors. Ceram. Int. 2022, 48, 24213–24233. [Google Scholar] [CrossRef]
- Gogova, D.; Suwardi, A.; Kuznetsova, Y.; Zatsepin, A.; Mochalov, L.; Nezhdanov, A.; Szyszka, B. Lanthanum-doped barium stannate-a new type of critical raw materials-free transparent conducting oxide. J. Adv. Appl. Phys. Res. 2017, 4, 1–8. [Google Scholar] [CrossRef]
- Jeon, H.M.; Leedy, K.D.; Look, D.C.; Chang, C.S.; Muller, D.A.; Badescu, S.C.; Vasilyev, V.; Brown, J.L.; Green, A.J.; Chabak, K.D. Homoepitaxial β-Ga2O3 transparent conducting oxide with conductivity σ = 2323 S cm−1. Appl. Mater. 2021, 9, 101105. [Google Scholar] [CrossRef]
- Dalapati, G.; Sharma, H.; Guchhait, A.; Chakrabarty, N.; Bamola, P.; Liu, Q.; Saianand, G.; Ambati, M.; Mukhopadhyay, S.; Dey, A.; et al. Tin oxide for optoelectronic, photovoltaic and energy storage devices: A review. J. Mater. Chem. A 2021, 9, 16621–16684. [Google Scholar] [CrossRef]
- Yang, S.; Lei, G.; Xu, H.; Lan, Z.; Wang, Z.; Gu, H. Metal Oxide Based Heterojunctions for Gas Sensors: A Review. Nanomaterials 2021, 11, 1026. [Google Scholar] [CrossRef]
- Mahmoud, W.E. Solar blind avalanche photodetector based on the cation exchange growth of β-Ga2O3/SnO2 bilayer heterostructure thin film. Sol. Energy Mater. Sol. Cells 2016, 152, 65–72. [Google Scholar] [CrossRef]
- Almaev, A.; Nikolaev, V.; Yakovlev, N.; Butenko, P.; Stepanov, S.; Pechnikov, A.; Scheglov, M.; Chernikov, E. Hydrogen sensors based on Pt/α-Ga2O3:Sn/Pt structures. Sens. Actuators B Chem. 2022, 364, 131904. [Google Scholar] [CrossRef]
- Polyakov, A.; Smirnov, N.; Shchemerov, I.; Yakimov, E.; Pearton, S.; Ren, F.; Chernykh, A.; Gogova, D.; Kochkova, A. Electrical Properties, Deep Trap and Luminescence Spectra in Semi-Insulating, Czochralski β-Ga2O3 (Mg). ECS J. Solid State Sci. Technol. 2019, 8, Q3019. [Google Scholar] [CrossRef]
- Gogova, D.; Ghezellou, M.; Tran, D.; Richter, S.; Papamichail, A.; Hassan, J.; Persson, A.; Persson, P.; Kordina, O.; Monemar, B.; et al. Epitaxial growth of β-Ga2O3 by hot-wall MOCVD. AIP Adv. 2022, 12, 055022. [Google Scholar] [CrossRef]
- Yakimov, E.; Polyakov, A.; Nikolaev, V.; Pechnikov, A.; Scheglov, M.; Yakimov, E.; Pearton, S. Electrical and Recombination Properties of Polar Orthorhombic κ-Ga2O3 Films Prepared by Halide Vapor Phase Epitaxy. Nanomaterials 2023, 13, 1214. [Google Scholar] [CrossRef] [PubMed]
- Biswas, M.; Nishinaka, H. Thermodynamically metastable α-, ε- (or κ-), and γ-Ga2O3: From material growth to device applications. APL Mater. 2022, 10, 060701. [Google Scholar] [CrossRef]
- Almaev, A.; Nikolaev, V.; Butenko, P.; Stepanov, S.; Pechnikov, A.; Yakovlev, N.; Sinyugin, I.; Shapenkov, S.; Scheglov, M. Gas sensors based on pseudohexagonal phase of gallium oxide. Phys. Status Solidi B 2021, 259, 2100306. [Google Scholar] [CrossRef]
- Nikolaev, V.; Stepanov, S.; Pechnikov, A.; Shapenkov, S.; Scheglov, M.; Chikiryaka, A.; Vyvenko, O. HVPE Growth and Characterization of ε-Ga2O3 Films on Various Substrates. ECS J. Solid State Sci. Technol. 2020, 9, 45014. [Google Scholar] [CrossRef]
- Parisini, A.; Mazzolini, P.; Bierwagen, O.; Borelli, C.; Egbo, K.; Sacchi, A.; Bosi, M.; Seravalli, L.; Tahraoui, A.; Fornari, R. Study of SnO/ɛ-Ga2O3 p–n diodes in planar geometry. J. Vac. Sci. 2022, 40, 42701. [Google Scholar] [CrossRef]
- Budde, M.; Splith, D.; Mazzolini, P.; Tahraoui, A.; Feldl, J.; Ramsteiner, M.; Wenckstern, H.; Grundmann, M.; Bierwagen, O. SnO/β-Ga2O3 vertical pn heterojunction diodes. Appl. Phys. Lett. 2020, 117, 252106. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, W.; Kim, D.; Hong, S. Fabrication of Ga2O3/SnO2 core–shell nanowires and their ethanol gas sensing properties. J. Mater. Res. 2011, 26, 2322–2327. [Google Scholar] [CrossRef]
- Abdullah, Q.; Ahmed, A.; Ali, A.; Yam, F.; Hassan, Z.; Bououdina, M. Novel SnO2-coated β-Ga2O3 nanostructures for room temperature hydrogen gas sensor. Int. J. Hydrogen Energy 2021, 46, 7000–7010. [Google Scholar] [CrossRef]
- Boiko, M.; Sharkov, M.; Boiko, A.; Konnikov, S.; Bobyl, A.; Budkina, N. Investigation of the Atomic, Crystal, and Domain Structures of Materials Based on X-Ray Diffraction and Absorption Data: A Review. Technic. Phys. 2015, 60, 1575–1600. [Google Scholar] [CrossRef]
- Maksimova, N.; Sevastyanov, E.; Chernikov, E.; Korusenko, P.; Nesov, S.; Kim, S.; Biryukov, A.; Sergeychenko, N.; Davletkildeev, N.; Sokolov, D. Sensors based on tin dioxide thin films for the detection of pre-explosive hydrogen concentrations. Sens. Actuators B Chem. 2021, 341, 130020. [Google Scholar] [CrossRef]
- Maksimova, N.; Almaev, A.; Sevastyanov, E.; Potekaev, A.; Chernikov, E.; Sergeychenko, N.; Korusenko, P.; Nesov, S. Effect of Additives Ag and Rare-Earth Elements Y and Sc on the Properties of Hydrogen Sensors Based on Thin SnO2 Films during Long-Term Testing. Coatings 2019, 9, 423. [Google Scholar] [CrossRef]
- Mahmoodinezhad, A.; Janowitz, C.; Naumann, F.; Plate, P.; Gargouri, H.; Henkel, K.; Schmeißer, D.; Flege, J. Low-temperature growth of gallium oxide thin films by plasma-enhanced atomic layer deposition. J. Vac. Sci. Technol. A 2020, 38, 022404. [Google Scholar] [CrossRef]
- Elhadidy, H.; Sikula, J.; Franc, J. Symmetrical current–voltage characteristic of a metal–semiconductor–metal structure of Schottky contacts and parameter retrieval of a CdTe structure. Semicond. Sci. Technol. 2012, 27, 15006. [Google Scholar] [CrossRef]
- Gaman, V. Basic physics of semiconductor hydrogen sensors. Russ. Phys. J. 2008, 51, 425. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B. Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey). Sens. Actuators B 2011, 156, 527–538. [Google Scholar] [CrossRef]
- Afzal, A. β-Ga2O3 nanowires and thin films for metal oxide semiconductor gas sensors: Sensing mechanisms and performance enhancement strategies. J. Mater. 2019, 5, 542–557. [Google Scholar] [CrossRef]
- Simion, C.; Schipani, F.; Papadogianni, A.; Stanoiu, A.; Budde, M.; Oprea, A.; Weimar, U.; Bierwagen, O.; Barsan, N. Conductance Model for Single-Crystalline/Compact Metal Oxide Gas-Sensing Layers in the Nondegenerate Limit: Example of Epitaxial SnO2(101). ACS Sens. 2019, 4, 2420–2428. [Google Scholar] [CrossRef]
- Badalyan, S.; Rumyantseva, M.; Smirnov, V.; Alikhanyan, A.; Gaskov, A. Effect of Au and NiO catalysts on the NO2 sensing properties of nanocrystalline SnO2. Inorg. Mater. 2010, 46, 232–236. [Google Scholar] [CrossRef]
- Yakovlev, N.; Almaev, A.; Butenko, P.; Tetelbaum, D.; Mikhaylov, A.; Nikolskaya, A.; Pechnikov, A.; Stepanov, S.; Boiko, M.; Chikiryaka, À.; et al. Effect of Si+ Ion Implantation in α-Ga2O3 Films on Their Gas Sensitivity. IEEE Sens. J. 2022, 23, 1885–1895. [Google Scholar] [CrossRef]
- Jang, S.; Jung, S.; Kim, J.; Ren, F.; Pearton, S.J.; Baik, K.H. Hydrogen Sensing Characteristics of Pt Schottky Diodes on (−201) and (010) Ga2O3 Single Crystals. ECS J. Solid State Sci. Technol. 2018, 7, Q3180. [Google Scholar] [CrossRef]
- Nakagomi, S.; Yokoyama, K.; Kokubun, Y. Devices based on series-connected Schottky junctions and β-Ga2O3/SiC heterojunctions characterized as hydrogen sensors. J. Sens. Sens. Syst. 2014, 3, 231–239. [Google Scholar] [CrossRef]
- Fleischer, M.; Giber, J.; Meixner, H. H2-induced changes in electrical conductance of β-Ga2O3 thin-film systems. Appl. Phys. A. 1992, 54, 560–566. [Google Scholar] [CrossRef]
- Cuong, N.D.; Park, Y.W.; Yoon, S.G. Microstructural and electrical properties of Ga2O3 nanowires grown at various temperatures by vapor–liquid–solid technique. Sens. Actuators B. 2009, 140, 240–244. [Google Scholar] [CrossRef]
- Almaev, A.; Chernikov, E.; Novikov, V.; Kushnarev, B.; Yakovlev, N.; Chuprakova, E.; Oleinik, V.; Lozinskaya, A.; Gogova, D. Impact of Cr2O3 additives on the gas-sensitive properties of β-Ga2O3 thin films to oxygen, hydrogen, carbon monoxide, and toluene vapors. J. Vac. Sci. Technol. A 2021, 39, 23405. [Google Scholar] [CrossRef]
- Bausewein, A.; Hacker, B.; Fleischer, M.; Meixner, H. Effects of Palladium Dispersions on Gas-Sensitive Conductivity of Semiconducting Ga2O3 Thin-Film Ceramics. J. Am. Ceram. Soc. 1997, 80, 317–323. [Google Scholar] [CrossRef]
- Fleischer, M.; Kornely, S.; Weh, T.; Frank, J.; Meixner, H. Selective gas detection with high-temperature operated metal oxides using catalytic filters. Sens. Actuators B. 2000, 69, 205–210. [Google Scholar] [CrossRef]
- Almaev, A.; Nikolaev, V.; Stepanov, S.; Pechnikov, A.; Chikiryaka, A.; Yakovlev, N.; Kalygina, V.; Kopyev, V.; Chernikov, E. Hydrogen influence on electrical properties of Pt-contacted α-Ga2O3/ε-Ga2O3 structures grown on patterned sapphire substrates. J. Phys. D Appl. Phys. 2020, 53, 414004. [Google Scholar] [CrossRef]
- Yan, J.; Lee, C. Improved detection sensitivity of Pt/β-Ga2O3/GaN hydrogen sensor diode. Sens. Actuators B. 2009, 143, 192–197. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.; Sun, G.-J.; Lee, C. Synthesis, structure and ethanol sensing properties of Ga2O3-core/WO3-shell nanostructures. Thin Solid Films. 2015, 591, 341–345. [Google Scholar] [CrossRef]
- Jin, C.; Park, S.; Kim, H.; Lee, C. Ultrasensitive multiple networked Ga2O3-core/ZnO-shell nanorod gas sensors. Sens. Actuators B 2012, 161, 223–228. [Google Scholar] [CrossRef]
- Zhang, B.; Lin, H.; Gao, H.; Lu, X.; Nam, C.; Gao, P. Perovskite-sensitized β-Ga2O3 nanorod arrays for highly selective and sensitive NO2 detection at high temperature. J. Mater. Chem. A 2020, 8, 10845–10854. [Google Scholar] [CrossRef]
- Hu, J.; Sun, Y.J.; Xue, Y.; Zhang, M.; Li, P.W.; Lian, K.; Zhuiykov, S.; Zhang, W.D.; Chen, Y. Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sens. Actuators B 2018, 257, 124–135. [Google Scholar] [CrossRef]
- Park, S.; Ko, H.; Kim, S.; Lee, C. Role of the interfaces in multiple networked one-dimensional core-shell nanostructured gas sensors. ACS Appl. Mater. Interfaces 2014, 6, 9595–9600. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.J.; Kim, Y.; Lee, J.; Kim, J.; Iatsunskyi, I.; Coy, E.; Miele, P.; Bechelany, M.; Kim, S. Highly efficient hydrogen sensors based on Pd nanoparticles supported on boron nitride coated ZnO nanowires. J. Mater. Chem. A 2019, 7, 8107–8116. [Google Scholar] [CrossRef]
- Raza, M.; Kaur, N.; Pinna, E.C.N. Toward optimized radial modulation of the space-charge region in one-dimensional SnO2–NiO core-shell nanowires for hydrogen sensing. ACS Appl. Mater. Interfaces 2020, 12, 4594–4606. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, J.; Tang, K.; Wang, H.; Chen, T.; Jiang, K.; Zhou, T.; Quan, H.; Guo, R. Ultralow detection limit and ultrafast response/recovery of the H2 gas sensor based on Pd-doped rGO/ZnO-SnO2 from hydrothermal synthesis. Microsyst. Nanoeng. 2022, 8, 67. [Google Scholar] [CrossRef]
- Anand, K.; Singh, O.; Singh, M.; Kaur, J.; Singh, R. Hydrogen sensor based on graphene/ZnO nanocomposite. Sens. Actuators B 2014, 195, 409–415. [Google Scholar] [CrossRef]
- Lupan, O.; Ababii, N.; Mishra, A.K.; Bodduluri, M.T.; Magariu, N.; Vahl, A.; Krüger, H.; Wagner, B.; Faupel, F.; Adelung, R.; et al. Heterostructure-based devices with enhanced humidity stability for H2 gas sensing applications in breath tests and portable batteries. Sens. Actuators A 2021, 329, 112804. [Google Scholar] [CrossRef]
- Sun, J.; Sun, L.; Han, N.; Pan, J.; Liu, W.; Bai, S.; Feng, Y.; Luo, R.; Li, D.; Chen, A. Ordered mesoporous WO3/ZnO nanocomposites with isotype heterojunctions for sensitive detection of NO2. Sens. Actuators B 2019, 285, 68–75. [Google Scholar] [CrossRef]
- Bai, S.; Li, D.; Han, D.; Luo, R.; Chen, A.; Chung, C. Preparation, characterization of WO3–SnO2 nanocomposites and their sensing properties for NO2. Sens. Actuators B 2010, 150, 749–755. [Google Scholar] [CrossRef]
- Hung, N.; Chinh, N.; Nguyen, T.; Kim, E.; Choi, G.; Kim, C.; Kim, D. Carbon nanotube-metal oxide nanocomposite gas sensing mechanism assessed via NO2 adsorption on n-WO3/p-MWCNT nanocomposites. Ceram. Int. 2020, 46, 29233–29243. [Google Scholar] [CrossRef]
- Barthwal, S.; Singh, B.; Singh, N.B. ZnO-SWCNT nanocomposite as NO2 gas sensor. Mater. Today Proc. 2018, 5, 15439–15444. [Google Scholar] [CrossRef]
- Du, W.; Wu, L.; Zhao, J.; Si, W.; Wang, F.; Liu, J.; Liu, W. Engineering the surface structure of porous indium oxide hexagonal nanotubes with antimony trioxide for highly-efficient nitrogen dioxide detection at low temperature. Appl. Surf. Sci. 2019, 484, 853–863. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, D.; Chen, H. MOF-derived indium oxide hollow microtubes/MoS2 nanoparticles for NO2 gas sensing. Sens. Actuators B 2019, 300, 127037. [Google Scholar] [CrossRef]
- Teng, L.; Liu, Y.; Ikram, M.; Liu, Z.; Ullah, M.; Ma, L.; Zhang, X.; Wu, H.; Li, L.; Shi, K. One-step synthesis of palladium oxide-functionalized tin dioxide nanotubes: Characterization and high nitrogen dioxide gas sensing performance at room temperature. J. Colloid Interface Sci. 2019, 537, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Kwon, S.; Lee, W.; Im, K.; Kim, T.; Noh, B.; Park, S.; Oh, S.; Kim, K. Ultraviolet Photoactivated Room Temperature NO2 Gas Sensor of ZnO Hemitubes and Nanotubes Covered with TiO2 Nanoparticles. Nanomaterials 2020, 10, 462. [Google Scholar] [CrossRef]
- Zhao, C.; Bai, J.; Gong, H.; Liu, S.; Wang, F. Tailorable morphology of core-shell nanofibers with surface wrinkles for enhanced gas-sensing properties. ACS Appl. Nano Mater. 2018, 1, 6357–6367. [Google Scholar] [CrossRef]
- Xie, J.; Liu, X.; Jing, S.; Pang, C.; Liu, Q.; Zhang, J. Chemical and electronic modulation via atomic layer deposition of NiO on porous In2O3 films to boost NO2 detection. ACS Appl. Mater. Interfaces 2021, 13, 39621–39632. [Google Scholar] [CrossRef]
Conditions | A1 (A) | A2 (A) | B1 (V−1) | B2 (V−1) |
---|---|---|---|---|
Dry pure air | (1.1 ± 0.1) × 10−4 | (1.1 ± 0.1) × 10−6 | 0.65 ± 0.03 | 0.65 ± 0.02 |
Dry pure air + 104 ppm H2 | (2.6 ± 0.3) × 10−4 | (1.3 ± 0.1) × 10−6 | 0.66 ± 0.03 | 0.63 ± 0.03 |
Structure | ng (ppm) | T (℃) | Response (arb. un.) | Ref. |
---|---|---|---|---|
H2 | ||||
α-Ga2O3:Sn | 104 | 350 | 80 | [9] |
α-Ga2O3:Si | 3 × 104 | 400 | 69.3 | [30] |
β-Ga2O3 | 500 | RT | 7.9 × 105 | [31] |
β-Ga2O3 | 2000 | 500 | ΔI = 1.4 (mA) | [32] |
β-Ga2O3 | 3 × 104 | 600 | 4 | [33] |
β-Ga2O3 | 200 | 300 | 6.3 | [34] |
β-Ga2O3:Cr2O3 | 2500 | 500 | 60 | [35] |
β-Ga2O3/Pd nanoclusters | 104 | 625 | ~103 | [36] |
β-Ga2O3/SiO2 (filter) | 5000 | 700 | ~103 | [37] |
α-Ga2O3/κ(ɛ)-Ga2O3:Sn | 2500 | 125 | 1.25 | [38] |
κ(ɛ)-Ga2O3 | 104 | 500 | 9.44 | [14] |
κ(ɛ)-Ga2O3:Sn | 104 | RT | 1.2 | |
Pt/β-Ga2O3/GaN | 1000 | RT | 229.8 | [39] |
β-Ga2O3/SnO2 | 1000 | 400 | 8 | [18] |
β-Ga2O3/SnO2 | 1000 | 200 | 7075.5 | [19] |
β-Ga2O3/WO3 | 1000 | 200 | 4.1 | [40] |
SnO2/κ(ε)-Ga2O3:Sn | 1000 | 125 | 5.7 | This work |
104 | 47 | |||
NO2 | ||||
β-Ga2O3/ZnO | 10 | 300 | 73.5 | [41] |
β-Ga2O3 | 200 | 800 | 5.1 | [42] |
β-Ga2O3/La0.8Sr0.2CoO3 | 25.7 | |||
SnO2/κ(ε)-Ga2O3:Sn | 100 | 125 | 3.7 | This work |
Structure | ng (ppm) | T (℃) | Response (arb. un.) | Ref. |
---|---|---|---|---|
H2 | ||||
CeO2/In2O3 | 50 | 160 | 20.7 | [43] |
SnO2/ZnO | 100 | 350 | 18.4 | [44] |
Pd/BN/ZnO | 50 | 200 | 13 | [45] |
SnO2/NiO | 500 | 500 | 114 | [46] |
rGO/ZnO-SnO2 | 100 | 380 | 9.4 | [47] |
RGO/ZnO | 200 | 150 | 3.5 | [48] |
Al2O3/CuO | 100 | 300 | 2.37 | [49] |
SnO2/κ(ε)-Ga2O3:Sn | 1000 | 125 | 5.7 | This work |
104 | 47 | |||
NO2 | ||||
m-WO3/ZnO | 1 | 150 | 167.8 | [50] |
WO3/SnO2 | 200 | 200 | 186 | [51] |
WO3/MWCNT composite | 5 | 150 | 18 | [52] |
ZnO/SWCNT composite | 50 | 150 | 5 | [53] |
Sb2O3/In2O3 nanotubes | 1 | 80 | 47 | [54] |
MoS2/In2O3 nanotubes | 50 | RT | 209 | [55] |
PdO/SnO2 nanotubes | 100 | RT | 20.3 | [56] |
TiO2/ZnO nanotubes | 5 | RT | 2.05 | [57] |
In2O3/ZnO | 50 | 200 | 78 | [58] |
NiO/In2O3 | 10 | 145 | 532 | [59] |
SnO2/κ(ε)-Ga2O3:Sn | 100 | 125 | 3.7 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almaev, A.; Yakovlev, N.; Kopyev, V.; Nikolaev, V.; Butenko, P.; Deng, J.; Pechnikov, A.; Korusenko, P.; Koroleva, A.; Zhizhin, E. High Sensitivity Low-Temperature Hydrogen Sensors Based on SnO2/κ(ε)-Ga2O3:Sn Heterostructure. Chemosensors 2023, 11, 325. https://doi.org/10.3390/chemosensors11060325
Almaev A, Yakovlev N, Kopyev V, Nikolaev V, Butenko P, Deng J, Pechnikov A, Korusenko P, Koroleva A, Zhizhin E. High Sensitivity Low-Temperature Hydrogen Sensors Based on SnO2/κ(ε)-Ga2O3:Sn Heterostructure. Chemosensors. 2023; 11(6):325. https://doi.org/10.3390/chemosensors11060325
Chicago/Turabian StyleAlmaev, Aleksei, Nikita Yakovlev, Viktor Kopyev, Vladimir Nikolaev, Pavel Butenko, Jinxiang Deng, Aleksei Pechnikov, Petr Korusenko, Aleksandra Koroleva, and Evgeniy Zhizhin. 2023. "High Sensitivity Low-Temperature Hydrogen Sensors Based on SnO2/κ(ε)-Ga2O3:Sn Heterostructure" Chemosensors 11, no. 6: 325. https://doi.org/10.3390/chemosensors11060325
APA StyleAlmaev, A., Yakovlev, N., Kopyev, V., Nikolaev, V., Butenko, P., Deng, J., Pechnikov, A., Korusenko, P., Koroleva, A., & Zhizhin, E. (2023). High Sensitivity Low-Temperature Hydrogen Sensors Based on SnO2/κ(ε)-Ga2O3:Sn Heterostructure. Chemosensors, 11(6), 325. https://doi.org/10.3390/chemosensors11060325