Room Temperature Resistive Hydrogen Sensor for Early Safety Warning of Li-Ion Batteries
Abstract
:1. Introduction
2. Resistive H2 Sensor Operating at Room Temperature
2.1. Pd-Based H2 Sensors
2.2. Other Noble Metal-Based H2 Sensors
2.3. MOXs-Based H2 Sensors
2.4. MoS2-Based H2 Sensors
2.5. Other-Based H2 Sensors
3. Selectivity
4. Internal Gas Sensors in LIBs
Material & Morphology | H2 Response | tresp/trec b | LOD c (ppm) | Measurement Range | Ref. d |
---|---|---|---|---|---|
Pd nanofiber yarn | 1.37% at 0.1% | 236 s/388 s at 0.1% | 2 | 1 ppm to 4% | [43] |
Pd nanofiber yarn | 0.88% at 0.1% | 76 s/384 s at 0.1% | 1 | 1 ppm to 4% | [43] |
Pd nanopattern | 0.8% at 0.1% | 230 s/680 s at 0.1% | 2.5 | 2.5 ppm to 4% | [44] |
Pd nanotube array | 1000% at 0.1% | 180 s/n.r. at 0.1% | 100 | 100 ppm to 1% | [45] |
Pd/Pt nanopattern | 2% at 1% | 7 s/35 s at 0.1% | 10 | 10 ppm to 1% | [49] |
Pd/Au nanopattern | n.r. | 8 s/30 s at 0.1% | 10 | 10 ppm to 1% | [49] |
Pd/Mg film | 3% at 1% | 6 s/32 s at 1% | 1 | 1 ppm to 4% | [50] |
Pd–Sn Alloy Nanotube | 1.63% at 200 ppm | 20 s/18 s at 200 ppm | 1 | 0.5 ppm to 3% | [51] |
PdMo alloy nanosheet | 18.7% at 1% | 73 s/40 s at 1% | 1 | 0.01% to 1% | [35] |
Pd-PdO Hollow Shells | 4.6% at 1 ppm | 5 s/32 s at 1% | 1 | 1 ppm to 1% | [46] |
Pd-ZnO nanoflowers | 45% at 10 ppm | 137 s/165 s at 300 ppb | 0.3 | 0.3 to70 ppm | [37] |
Pd/ZnO | 39.2% at 1000 ppm | 68 s/n.r. at 1000 ppm | 1000 | 0.1% to 2% | [75] |
Pd-WO3 nanoparticle | 1786.3 a at 100 ppm | 41 s/n.r. at 100 ppm | 1 | 1 to 100 ppm | [79] |
MWCNT@Pd nanosheets | 3.6% at 1% | 74 s/35 s at 1% | 5 | 0.02% to 1% | [80] |
Pt/g- C3N4 film | 51% at 10,000 ppm | 39 s/5 s to 10,000 ppm | 1% | 1% to 10% | [81] |
Pd-decorated crumpled rGO | 14.8% at 2% | 73 s/126 s at 2% | 25 | 25 ppm to 2% | [82] |
Pd/porous graphene | 0.6% at 600 ppm | n.r. | 600 | 600 ppm to 1.3% | [83] |
Pd/graphene | 66% at 2% | 1.8 min/5.5 min at 2% | 25 | 0.025% to 2% | [72] |
Pd sub-nano clusters on graphene | 15% at 5 ppm | 25 s/35 s at 5 ppm | 0.05 | 50 ppb to 5 ppm | [33] |
Pd nanowires@ZIF-8 Core-shell | 0.8% at 0.1% | 8 s/30 s at 0.1% H2 | 600 | 600 ppm to 1% | [55] |
Vertically aligned Pd/MoS2 nanofilm | 33.7% at 500 ppm | 16 s/38 s at 500 ppm | 50 | 50 ppm to 1% | [66] |
Pd-sodium titanate nanoribbons | 12.0 a to 1% | 1.1 s/13.5 s at 1% | 0.8 | 0.8 ppm to 10% | [54] |
Pd- sodium titanate nanoparticles | 5.7 a to 1% | 13.3 s/39 s at 1% | 100 | 100 ppm to 5% | [54] |
Ti3C2Tx@Pd nanoclusters | 23% at 4% | 32 s/161 s at 4% | 0.5% | 0.5% to 40% | [53] |
rGO-ZnFe2O4–Pd | 11.43% to 200 ppm | 18 s/39 s at 200 ppm | 50 | 50 to 1000 ppm | [68] |
Pt/rGO | 97% at 500 ppm | 65 s/230 s at 5000 ppm | 200 | 200 to 5000 ppm | [57] |
Pt/3D graphene | 6.1% at 1% | 25 s/20 s at 1% | 10 | 10 ppm to 1% | [59] |
Pt-PdO nanowires | 23% at 100 ppm | 166 s/445 s at 0.1% | 10 | 10 to 100 ppm | [84] |
Au@PdO nanoparticle arrays | ~180 a at 1% | n.r. | 0.1 | 0.1 ppm to 1% | [36] |
PdO-PdAu Ternary Hollow Shells | n.r. | 2.2 s/23 s at 0.1% | 30 | 30 ppm to 1% | [85] |
Hollow MoS2/Pt | 8.7% at 1% | 8 s/16 s at 1% | 500 | 500 ppm to 4% | [65] |
2D holey ZnO | 115% at 100 ppm | 9 s/6 s at 100 ppm | 5 | 5 to 100 ppm | [39] |
WO3-TiO2 composite | 5.62 a at 10,000 ppm | 48 s/5 s at 10,000 ppm | 1000 | 1000 to 10,000 ppm | [63] |
MoS2-ZnO nanotubes | 0.51 a at 500 ppm | 14 s/19 s at 500 ppm | 10 | 10 to 500 ppm | [38] |
SnO2-coated β-Ga2O3 nanobelts | 115% at 33 ppm | 216 s/125 s at 33 ppm | 33 | 33 to 1000 ppm | [64] |
Nanocrystalline SnO2 thin film | 48% at 3 ppm | 135 s/46 s at 3 ppm | 3 | 3 to 100 ppm | [60] |
Well-aligned MoO3 nanoribbon arrays | ~3% at 100 ppm | 3 s/16 s at 100 ppm | 100 | 100 to 500 ppm | [61] |
ZnO microwires with GO membrane | 3.42 a at 1000 ppm | 114 s/30 s at 1000 ppm | 10 | 10 to 1000 ppm | [71] |
ordered mesoporous TiO2 | 298 a at 1000 ppm | 85 s/198 s at 1000 ppm | 100 | 100 to 1000 ppm | [62] |
3D nickel oxysulfide micro-flowers | 3.24% at 1% | 20 min/33 min to 1% | 0.25% | 0.25% to 1% | [67] |
5. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Goodenough, J.B.; Park, K.-S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef] [Green Version]
- Niu, H.; Wang, L.; Guan, P.; Zhang, N.; Yan, C.; Ding, M.; Guo, X.; Huang, T.; Hu, X. Recent advances in application of ionic liquids in electrolyte of lithium ion batteries. J. Energy Storage 2021, 40, 102659. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Zheng, Z.K.; Wei, D.H.; Jiang, X.; Lu, H.F.; Sun, L.; Tao, F.B.; Guo, D.L.; Liu, Y.; Gao, J.F.; et al. Detection of Micro-Scale Li Dendrite via H2 Gas Capture for Early Safety Warning. Joule 2020, 4, 1714–1729. [Google Scholar] [CrossRef]
- Shi, S.; Lyu, N.; Jiang, X.; Song, Y.; Lu, H.; Jin, Y. Hydrogen gas diffusion behavior and detector installation optimization of lithium ion battery energy-storage cabin. J. Energy Storage 2023, 67, 107510. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, J.; Shao, H.; Xu, K.; Deng, Y. Gas Generation Mechanism in Li-Metal Batteries. Energy Environ. Mater. 2022, 5, 327–336. [Google Scholar] [CrossRef]
- Liao, Z.H.; Zhang, S.; Li, K.; Zhang, G.Q.; Habetler, T.G. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries. J. Power Sources 2019, 436, 226879. [Google Scholar] [CrossRef]
- Guo, X.; Guo, S.; Wu, C.; Li, J.; Liu, C.; Chen, W. Intelligent Monitoring for Safety-Enhanced Lithium-Ion/Sodium-Ion Batteries. Adv. Energy Mater. 2023, 13, 2203903. [Google Scholar] [CrossRef]
- Kaur, P.; Bagchi, S.; Gribble, D.; Pol, V.G.; Bhondekar, A.P. Impedimetric Chemosensing of Volatile Organic Compounds Released from Li-Ion Batteries. ACS Sens. 2022, 7, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Valecha, P.; Tran, V.; Engle, B.; Stefanopoulou, A.; Siegel, J. Detection of Li-ion battery failure and venting with Carbon Dioxide sensors. Etransportation 2021, 7, 100100. [Google Scholar] [CrossRef]
- Santos-Carballal, D.; Lupan, O.; Magariu, N.; Ababii, N.; Kruger, H.; Bodduluri, M.T.; de Leeuw, N.H.; Hansen, S.; Adelung, R. Al2O3/ZnO composite-based sensors for battery safety applications: An experimental and theoretical investigation. Nano Energy 2023, 109, 108301. [Google Scholar] [CrossRef]
- Essl, C.; Seifert, L.; Rabe, M.; Fuchs, A. Early detection of failing automotive batteries using gas sensors. Batteries 2021, 7, 25. [Google Scholar] [CrossRef]
- Mateev, V.; Marinova, I.; Kartunov, Z. Gas Leakage Source Detection for Li-Ion Batteries by Distributed Sensor Array. Sensors 2019, 19, 2900. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Feng, X.; Pan, Y.; Jin, C.; Sun, J.; Yao, J.; Wang, H.; Xu, C.; Jiang, F.; Ouyang, M. Early warning of battery failure based on venting signal. J. Energy Storage 2023, 59, 106536. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Zhu, J.; Gao, Y. A Critical Review of Thermal Runaway Prediction and Early-Warning Methods for Lithium-Ion Batteries. Energy Mater. Adv. 2023, 4, 0008. [Google Scholar] [CrossRef]
- Li, B.; Lai, P.T.; Tang, W.M. Influence of Source/Drain Catalytic Metal and Fabrication Method on OTFT-Based Hydrogen Sensor. IEEE Trans. Electron. Devices 2022, 69, 2038–2042. [Google Scholar] [CrossRef]
- Ghosh, S.; Rajan, L.; Varghese, A. Junctionfree Gate Stacked Vertical TFET Hydrogen Sensor at Room Temperature. IEEE Trans. Nanotechnol. 2022, 21, 655–662. [Google Scholar] [CrossRef]
- Zhou, S.; Xiao, M.; Liu, F.; He, J.; Lin, Y.; Zhang, Z. Sub-10 parts per billion detection of hydrogen with floating gate transistors built on semiconducting carbon nanotube film. Carbon 2021, 180, 41–47. [Google Scholar] [CrossRef]
- Skucha, K.; Fan, Z.Y.; Jeon, K.; Javey, A.; Boser, B. Palladium/silicon nanowire Schottky barrier-based hydrogen sensors. Sens. Actuators B Chem. 2010, 145, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-C.; Niu, J.-S.; Liu, I.P.; Liu, B.-Y.; Cheng, S.-Y.; Lin, K.-W.; Liu, W.-C. Room-Temperature Hydrogen- and Ammonia Gas-Sensing Characteristics of a GaN-Based Schottky Diode Synthesized with a Hybrid Surface Structure. IEEE Trans. Electron. Devices 2021, 68, 761–768. [Google Scholar] [CrossRef]
- Jang, S.; Jung, S.; Baik, K.H. Hydrogen sensing performance of ZnO Schottky diodes in humid ambient conditions with PMMA membrane layer. Sensors 2020, 20, 835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Rajan, L. Room Temperature Hydrogen Sensing Investigation of Zinc Oxide Schottky Thin-Film Transistors: Dependence on Film Thickness. IEEE Trans. Electron. Devices 2020, 67, 5701–5709. [Google Scholar] [CrossRef]
- Ratan, S.; Kumar, C.; Kumar, A.; Jarwal, D.K.; Mishra, A.K.; Upadhyay, R.K.; Singh, A.P.; Jit, S. Room temperature high hydrogen gas response in Pd/TiO2/Si/Al capacitive sensor. Micro Nano Lett. 2020, 15, 632–635. [Google Scholar] [CrossRef]
- Constantinoiu, I.; Viespe, C. Development of Pd/TiO2 Porous Layers by Pulsed Laser Deposition for Surface Acoustic Wave H2 Gas Sensor. Nanomaterials 2020, 10, 760. [Google Scholar] [CrossRef] [Green Version]
- Hosoki, A.; Nishiyama, M.; Sakurai, N.; Igawa, H.; Watanabe, K. Long-Term Hydrogen Detection Using a Hetero-Core Optical Fiber Structure Featuring Au/Ta2O5/Pd/Pt Multilayer Films. IEEE Sens. J. 2020, 20, 227–233. [Google Scholar] [CrossRef]
- Dai, J.; Li, Y.; Ruan, H.; Ye, Z.; Chai, N.; Wang, X.; Qiu, S.; Bai, W.; Yang, M. Fiber Optical Hydrogen Sensor Based on WO3-Pd2Pt-Pt Nanocomposite Films. Nanomaterials 2021, 11, 128. [Google Scholar] [CrossRef]
- Koo, W.T.; Cho, H.J.; Kim, D.H.; Kim, Y.H.; Shin, H.; Penner, R.M.; Kim, I.D. Chemiresistive Hydrogen Sensors: Fundamentals, Recent Advances, and Challenges. ACS Nano 2020, 14, 14284–14322. [Google Scholar] [CrossRef]
- Favier, F.; Walter, E.C.; Zach, M.P.; Benter, T.; Penner, R.M. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 2001, 293, 2227–2231. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Li, Z.; Chang, X.; Liu, X.; Hu, Y.; Li, M.; Xu, P.; Pinna, N.; Zhang, J. PdRh-Sensitized Iron Oxide Ultrathin Film Sensors and Mechanistic Investigation by Operando TEM and DFT Calculation. Small 2023, 2301485. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Yan, W.; Ling, M.; Liang, C. DNA-Incorporated Biomimetic Olfactory Neuroepithelium That Facilitates Artificial Intelligence. Adv. Intell. Syst. 2023, 2200396. [Google Scholar] [CrossRef]
- Zhu, J.; Cho, M.; Li, Y.; He, T.; Ahn, J.; Park, J.; Ren, T.-L.; Lee, C.; Park, I. Machine learning-enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application. Nano Energy 2021, 86, 106035. [Google Scholar] [CrossRef]
- Kumar, A.; Zhao, Y.; Abraham, S.R.; Thundat, T.; Swihart, M.T. Pd Alloy Nanosheet Inks for Inkjet-Printable H2 Sensors on Paper. Adv. Mater. Interfaces 2022, 9, 2200363. [Google Scholar] [CrossRef]
- Yang, S.; Li, Q.; Li, C.; Cao, T.; Wang, T.; Fan, F.; Zhang, X.; Fu, Y. Enhancing the Hydrogen-Sensing Performance of p-Type PdO by Modulating the Conduction Model. ACS Appl. Mater. Interfaces 2021, 13, 52754–52764. [Google Scholar] [CrossRef]
- Jeon, J.-Y.; Park, S.-J.; Ha, T.-J. Functionalization of Zinc Oxide Nanoflowers with Palladium Nanoparticles via Microwave Absorption for Room Temperature-Operating Hydrogen Gas Sensors in the ppb Level. ACS Appl. Mater. Interfaces 2021, 13, 25082–25091. [Google Scholar] [CrossRef]
- Vivekanandan, A.K.; Huang, B.-R.; Kathiravan, D.; Saravanan, A.; Prasannan, A.; Tsai, H.-C.; Chen, S.-H. Effect of MoS2 solution on reducing the wall thickness of ZnO nanotubes to enhance their hydrogen gas sensing properties. J. Alloys Compd. 2021, 854, 157102. [Google Scholar] [CrossRef]
- Kumar, M.; Bhatt, V.; Kim, J.; Abhyankar, A.C.; Chung, H.-J.; Singh, K.; Bin Cho, Y.; Yun, Y.J.; Lim, K.S.; Yun, J.-H. Holey engineered 2D ZnO-nanosheets architecture for supersensitive ppm level H2 gas detection at room temperature. Sens. Actuators B Chem. 2021, 326, 128839. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, G.; Li, J.; Yan, B.; Duan, W. Hydrogen-induced metallization of zinc oxide (2 1 1 0) surface and nanowires: The effect of curvature. Phys. Rev. B. 2008, 77, 245303. [Google Scholar] [CrossRef]
- Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M. Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 2007, 32, 1121–1140. [Google Scholar] [CrossRef]
- Xu, T.; Zach, M.; Xiao, Z.; Rosenmann, D.; Welp, U.; Kwok, W.; Crabtree, G. Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films. Appl. Phys. Lett. 2005, 86, 203104. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Kim, S.J.; Shin, H.; Koo, W.T.; Jang, J.S.; Kang, J.Y.; Jeong, Y.J.; Kim, I.D. High-Resolution, Fast, and Shape-Conformable Hydrogen Sensor Platform: Polymer Nanofiber Yarn Coupled with Nanograined Pd@Pt. ACS Nano 2019, 13, 6071–6082. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Ahn, H.; Park, K.; Choi, J.; Kang, H.; Jung, H.T. Ultrasmall Grained Pd Nanopattern H2 Sensor. ACS Sens. 2018, 3, 1876–1883. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.A.; Kim, D.H.; Park, C.O.; Lee, Y.W.; Han, S.W.; Li, Z.Y.; Williams, R.S.; Park, I. A New Route toward Ultrasensitive, Flexible Chemical Sensors: Metal Nanotubes by Wet-Chemical Synthesis along Sacrificial Nanowire Templates. ACS Nano 2012, 6, 598–608. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Wang, T.; Li, X.; Li, Q.; Zhang, X.; Cao, T.; Li, Y.; Zhang, L.; Guo, L.; Fu, Y. Pd-Decorated PdO Hollow Shells: A H2-Sensing System in Which Catalyst Nanoparticle and Semiconductor Support are Interconvertible. ACS Appl. Mater. Interfaces 2020, 12, 42971–42981. [Google Scholar] [CrossRef] [PubMed]
- Li, X.W.; Liu, Y.; Hemminger, J.C.; Penner, R.M. Catalytically Activated Palladium@Platinum Nanowires for Accelerated Hydrogen Gas Detection. ACS Nano 2015, 9, 3215–3225. [Google Scholar] [CrossRef]
- Yang, F.; Kung, S.-C.; Cheng, M.; Hemminger, J.C.; Penner, R.M. Smaller is faster and more sensitive: The effect of wire size on the detection of hydrogen by single palladium nanowires. ACS Nano 2010, 4, 5233–5244. [Google Scholar] [CrossRef]
- Jung, W.B.; Cho, S.Y.; Suh, B.L.; Yoo, H.W.; Jeon, H.J.; Kim, J.; Jung, H.T. Polyelemental nanolithography via plasma ion bombardment: From fabrication to superior H2 sensing application. Adv. Mater. 2019, 31, 1805343. [Google Scholar] [CrossRef]
- Hassan, K.; Chung, G.S. Fast and reversible hydrogen sensing properties of Pd-capped Mg ultra-thin films modified by hydrophobic alumina substrates. Sens. Actuators B Chem. 2017, 242, 450–460. [Google Scholar] [CrossRef]
- Song, L.; Ahn, J.; Kim, D.-H.; Shin, H.; Kim, I.-D. Porous Pd-Sn Alloy Nanotube-Based Chemiresistor for Highly Stable and Sensitive H2 Detection. ACS Appl. Mater. Interfaces 2022, 14, 28378–28388. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhou, X.; Cong, B.; Hong, W.; Chen, G. Tailoring the d-Band Centers Endows (NixFe1–x)2P Nanosheets with Efficient Oxygen Evolution Catalysis. ACS Catal. 2020, 10, 9086–9097. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, C.; Jiang, F.; Liu, J.; Ma, X.; Liu, P.; Xu, J.; Wang, L.; Huang, R. Flexible and lightweight Ti3C2Tx MXene@Pd colloidal nanoclusters paper film as novel H2 sensor. J. Hazard. Mater. 2020, 399, 123054. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Guo, Y.; Wang, Y.; Zhu, H.; Zhang, X. Ti3C2 MXene-derived sodium titanate nanoribbons for conductometric hydrogen gas sensors. Sens. Actuators B Chem. 2022, 361, 131693. [Google Scholar] [CrossRef]
- Koo, W.T.; Qiao, S.; Ogata, A.F.; Jha, G.; Jang, J.S.; Chen, V.T.; Kim, I.D.; Penner, R.M. Accelerating Palladium Nanowire H(2) Sensors Using Engineered Nanofiltration. ACS Nano 2017, 11, 9276–9285. [Google Scholar] [CrossRef]
- Greeley, J.; Mavrikakis, M. Surface and subsurface hydrogen: Adsorption properties on transition metals and near-surface alloys. J. Phys. Chem. B. 2005, 109, 3460–3471. [Google Scholar] [CrossRef]
- Ghosh, R.; Santra, S.; Ray, S.K.; Guha, P.K. Pt-functionalized reduced graphene oxide for excellent hydrogen sensing at room temperature. Appl. Phys. Lett. 2015, 107, 153102. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, Y.S.; Park, S.Y.; Kim, T.; Hong, S.P.; Lee, T.H.; Moon, C.W.; Lee, J.H.; Lee, D.; Hong, B.H.; et al. Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen. Nanoscale 2019, 11, 2966–2973. [Google Scholar] [CrossRef]
- Phan, D.-T.; Youn, J.-S.; Jeon, K.-J. High-sensitivity and fast-response hydrogen sensor for safety application using Pt nanoparticle-decorated 3D graphene. Renew. Energy 2019, 144, 167–171. [Google Scholar] [CrossRef]
- Kadhim, I.H.; Abu Hassan, H.; Ibrahim, F.T. Hydrogen gas sensing based on nanocrystalline SnO2 thin films operating at low temperatures. Int. J. Hydrogen Energy 2020, 45, 25599–25607. [Google Scholar] [CrossRef]
- Yang, P.; Li, X.; Huang, H.; Yang, S.; Zhang, X.; Hu, Y.; Wang, Z.; Gu, H. Hydrogen sensing kinetics of laterally aligned MoO3 nanoribbon arrays with accelerated response and recovery performances at room temperature. Int. J. Hydrogen Energy 2020, 45, 23841–23850. [Google Scholar] [CrossRef]
- Haidry, A.A.; Xie, L.; Wang, Z.; Li, Z. Hydrogen sensing and adsorption kinetics on ordered mesoporous anatase TiO2 surface. Appl. Surf. Sci. 2020, 500, 144219. [Google Scholar] [CrossRef]
- Li, H.; Wu, C.-H.; Liu, Y.-C.; Yuan, S.-H.; Chiang, Z.-X.; Zhang, S.; Wu, R.-J. Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor. Sens. Actuators B Chem. 2021, 341, 130035. [Google Scholar] [CrossRef]
- Abdullah, Q.N.; Ahmed, A.R.; Ali, A.M.; Yam, F.K.; Hassan, Z.; Bououdina, M. Novel SnO2-coated beta-Ga2O3 nanostructures for room temperature hydrogen gas sensor. Int. J. Hydrogen Energy 2021, 46, 7000–7010. [Google Scholar] [CrossRef]
- Park, C.H.; Koo, W.-T.; Lee, Y.J.; Kim, Y.H.; Lee, J.; Jang, J.-S.; Yun, H.; Kim, I.-D.; Kim, B.J. Hydrogen Sensors Based on MoS2 Hollow Architectures Assembled by Pickering Emulsion. ACS Nano 2020, 14, 9652–9661. [Google Scholar] [CrossRef]
- Jaiswal, J.; Tiwari, P.; Singh, P.; Chandra, R. Fabrication of highly responsive room temperature H2 sensor based on vertically aligned edge-oriented MoS2 nanostructured thin film functionalized by Pd nanoparticles. Sens. Actuators B Chem. 2020, 325, 128800. [Google Scholar] [CrossRef]
- Ha, N.; Xu, K.; Cheng, Y.; Ou, R.; Ma, Q.; Hu, Y.; Vien, T.; Ren, G.; Yu, H.; Zhang, L.; et al. Self-Assembly of Ultrathin Nickel Oxysulfide for Reversible Gas Sensing at Room Temperature. Chemosensors 2022, 10, 372. [Google Scholar] [CrossRef]
- Achary, L.S.K.; Maji, B.; Kumar, A.; Ghosh, S.P.; Kar, J.P.; Dash, P. Efficient room temperature detection of H2 gas by novel ZnFe2O4-Pd decorated rGO nanocomposite. Int. J. Hydrogen Energy 2020, 45, 5073–5085. [Google Scholar] [CrossRef]
- Zhou, S.; Ji, J.; Qiu, T.; Wang, L.; Ni, W.; Li, S.; Yan, W.; Ling, M.; Liang, C. Boosting selective H2 sensing of ZnO derived from ZIF-8 by rGO functionalization. Inorg. Chem. Front. 2022, 9, 599–606. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhao, Q.; Duan, Z.; Xie, C.; Duan, X.; Li, S.; Ye, Z.; Jiang, Y.; Tai, H. Ag2Te nanowires for humidity-resistant trace-level NO2 detection at room temperature. Sens. Actuators B Chem. 2022, 363, 131790. [Google Scholar] [CrossRef]
- Rasch, F.; Postica, V.; Schutt, F.; Mishra, Y.K.; Nia, A.S.; Lohe, M.R.; Feng, X.; Adelung, R.; Lupan, O. Highly selective and ultra-low power consumption metal oxide based hydrogen gas sensor employing graphene oxide as molecular sieve. Sens. Actuators B Chem. 2020, 320, 128363. [Google Scholar] [CrossRef]
- Hong, J.; Lee, S.; Seo, J.; Pyo, S.; Kim, J.; Lee, T. A Highly Sensitive Hydrogen Sensor with Gas Selectivity Using a PMMA Membrane-Coated Pd Nanoparticle/Single-Layer Graphene Hybrid. ACS Appl. Mater. Interfaces 2015, 7, 3554–3561. [Google Scholar] [CrossRef] [PubMed]
- Parekh, M.H.; Li, B.; Palanisamy, M.; Adams, T.E.; Tomar, V.; Pol, V.G. In situ thermal runaway detection in lithium-ion batteries with an integrated internal sensor. ACS Appl. Energy Mater. 2020, 3, 7997–8008. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Peng, H.-C.; Lee, S.-J.; Hung, I.-M.; Hsieh, C.-T.; Chiou, C.-S.; Chang, Y.-M.; Huang, Y.-P. A flexible three-in-one microsensor for real-time monitoring of internal temperature, voltage and current of lithium batteries. Sensors 2015, 15, 11485–11498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathak, P.; Cho, H.J. Self-Assembled 1-Octadecanethiol Membrane on Pd/ZnO for a Selective Room Temperature Flexible Hydrogen Sensor. Micromachines 2022, 13, 26. [Google Scholar] [CrossRef]
- Ou, L.X.; Liu, M.Y.; Zhu, L.Y.; Zhang, D.W.; Lu, H.L. Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor. Nanomicro Lett. 2022, 14, 206. [Google Scholar] [CrossRef]
- Li, X.; Gao, Z.; Li, B.; Zhang, X.; Li, Y.; Sun, J. Self-healing superhydrophobic conductive coatings for self-cleaning and humidity-insensitive hydrogen sensors. Chem. Eng. J. 2021, 410, 128353. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, G.H.; Cao, Y.Q.; Meng, C.Z.; Li, Y.H.; Ji, H.D.; Chen, X.; Niu, G.Y.; Yan, J.Y.; Xue, Y.; et al. Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. Microsyst. Nanoeng. 2022, 8, 78. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.Y.; Yoo, H.S.; Lee, W. Pd-WO3 chemiresistive sensor with reinforced self-assembly for hydrogen detection at room temperature. Sens. Actuators B Chem. 2022, 368, 132236. [Google Scholar] [CrossRef]
- Kumar, A.; Zhao, Y.; Mohammadi, M.M.; Liu, J.; Thundat, T.; Swihart, M.T. Palladium Nanosheet-Based Dual Gas Sensors for Sensitive Room-Temperature Hydrogen and Carbon Monoxide Detection. ACS Sens. 2022, 7, 225–234. [Google Scholar] [CrossRef]
- Ibrahim, A.; Memon, U.B.; Duttagupta, S.P.; Raman, R.K.S.; Sarkar, A.; Pendharkar, G.; Tatiparti, S.S.V. Hydrogen gas sensing of nano-confined Pt/g-C3N4 composite at room temperature. Int. J. Hydrogen Energy 2021, 46, 23962–23973. [Google Scholar] [CrossRef]
- Mohammadi, M.M.; Kumar, A.; Liu, J.; Liu, Y.; Thundat, T.; Swihart, M.T. Hydrogen Sensing at Room Temperature Using Flame-Synthesized Palladium-Decorated Crumpled Reduced Graphene Oxide Nanocomposites. ACS Sens. 2020, 5, 2344–2350. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Cho, M.; Li, Y.; Cho, I.; Suh, J.-H.; Orbe, D.D.; Jeong, Y.; Ren, T.-L.; Park, I. Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene. ACS Appl. Mater. Interfaces 2019, 11, 24386–24394. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Chen, V.T.; Qiao, S.P.; Koo, W.T.; Penner, R.M.; Kim, I.D. Pt-Functionalized PdO Nanowires for Room Temperature Hydrogen Gas Sensors. ACS Sens. 2018, 3, 2152–2158. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yang, S.; Lu, X.; Wang, T.; Zhang, X.; Fu, Y.; Qi, W. Controllable Fabrication of PdO-PdAu Ternary Hollow Shells: Synergistic Acceleration of H2-Sensing Speed via Morphology Regulation and Electronic Structure Modulation. Small 2022, 18, 2106874. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhou, S.; Zhao, S.; Jin, T.; Zhong, M.; Cen, Z.; Gao, P.; Yan, W.; Ling, M. Room Temperature Resistive Hydrogen Sensor for Early Safety Warning of Li-Ion Batteries. Chemosensors 2023, 11, 344. https://doi.org/10.3390/chemosensors11060344
Li S, Zhou S, Zhao S, Jin T, Zhong M, Cen Z, Gao P, Yan W, Ling M. Room Temperature Resistive Hydrogen Sensor for Early Safety Warning of Li-Ion Batteries. Chemosensors. 2023; 11(6):344. https://doi.org/10.3390/chemosensors11060344
Chicago/Turabian StyleLi, Sixun, Shiyu Zhou, Shuaiyin Zhao, Tengfei Jin, Maohua Zhong, Zhuhao Cen, Peirong Gao, Wenjun Yan, and Min Ling. 2023. "Room Temperature Resistive Hydrogen Sensor for Early Safety Warning of Li-Ion Batteries" Chemosensors 11, no. 6: 344. https://doi.org/10.3390/chemosensors11060344
APA StyleLi, S., Zhou, S., Zhao, S., Jin, T., Zhong, M., Cen, Z., Gao, P., Yan, W., & Ling, M. (2023). Room Temperature Resistive Hydrogen Sensor for Early Safety Warning of Li-Ion Batteries. Chemosensors, 11(6), 344. https://doi.org/10.3390/chemosensors11060344