Fabrication of Electrochemical Sensor for the Detection of Mg(II) Ions Using CeO2 Microcuboids as an Efficient Electrocatalyst
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. Synthesis of CeO2 Microcuboids
2.3. Fabrication of CeO2 Microcuboid-Modified GCE
2.4. Material Characterization
2.5. Partial Least Squares Regression and Multiple Linear Regression Analysis
3. Results and Discussion
3.1. Characterization of CeO2 Microcuboids
3.2. Cyclic Voltammetry Analysis
3.3. Differential Pulse Voltammetric Detection of Mg(II) Ions Using CeO2 Microcuboids/GCE
3.4. Square Wave Voltammetric Detection of Mg(II) Ions Using CeO2 Microcuboids/GCE
3.5. Amperometric Detection of Mg(II) Ions at CeO2 Microcuboids/GCE
3.6. Repeatability, Reproducibility, Interferences, and Stability Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez, J.; Hou, R.Q.; Nidadavolu, E.P.S.; Willumeit-Römer, R.; Feyerabend, F. Magnesium Degradation under Physiological Conditions—Best Practice. Bioact. Mater. 2018, 3, 174–185. [Google Scholar] [CrossRef]
- Glasdam, S.-M.; Glasdam, S.; Peters, G.H. Chapter Six—The Importance of Magnesium in the Human Body: A Systematic Literature Review; Elsevier: Amsterdam, The Netherlands, 2016; Volume 73, pp. 169–193. ISBN 0065-2423. [Google Scholar]
- De Baaij, J.H.F.; Hoenderop, J.G.J.; Bindels, R.J.M. Magnesium in Man: Implications for Health and Disease. Physiol. Rev. 2015, 95, 1–46. [Google Scholar] [CrossRef]
- Topf, J.M.; Murray, P.T. Hypomagnesemia and Hypermagnesemia. Rev. Endocr. Metab. Disord. 2003, 4, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Akhter, F.; Nag, A.; Alahi, M.E.E.; Liu, H.; Mukhopadhyay, S.C. Electrochemical Detection of Calcium and Magnesium in Water Bodies. Sens. Actuators A Phys. 2020, 305, 111949. [Google Scholar] [CrossRef]
- Gao, X.; Huang, H.; Niu, S.; Ye, H.; Lin, Z.; Qiu, B.; Chen, G. Determination of Magnesium Ion in Serum Samples by a DNAzyme-Based Electrochemical Biosensor. Anal. Methods 2012, 4, 947–952. [Google Scholar] [CrossRef]
- Asif, M.H.; Ali, S.M.U.; Nur, O.; Willander, M.; Englund, U.H.; Elinder, F. Functionalized ZnO Nanorod-Based Selective Magnesium Ion Sensor for Intracellular Measurements. Biosens. Bioelectron. 2010, 26, 1118–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, V.K.; Chandra, S.; Mangla, R. Magnesium-Selective Electrodes. Sens. Actuators B Chem. 2002, 86, 235–241. [Google Scholar] [CrossRef]
- Lü, H.; Zhao, Y.; Ma, J.; Li, J.; Wang, H.; Lu, Z. Eletrochemical Detection of Magnesium Ions Using PVC Membrane Trapped Chlorophyll A Molecules. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 2001, 371, 391–396. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Shinde, S.; Ghodake, G. Colorimetric Detection of Magnesium (II) Ions Using Tryptophan Functionalized Gold Nanoparticles. Sci. Rep. 2017, 7, 3966. [Google Scholar] [CrossRef] [Green Version]
- Karimi-Maleh, H.; Karimi, F.; Alizadeh, M.; Sanati, A.L. Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems. Chem. Rec. 2020, 20, 682–692. [Google Scholar] [CrossRef]
- Xue, S.; Li, Q.; Wang, L.; You, W.; Zhang, J.; Che, R. Copper- and Cobalt-Codoped CeO2 Nanospheres with Abundant Oxygen Vacancies as Highly Efficient Electrocatalysts for Dual-Mode Electrochemical Sensing of MicroRNA. Anal. Chem. 2019, 91, 2659–2666. [Google Scholar] [CrossRef] [PubMed]
- Gowthaman, N.S.K.; Ngee Lim, H.; Balakumar, V.; Shankar, S. Ultrasonic Synthesis of CeO2@organic Dye Nanohybrid: Environmentally Benign Rabid Electrochemical Sensing Platform for Carcinogenic Pollutant in Water Samples. Ultrason. Sonochem. 2020, 61, 104828. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Ansari, M.S.; Dev, N.; Satsangee, S.P. CeO2 Nanoparticles Based Electrochemical Sensor for an Anti-Anginal Drug. Mater. Today Proc. 2019, 18, 1210–1219. [Google Scholar] [CrossRef]
- Yang, S.; Li, G.; Wang, G.; Liu, L.; Wang, D.; Qu, L. Synthesis of Highly Dispersed CeO2 Nanoparticles on N-Doped Reduced Oxide Graphene and Their Electrocatalytic Activity toward H2O2. J. Alloys Compd. 2016, 688, 910–916. [Google Scholar] [CrossRef]
- Abdelrahim, M.Y.M.; Benjamin, S.R.; Cubillana-Aguilera, L.M.; Naranjo-Rodríguez, I.; De Cisneros, J.L.H.-H.; Delgado, J.J.; Palacios-Santander, J.M. Study of the Electrocatalytic Activity of Cerium Oxide and Gold-Studded Cerium Oxide Nanoparticles Using a Sonogel-Carbon Material as Supporting Electrode: Electroanalytical Study in Apple Juice for Babies. Sensors 2013, 13, 4979–5007. [Google Scholar] [CrossRef] [Green Version]
- Hirst, S.M.; Karakoti, A.S.; Tyler, R.D.; Sriranganathan, N.; Seal, S.; Reilly, C.M. Anti-Inflammatory Properties of Cerium Oxide Nanoparticles. Small 2009, 5, 2848–2856. [Google Scholar] [CrossRef]
- Dhall, A.; Self, W. Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications. Antioxidants 2018, 7, 97. [Google Scholar] [CrossRef] [Green Version]
- Dunnick, K.M.; Pillai, R.; Pisane, K.L.; Stefaniak, A.B.; Sabolsky, E.M.; Leonard, S.S. The Effect of Cerium Oxide Nanoparticle Valence State on Reactive Oxygen Species and Toxicity. Biol. Trace Elem. Res. 2015, 166, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Nesakumar, N.; Sethuraman, S.; Krishnan, U.; Rayappan, J.B.B. Electron Transfer Properties of Nano-Ceria Based Linear Voltammetric Biosensor for Tributyrin Detection. J. Comput. Theor. Nanosci. 2015, 12, 944–949. [Google Scholar] [CrossRef]
- Sayyed, S.A.A.R.; Beedri, N.I.; Kadam, V.S.; Pathan, H.M. Rose Bengal-Sensitized Nanocrystalline Ceria Photoanode for Dye-Sensitized Solar Cell Application. Bull. Mater. Sci. 2016, 39, 1381–1387. [Google Scholar] [CrossRef] [Green Version]
- Farahmandjou, M.; Zarinkamar, M.; Firoozabadi, T. Synthesis of Cerium Oxide (CeO2) Nanoparticles Using Simple CO-Precipitation Method. Rev. Mex. Fis. 2016, 62, 496–499. [Google Scholar]
- Culica, M.E.; Chibac-Scutaru, A.L.; Melinte, V.; Coseri, S. Cellulose Acetate Incorporating Organically Functionalized CeO2 NPs: Efficient Materials for UV Filtering Applications. Materials 2020, 13, 2955. [Google Scholar] [CrossRef] [PubMed]
- Chelliah, M.; Rayappan, J.B.B.; Krishnan, U. Synthesis and Characterization of Cerium Oxide Nanoparticles by Hydroxide Mediated Approach. J. Appl. Sci. 2012, 12, 1734–1737. [Google Scholar] [CrossRef] [Green Version]
- Zamiri, R.; Abbastabar Ahangar, H.; Kaushal, A.; Zakaria, A.; Zamiri, G.; Tobaldi, D.; Ferreira, J.M.F. Dielectrical Properties of CeO2 Nanoparticles at Different Temperatures. PLoS ONE 2015, 10, e0122989. [Google Scholar]
- Bortamuly, R.; Konwar, G.; Boruah, P.K.; Das, M.R.; Mahanta, D.; Saikia, P. CeO2-PANI-HCl and CeO2-PANI-PTSA Composites: Synthesis, Characterization, and Utilization as Supercapacitor Electrode Materials. Ionics 2020, 26, 5747–5756. [Google Scholar] [CrossRef]
- Lian, J.; Liu, P.; Jin, C.; Shi, Z.; Luo, X.; Liu, Q. Perylene Diimide-Functionalized CeO2 Nanocomposite as a Peroxidase Mimic for Colorimetric Determination of Hydrogen Peroxide and Glutathione. Microchim. Acta 2019, 186, 332. [Google Scholar] [CrossRef]
- Channei, D.; Inceesungvorn, B.; Wetchakun, N.; Ukritnukun, S.; Nattestad, A.; Chen, J.; Phanichphant, S. Photocatalytic Degradation of Methyl Orange by CeO2 and Fe–Doped CeO2 Films under Visible Light Irradiation. Sci. Rep. 2014, 4, 5757. [Google Scholar] [CrossRef] [Green Version]
- Guidelli, R.; Compton, R.G.; Feliu, J.M.; Gileadi, E.; Lipkowski, J.; Schmickler, W.; Trasatti, S. Defining the Transfer Coefficient in Electrochemistry: An Assessment (IUPAC Technical Report). Pure Appl. Chem. 2014, 86, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Houcini, H.; Laghrib, F.; Bakasse, M.; Lahrich, S.; El Mhammedi, M.A. Catalytic Activity of Gold for the Electrochemical Reduction of P-Nitrophenol: Analytical Application. Int. J. Environ. Anal. Chem. 2020, 100, 1566–1577. [Google Scholar] [CrossRef]
- Li, X.; Drews, T.O.; Rusli, E.; Xue, F.; He, Y.; Braatz, R.; Alkire, R. Effect of Additives on Shape Evolution during Electrodeposition: I. Multiscale Simulation with Dynamically Coupled Kinetic Monte Carlo and Moving-Boundry Finite-Volume Codes. J. Electrochem. Soc. 2007, 154, D230. [Google Scholar] [CrossRef] [Green Version]
- Nesakumar, N.; Anantharaj, S.; Subramanian, N.; Kundu, S.; Alwarappan, S. NiFe-Layered Double Hydroxide Sheets as an Efficient Electrochemical Biosensing Platform. J. Electrochem. Soc. 2018, 165, B536–B542. [Google Scholar] [CrossRef]
- Nesakumar, N.; Ramachandra, B.L.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. Theoretical Investigation of Surface Coverage in the Electrochemical Behaviour of Enzyme Modified Electrodes. Sens. Lett. 2015, 13, 344–348. [Google Scholar] [CrossRef]
- Elqudaby, H.M.; Mohamed, G.G.; El Din, G.M.G. Electrochemical Behaviour of Trimebutine at Activated Glassy Carbon Electrode and Its Direct Determination in Urine and Pharmaceutics by Square Wave and Differential Pulse Voltammetry. Int. J. Electrochem. Sci. 2014, 9, 856–869. [Google Scholar] [CrossRef]
- Uslu, B.; Özkan, S.A.; Şentürk, Z. Electrooxidation of the Antiviral Drug Valacyclovir and Its Square-Wave and Differential Pulse Voltammetric Determination in Pharmaceuticals and Human Biological Fluids. Anal. Chim. Acta 2006, 555, 341–347. [Google Scholar] [CrossRef]
Material | Linearity (mM) | LOD (μM) | Regression | Adjusted R2 | References |
---|---|---|---|---|---|
MWCNTs/polydimethylsiloxane/graphite | 0.041–8.228 | --- | Linear | 0.99 | [5] |
Mg2+-dependent DNAzyme/Au | 0.2–5.0 | 50 | Linear | 0.99 | [6] |
ZnO nanorods/Ag | 5 × 10−4–100 | --- | Linear | 0.99 | [7] |
Ionophore/PVC/NaTPB/DOP/glass | 0.01–100 | --- | Linear | --- | [8] |
Chlorophyll/PVC | 0.01–100 | --- | Linear | --- | [9] |
CeO2/GC | 0–3 | 19.84 | Linear, multiple linear, partial least squares | 0.99 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muruganandam, G.; Nesakumar, N.; Kulandaisamy, A.J.; Rayappan, J.B.B.; Gunasekaran, B.M. Fabrication of Electrochemical Sensor for the Detection of Mg(II) Ions Using CeO2 Microcuboids as an Efficient Electrocatalyst. Chemosensors 2023, 11, 442. https://doi.org/10.3390/chemosensors11080442
Muruganandam G, Nesakumar N, Kulandaisamy AJ, Rayappan JBB, Gunasekaran BM. Fabrication of Electrochemical Sensor for the Detection of Mg(II) Ions Using CeO2 Microcuboids as an Efficient Electrocatalyst. Chemosensors. 2023; 11(8):442. https://doi.org/10.3390/chemosensors11080442
Chicago/Turabian StyleMuruganandam, Girdega, Noel Nesakumar, Arockia Jayalatha Kulandaisamy, John Bosco Balaguru Rayappan, and Balu Mahendran Gunasekaran. 2023. "Fabrication of Electrochemical Sensor for the Detection of Mg(II) Ions Using CeO2 Microcuboids as an Efficient Electrocatalyst" Chemosensors 11, no. 8: 442. https://doi.org/10.3390/chemosensors11080442
APA StyleMuruganandam, G., Nesakumar, N., Kulandaisamy, A. J., Rayappan, J. B. B., & Gunasekaran, B. M. (2023). Fabrication of Electrochemical Sensor for the Detection of Mg(II) Ions Using CeO2 Microcuboids as an Efficient Electrocatalyst. Chemosensors, 11(8), 442. https://doi.org/10.3390/chemosensors11080442