Heater Topology Influence on the Functional Characteristics of Thin-Film Gas Sensors Made by MEMS-Silicon Technology
Abstract
:1. Introduction
2. Design and Manufacturing Technology of the Studied Thin-Film Sensors
2.1. Sensor Designs with Different Heater Topologies
2.2. Technological Process of Manufacturing Thin-Film Sensors
2.2.1. Creation of Double Dielectric Membrane in Silicon Substrate
2.2.2. Fabrication of the Heater on Double Dielectric Membrane
2.2.3. Deposition of Gas-Sensitive Layer
3. Influence of the Sensor Heater Topology on Heat Exchange Processes
3.1. Investigation of Current–Voltage Characteristics of Heaters with Different Topologies
- First topology (1t)—big six-loop meander with conductor width of 30 µm and gap between them of 5 µm (Figure 2a);
- Second topology (2t)—serial connection of two halves of the first type heater, divided along the axis (Figure 2b);
- Third topology (3t)—parallel connection of two halves of the first type heater, divided along the axis (Figure 2b);
- Fourth topology (4t)—half of the first meander (Figure 2c);
- Fifth topology (5t)—small square two-loop meander (Figure 2d).
3.2. Study of Heater Temperature Dependences with Different Topologies
3.3. Study of Gas-Sensing Properties of Investigated Sensors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A Survey on Gas Sensing Technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [Green Version]
- Kolmakov, A. Some Recent Trends in the Fabrication, Functionalisation and Characterisation of Metal Oxide Nanowire Gas Sensors. Int. J. Nanotechnol. 2008, 5, 450–474. [Google Scholar] [CrossRef]
- Tang, H.; Yan, M.; Zhang, H.; Li, S.; Ma, X.; Wang, M.; Yang, D. A Selective NH3 Gas Sensor Based on Fe2O3–ZnO Nanocomposites at Room Temperature. Sens. Actuators B Chem. 2006, 114, 910–915. [Google Scholar] [CrossRef]
- Mondal, B.; Basumatari, B.; Das, J.; Roychaudhury, C.; Saha, H.; Mukherjee, N. ZnO–SnO2 Based Composite Type Gas Sensor for Selective Hydrogen Sensing. Sens. Actuators B Chem. 2014, 194, 389–396. [Google Scholar] [CrossRef]
- Fleming, W.J. New Automotive Sensors—A Review. IEEE Sens. J. 2008, 8, 1900–1921. [Google Scholar] [CrossRef]
- Sharma, S.; Madou, M. A new approach to gas sensing with nanotechnology. Philos. Trans. R. Soc. A 2012, 370, 2448–2473. [Google Scholar] [CrossRef] [PubMed]
- Comini, E.; Baratto, C.; Faglia, G.; Ferroni, M.; Vomiero, A.; Sberveglieri, G. Quasi-One Dimensional Metal Oxide Semiconductors: Preparation, Characterization and Application as Chemical Sensors. Prog. Mater. Sci. 2009, 54, 1–67. [Google Scholar] [CrossRef]
- Carpenter, M.A.; Mathur, S.; Kolmakov, A. (Eds.) Metal Oxide Nanomaterials for Chemical Sensors; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-5394-9. [Google Scholar]
- Korotcenkov, G. Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations. Part 1: 1D and 2D Nanostructures. Nanomaterials 2020, 10, 1392. [Google Scholar] [CrossRef]
- Korotcenkov, G. Metal Oxides for Solid-State Gas Sensors: What Determines Our Choice? Mater. Sci. Eng. B 2007, 139, 1–23. [Google Scholar] [CrossRef]
- Rajkumar, K.; Rt, R. Gas Sensors Based on Two-Dimensional Materials and Its Mechanisms. In Fundamentals and Sensing Applications of 2D Materials; Woodhead Publishing: Sawston, UK, 2019; pp. 205–258. ISBN 978-0-08-102577-2. [Google Scholar]
- Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Xu, C.; Tamaki, J.; Miura, N.; Yamazoe, N. Grain Size Effects on Gas Sensitivity of Porous SnO2-Based Elements. Sens. Actuators B Chem. 1991, 3, 147–155. [Google Scholar] [CrossRef]
- Moos, R.; Sahner, K.; Fleischer, M.; Guth, U.; Barsan, N.; Weimar, U. Solid state gas sensor research in Germany—A status report. Sensors. 2009, 9, 4323–4365. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Z.; Han, D.; Gu, F.; Guo, G. Porous ZnO Polygonal Nanoflakes: Synthesis, Use in High-Sensitivity NO2 Gas Sensor, and Proposed Mechanism of Gas Sensing. J. Phys. Chem. C 2011, 115, 12763–12773. [Google Scholar] [CrossRef]
- Sik Choi, M.; Young Kim, M.; Mirzaei, A.; Kim, H.S.; Kim, S.I.; Baek, S.H.; Won Chun, D.; Jin, C.; Hyoung Lee, K. Selective, Sensitive, and Stable NO2 Gas Sensor Based on Porous ZnO Nanosheets. Appl. Surf. Sci. 2021, 568, 150910. [Google Scholar] [CrossRef]
- Yan, W.; Chen, Y.; Zeng, X.; Wu, G.; Jiang, W.; Wei, D.; Ling, M.; Wei Ng, K.; Qin, Y. Ultrasensitive ethanol sensor based on segregated ZnO-In2O3 porous nanosheets. Appl. Surf. Sci. 2021, 535, 147697. [Google Scholar] [CrossRef]
- Yan, S.; Liang, X.; Song, H.; Ma, S.; Lu, Y. Synthesis of Porous CeO2-SnO2 Nanosheets Gas Sensors with Enhanced Sensitivity. Ceram. Int. 2018, 44, 358–363. [Google Scholar] [CrossRef]
- Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H.; et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev. 2017, 117, 6225–6331. [Google Scholar] [CrossRef] [PubMed]
- Khatko, V.; Gorokh, G.; Mozalev, A.; Solovei, D.; Gispert Guirado, F.; Llobet, E.; Correig, X. Nanostructured Anodic Tungsten Oxide Films as a Promising Material For Gas Sensor Application. In Proceedings of the 20th European Conference on Solid State Transducers, EUROSENSORS XX, Goteborg, Sweden, 17–20 September 2006; Volume 2, pp. 332–333. [Google Scholar]
- Karthikeyan, S.; Pandya, H.M.; Sharma, M.U.; Gopal, K. Gas Sensors—A Review. J. Environ. Nanotechnol. 2015, 4, 1–14. [Google Scholar] [CrossRef]
- Fraden, J. Handbook of Modern Sensors: Physics, Designs, and Applications, 3rd ed.; Springer: New York, NY, USA, 2014; p. 589. ISBN 0-387-00750-4. [Google Scholar]
- Wang, H.; Liu, X.; Niu, P.; Wang, S.; Shi, J.; Li, L. Porous Two-Dimensional Materials for Photocatalytic and Electrocatalytic Applications. Matter 2020, 2, 1377–1413. [Google Scholar] [CrossRef]
- Neri, G. Thin 2D: The New Dimensionality in Gas Sensing. Chemosensors 2017, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, H.; Huang, D.; Wang, X.; Wang, Y.; Wang, W.; Yi, M.; Cheng, Q.; Song, Y.; Han, G. Highly Sensitive and Selective Acetone Gas Sensors Based on Modified ZnO Nanomaterials. Mater. Sci. Semicond. Process. 2022, 148, 106807. [Google Scholar] [CrossRef]
- Li, P.; Wang, B.; Wang, Y. Ultrafast CO Sensor Based on Flame-Annealed Porous CeO2 Nanosheets for Environmental Application. J. Inorg. Mater. 2021, 36, 1223. [Google Scholar] [CrossRef]
- Late, D.J.; Bhat, A.; Rout, C.S. Fundamentals and Properties of 2D Materials in General and Sensing Applications; Woodhead Publishing: Sawston, UK, 2019; pp. 5–24. [Google Scholar] [CrossRef]
- Korotcenkov, G. The Role of Morphology and Crystallographic Structure of Metal Oxides in Response of Conductometric-Type Gas Sensors. Mater. Sci. Eng. R Rep. 2008, 61, 1–39. [Google Scholar] [CrossRef]
- Younes, R.; Lakkis, S.; Alayli, Y.; Sawan, M. Review Of Recent Trends in Gas Sensing Technologies and Their Miniaturization Potential. Sens. Rev. 2014, 34, 24–35. [Google Scholar] [CrossRef]
- Belahurov, E.A.; Khatko, V.V.; Gorokh, G.G.; Zakhlebayeva, A.I.; Reutskaya, O.G.; Taratyn, I.A. Low-Power Gas Sensor on Nanostructured Dielectric Membrane. Nano Microsyst. Technol. 2015, 6, 34–42. [Google Scholar]
- Hwang, W.-J.; Shin, K.-S.; Roh, J.-H.; Lee, D.-S.; Choa, S.-H. Development of Micro-Heaters with Optimized Temperature Compensation Design for Gas Sensors. Sensors 2011, 11, 2580–2591. [Google Scholar] [CrossRef] [Green Version]
- Calavia, R.; Mozalev, A.; Kahtko, V.; Gorokh, G.; Vilanova, X.; Correig, X.; Gracia, I.; Cané, C.; Llobet, E. A H2 Microsensor Based on Nanocolumnar Tungsten Oxide Grown by Template-Assisted Anodization. In Proceedings of the TRANSDUCERS 2009—15th International Conference on Solid-State Sensors, Actuators and Microsystems, Denver, CO, USA, 21–25 June 2009. [Google Scholar] [CrossRef]
- Korotcenkov, G. Electrospun Metal Oxide Nanofibers and Their Conductometric Gas Sensor Application. Part 2: Gas Sensors and Their Advantages and Limitations. Nanomaterials 2021, 11, 1555. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor Metal Oxide Gas Sensors: A Review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Yang, S.; Jiang, C.; Wei, S.-H. Gas Sensing in 2D Materials. Appl. Phys. Rev. 2017, 4, 021304. [Google Scholar] [CrossRef]
- Gorokh, G.G.; Zakhlebayeva, A.I.; Belahurau, Y.e.A.; Khatko, V.V.; Taratyn, I.A. Chemical gas sensors on the nanoporous anodic alumina substrate. J. Nano-Microsyst. Techniq. 2014, 9, 45–51. [Google Scholar]
- Vasiliev, A.A.; Gogish-Klushin, S.Y.; Kharitonov, D.Y.; Pevgov, V.G.; Pislyakov, A.V. A new approach to micromachining technology for manufacturing sensors: Microelectronic chips with a thin aluminum oxide membrane. Sensor 2002, 3, 23–29. (In Russian) [Google Scholar]
- Kalinin, I.A.; Roslyakov, I.V.; Tsymbarenko, D.M.; Bograchev, D.A.; Krivetskiy, V.V.; Napolskii, K.S. Microhotplates based on Pt and Pt-Rh films: The impact of composition, structure, and thermal treatment on functional properties. Sens. Actuators A Phys. 2021, 317, 112457. [Google Scholar] [CrossRef]
- Vasiliev, A.A.; Pisliakov, A.V.; Sokolov, A.V.; Samotaev, N.N.; Soloviev, S.A.; Oblov, K.; Guarnieri, V.; Lorenzelli, L.; Brunelli, J.; Maglione, A.; et al. Non-Silicon MEMS Platforms for Gas Sensors. Sens. Actuators B Chem. 2016, 224, 700–713. [Google Scholar] [CrossRef]
- Moon, S.E.; Choi, N.-J.; Lee, H.-K.; Lee, J.; Yang, W.S. Semiconductor-Type MEMS Gas Sensor for Real-Time Environmental Monitoring Applications. ETRI J. 2013, 35, 617–624. [Google Scholar] [CrossRef]
- Xia, Z.; Riester, L.; Sheldon, B.; Curtin, W.; Liang, J.; Yin, A.; Xu, J. Mechanical Properties of Highly Ordered Nanoporous Anodic Alumina Membranes. Adv. Mater. Sci. 2004, 6, 131–139. [Google Scholar]
- Gorokh, G.; Pashechko, M.I.; Borc, J.; Lazavenka, A.; Kashko, I.A.; Latos, A.I. Matrix Coatings Based on Anodic Alumina with Carbon Nanostructures in the Pores. Appl. Surf. Sci. 2017, 433, 829–835. [Google Scholar] [CrossRef]
- Zakhlebayeva, A.; Lazavenka, A.; Gorokh, G. Multicomponent Sn–Mo–O-Containing Films Formed in Anodic Alumina Matrixes by Ionic Layer Deposition. Mater. Today Proc. 2021, 37, 4064–4070. [Google Scholar] [CrossRef]
- Lee, S.M.; Dyer, D.C.; Gardner, J.W. Design and Optimisation of a High-Temperature Silicon Micro-Hotplate for Nanoporous Palladium Pellistors. Microelectron. J. 2003, 34, 115–126. [Google Scholar] [CrossRef]
- Gorokh, G.; Bogomazova, N.; Taleb, A.; Zhylinski, V.; Galkovsky, T.; Zakhlebayeva, A.; Lozovenko, A.; Iji, M.; Fedosenko, V.; Tolstoy, V. Spatially Ordered Matrix of Nanostructured Tin–Tungsten Oxides Nanocomposites Formed by Ionic Layer Deposition for Gas Sensing. Sensors 2021, 21, 4169. [Google Scholar] [CrossRef]
- Gorokh, G.; Zakhlebayeva, A.; Taratyn, I.; Lozovenko, A.; Zhylinski, V.; Iji, M.; Fedosenko, V.; Taleb, A. A Micropowered Chemoresistive Sensor Based on a Thin Alumina Nanoporous Membrane and SnxBikMoyOz Nanocomposite. Sensors 2022, 22, 3640. [Google Scholar] [CrossRef]
- Manikandan, V.; Vigneselvan, S.; Petrila, I.; Mane, R.S.; Singh, A.; Sobczak, K.; Chandrasekaran, J. Long-lasting stability and low-concentration SO2 gas detection aptitude of Sn-doped alumina sensors. Mater. Chem. Phys. 2022, 291, 126691. [Google Scholar] [CrossRef]
Title Topology | Heater Area, mm2 | Conductor Length, mm | Conductors Squares Number | Heater Resistance, Ohm |
---|---|---|---|---|
1t | 0.092 | 2.4 | 84 | 12.18 |
2t | 0.092 | 2.6 | 100 | 13.82 |
3t | 0.092 | 1.3 | 50 | 3.51 |
4t | 0.046 | 1.3 | 51.5 | 7.24 |
5t | 0.0484 | 1.1 | 37 + 22 | 10.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorokh, G.; Taratyn, I.; Fiadosenka, U.; Reutskaya, O.; Lozovenko, A. Heater Topology Influence on the Functional Characteristics of Thin-Film Gas Sensors Made by MEMS-Silicon Technology. Chemosensors 2023, 11, 443. https://doi.org/10.3390/chemosensors11080443
Gorokh G, Taratyn I, Fiadosenka U, Reutskaya O, Lozovenko A. Heater Topology Influence on the Functional Characteristics of Thin-Film Gas Sensors Made by MEMS-Silicon Technology. Chemosensors. 2023; 11(8):443. https://doi.org/10.3390/chemosensors11080443
Chicago/Turabian StyleGorokh, Gennady, Igor Taratyn, Uladzimir Fiadosenka, Olga Reutskaya, and Andrei Lozovenko. 2023. "Heater Topology Influence on the Functional Characteristics of Thin-Film Gas Sensors Made by MEMS-Silicon Technology" Chemosensors 11, no. 8: 443. https://doi.org/10.3390/chemosensors11080443
APA StyleGorokh, G., Taratyn, I., Fiadosenka, U., Reutskaya, O., & Lozovenko, A. (2023). Heater Topology Influence on the Functional Characteristics of Thin-Film Gas Sensors Made by MEMS-Silicon Technology. Chemosensors, 11(8), 443. https://doi.org/10.3390/chemosensors11080443