Fabrication and Characterization of Hybrid and Tunable ZnO@Ag Flexible Thin Films Used as SERS Substrates
Abstract
:1. Introduction
2. Experimental Section
2.1. Types of Substrates Used
2.2. Experimental Details for the ZnO Thin Films Deposition
2.3. Experimental Details for the Ag Thin Film Deposition
2.4. Scanning Electron Microscopy Analysis (SEM) and Energy-Dispersive X-ray Spectroscopy (EDX) Analysis
2.5. SERS Performance Analysis
3. Results
3.1. SEM and EDX Characterization of ZnO Films
3.2. SEM and EDX Characterization of Hybrid ZnO@Ag Substrates
3.3. SERS Performance Analysis
3.3.1. SERS Performance of Ag Films on Zeonor@ZnO by Using CV as Analyte (15 nm)
3.3.2. SERS Performance of Ag Films on Topas@ZnO by Using CV as Analyte (30 nm)
3.3.3. SERS Performance of Ag Films on Topas2@ZnO by Using CV as Analyte (7 nm)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Butt, M.A. Thin-film coating methods: A successful marriage of high-quality and cost-effectiveness: A brief exploration. Coatings 2022, 12, 1115. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, L.; Liu, H.; Ding, Q.; Jia, C.; Liao, S.; Cheng, N.; Yue, M.; Yang, S. Nanoporous silver nanorods as surface-enhanced Raman scattering substrates. Biosens. Bioelectron. 2022, 202, 114004. [Google Scholar] [CrossRef]
- Fu, B.-B.; Tian, X.-D.; Song, J.-J.; Wen, B.-Y.; Zhang, Y.-J.; Fang, P.-P.; Li, J.-F. Self-calibration 3D hybrid SERS substrate and its application in quantitative analysis. Anal. Chem. 2022, 94, 9578–9585. [Google Scholar] [CrossRef]
- Caridad, J.M.; Winters, S.; McCloskey, D.; Duesberg, G.S.; Donegan, J.F.; Krstić, V. Hot-volumes as uniform and reproducible SERS-detection enhancers in weakly-coupled metallic nanohelices. Sci. Rep. 2017, 7, srep45548. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-Y.; Lin, M.-H.; Wang, C.-Y.; Chang, Y.-M.; Gwo, S. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. J. Am. Chem. Soc. 2015, 137, 13698–13705. [Google Scholar] [CrossRef]
- Teutoburg-Weiss, S.; Soldera, M.; Bouchard, F.; Kreß, J.; Vaynzof, Y.; Lasagni, A.F. Structural colors with embedded anti-counterfeit features fabricated by laser-based methods. Opt. Laser Technol. 2022, 151, 108012. [Google Scholar] [CrossRef]
- Sripradit, A.; Theeradejvanichkul, T. A self-color-changing film with periodic nanostructure for anti-counterfeit application. Appl. Sci. 2022, 12, 6776. [Google Scholar] [CrossRef]
- Lim, K.T.P.; Liu, H.; Liu, Y.; Yang, J.K.W. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat. Commun. 2019, 10, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colniță, A.; Marconi, D.; Dina, N.E.; Brezeștean, I.; Bogdan, D.; Turcu, I. 3D silver metallized nanotrenches fabricated by nanoimprint lithography as flexible SERS detection platform. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 276, 121232. [Google Scholar] [CrossRef]
- Li, N.; Xu, G.; Yan, M.; Chen, B.; Yuan, Y.; Zhu, C. Fabrication of vertically aligned ZnO nanorods modified with dense silver nanoparticles as effective SERS substrates. Chemosensors 2023, 11, 210. [Google Scholar] [CrossRef]
- Li, Z.; Huang, X.; Lu, G. Recent developments of flexible and transparent SERS substrates. J. Mater. Chem. C 2020, 8, 3956–3969. [Google Scholar] [CrossRef]
- Zeman, E.J.; Schatz, G.C. An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium. J. Phys. Chem. 1987, 91, 634–643. [Google Scholar] [CrossRef]
- Colniță, A.; Toma, V.-A.; Brezeștean, I.A.; Tahir, M.A.; Dina, N.E. A review on integrated ZnO-based SERS biosensors and their potential in detecting biomarkers of neurodegenerative diseases. Biosensors 2023, 13, 499. [Google Scholar] [CrossRef]
- Pérez-Jiménez, A.I.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B. Surface-enhanced Raman spectroscopy: Benefits, trade-offs and future developments. Chem. Sci. 2020, 11, 4563–4577. [Google Scholar] [CrossRef] [Green Version]
- Centeno, A.; Aid, S.R.; Xie, F. Infra-red plasmonic sensors. Chemosensors 2018, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Bellingeri, A.; Scattoni, M.; Venditti, I.; Battocchio, C.; Protano, G.; Corsi, I. Ecologically based methods for promoting safer nanosilver for environmental applications. J. Hazard. Mater. 2022, 438, 129523. [Google Scholar] [CrossRef] [PubMed]
- Ihtisham, M.; Noori, A.; Yadav, S.; Sarraf, M.; Kumari, P.; Brestic, M.; Imran, M.; Jiang, F.; Yan, X.; Rastogi, A. Silver nanoparticle’s toxicological effects and phytoremediation. Nanomaterials 2021, 11, 2164. [Google Scholar] [CrossRef]
- Pham, T.T.H.; Vu, X.H.; Dien, N.D.; Trang, T.T.; Chi, T.T.K.; Phuong, P.H.; Nghia, N.T. Ag nanoparticles on ZnO nanoplates as a hybrid SERS-active substrate for trace detection of methylene blue. RSC Adv. 2022, 12, 7850–7863. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, L.; Ma, Z.; Wang, M.; Zhao, R.; Zou, Y.; Fan, Y. Ag nanoparticles decorated ZnO nanorods as multifunctional SERS substrates for ultrasensitive detection and catalytic degradation of Rhodamine B. Nanomaterials 2022, 12, 2394. [Google Scholar] [CrossRef]
- Pangpaiboon, N.; Amsiri, T.; Kalasung, S.; Chananonnawathorn, C.; Patthanasettakul, V.; Horprathum, M.; Nuntawong, N.; Limwichean, S.; Eiamchai, P. Controllable decoration of Au NPs on zinc oxide nanorods template by magnetron sputtering technique for reusable-SERS active surface enhancement. AIP Conf. Proc. 2018, 2010, 020023. [Google Scholar] [CrossRef]
- He, H.; Li, H.; Xia, W.; Shen, X.; Zhou, M.; Han, J.; Zeng, X.; Cai, W. Electrophoretic fabrication of silver nanostructure/zinc oxide nanorod heterogeneous arrays with excellent SERS performance. J. Mater. Chem. C 2015, 3, 1724–1731. [Google Scholar] [CrossRef]
- Xu, J.-Q.; Duo, H.-H.; Zhang, Y.-G.; Zhang, X.-W.; Fang, W.; Liu, Y.-L.; Shen, A.-G.; Hu, J.-M.; Huang, W.-H. Photochemical synthesis of shape-controlled nanostructured gold on zinc oxide nanorods as photocatalytically renewable sensors. Anal. Chem. 2016, 88, 3789–3795. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.K.; Pagal, S.; Prashanth, K.; Chandra, G.K.; Umapathy, S.; Mohan, D.B. Ag/ZnO/Au 3D hybrid structured reusable SERS substrate as highly sensitive platform for DNA detection. Sens. Actuators B Chem. 2019, 279, 157–169. [Google Scholar] [CrossRef]
- Sakir, M.; Salem, S.; Sanduvac, S.T.; Sahmetlioglu, E.; Sarp, G.; Onses, M.S.; Yilmaz, E. Photocatalytic green fabrication of Au nanoparticles on ZnO nanorods modified membrane as flexible and photocatalytic active reusable SERS substrates. Colloids Surf. A Physicochem. Eng. Asp. 2019, 585, 124088. [Google Scholar] [CrossRef]
- Chou, C.M.; Thanh Thi, L.T.; Quynh Nhu, N.T.; Liao, S.Y.; Fu, Y.Z.; Hung, L.V.T.; Hsiao, V.K. Zinc oxide nanorod surface-enhanced Raman scattering substrates without and with gold nanoparticles fabricated through pulsed-laser-induced photolysis. Appl. Sci. 2020, 10, 5015. [Google Scholar] [CrossRef]
- Dong, S.; Fu, X.; Zhu, Z.; Li, C. Silver nanorods array on the zinc oxide thin film deposited by hydrothermal methods for surface-enhanced Raman scattering. Appl. Sci. 2022, 12, 9275. [Google Scholar] [CrossRef]
- Doanh, T.T.; Van Hieu, N.; Trang, T.N.Q.; Thu, V.T.H. In situ synthesis of hybrid zinc oxide-silver nanoparticle arrays as a powerful active platform for surface-enhanced Raman scattering detection. J. Sci. Adv. Mater. Devices 2021, 6, 379–389. [Google Scholar] [CrossRef]
- Wang, C.; Xu, X.; Qiu, G.; Ye, W.; Li, Y.; Harris, R.A.; Jiang, C. Group-targeting SERS screening of total benzodiazepines based on large-size (111) faceted silver nanosheets decorated with zinc oxide nanoparticles. Anal. Chem. 2021, 93, 3403–3410. [Google Scholar] [CrossRef]
- Cao, J.; Zhai, Y.; Tang, W.; Guo, X.; Wen, Y.; Yang, H. ZnO tips dotted with Au nanoparticles—Advanced SERS determination of trace nicotine. Biosensors 2021, 11, 465. [Google Scholar] [CrossRef]
- Sun, Q.; Xu, Y.; Gao, Z.; Zhou, H.; Zhang, Q.; Xu, R.; Zhang, C.; Yao, H.; Liu, M. High-performance surface-enhanced Raman scattering substrates based on the ZnO/Ag core-satellite nanostructures. Nanomaterials 2022, 12, 1286. [Google Scholar] [CrossRef]
- Cook, A.L.; Carson, C.S.; Marvinney, C.E.; Giorgio, T.D.; Mu, R.R. Sensing trace levels of molecular species in solution via zinc oxide nanoprobe Raman spectroscopy. J. Raman Spectrosc. 2017, 48, 1116–1121. [Google Scholar] [CrossRef]
- Ashok Kumar, E.; Riswana Barveen, N.; Wang, T.-J.; Kokulnathan, T.; Chang, Y.-H. Development of SERS platform based on ZnO multipods decorated with Ag nanospheres for detection of 4-nitrophenol and rhodamine 6G in real samples. Microchem. J. 2021, 170, 106660. [Google Scholar] [CrossRef]
- Huang, C.; Jiang, S.; Kou, F.; Guo, M.; Li, S.; Yu, G.; Zheng, B.; Xie, F.; Zhang, C.; Yu, H.; et al. Development of jellyfish-like ZnO@Ag substrate for sensitive SERS detection of melamine in milk. Appl. Surf. Sci. 2022, 600, 154153. [Google Scholar] [CrossRef]
- Barbillon, G. Fabrication and SERS performances of metal/Si and metal/ZnO nanosensors: A review. Coatings 2019, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, E.; Shi, H.; Tao, Y.; Ren, X. Semiconductor-based surface enhanced Raman scattering (SERS): From active materials to performance improvement. Analyst 2022, 147, 1257–1272. [Google Scholar] [CrossRef]
- Barbillon, G. Latest novelties on plasmonic and non-plasmonic nanomaterials for SERS sensing. Nanomaterials 2020, 10, 1200. [Google Scholar] [CrossRef]
- Murthy, S.; Effiong, P.; Fei, C.C. Chapter 11—Metal oxide nanoparticles in biomedical applications. In Metal Oxide Powder Technologies; Al-Douri, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 233–251. [Google Scholar]
- Gao, J.; Wu, B.; Cao, C.; Zhan, Z.; Ma, W.; Wang, X. Unraveling the dynamic evolution of Pd Species on Pd-Loaded ZnO nanorods for different hydrogen sensing behaviors. ACS Sustain. Chem. Eng. 2021, 9, 6370–6379. [Google Scholar] [CrossRef]
- Sha, R.; Basak, A.; Maity, P.C.; Badhulika, S. ZnO nano-structured based devices for chemical and optical sensing applications. Sens. Actuators Rep. 2022, 4, 100098. [Google Scholar] [CrossRef]
- Ortiz-Casas, B.; Galdámez-Martínez, A.; Gutiérrez-Flores, J.; Ibañez, A.B.; Panda, P.K.; Santana, G.; de la Vega, H.A.; Suar, M.; Rodelo, C.G.; Kaushik, A.; et al. Bio-acceptable 0D and 1D ZnO nanostructures for cancer diagnostics and treatment. Mater. Today 2021, 50, 533–569. [Google Scholar] [CrossRef]
- Zhang, M.-L.; Fan, X.; Zhou, H.-W.; Shao, M.-W.; Zapien, J.A.; Wong, N.-B.; Lee, S.-T. A High-efficiency surface-enhanced Raman scattering substrate based on silicon nanowires array decorated with silver nanoparticles. J. Phys. Chem. C 2010, 114, 1969–1975. [Google Scholar] [CrossRef]
- Otto, A. Theory of first layer and single molecule surface enhanced Raman scattering (SERS). Phys. Status Solidi A 2001, 188, 1455–1470. [Google Scholar] [CrossRef]
- Bell, S.E.J.; Charron, G.; Cortés, E.; Kneipp, J.; De La Chapelle, M.L.; Langer, J.; Procházka, M.; Tran, V.; Schlücker, S. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): From key parameters to good analytical practice. Angew. Chem. Int. Ed. Engl. 2020, 59, 5454–5462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbillon, G.; Graniel, O.; Bechelany, M. Assembled Au/ZnO nano-urchins for SERS sensing of the pesticide thiram. Nanomaterials 2021, 11, 2174. [Google Scholar] [CrossRef]
- Barbillon, G. Au Nanoparticles Coated ZnO Film for Chemical Sensing by PIERS Coupled to SERS. Photonics 2022, 9, 562. [Google Scholar] [CrossRef]
- Tangsuwanjinda, S.; Chen, Y.Y.; Lai, C.H.; Jhou, G.T.; Chiang, Y.W.; Cheng, H.M. Microporous oxide-based surface-enhanced Raman scattering film for quadrillionth detection of mercury ion (II). Processes 2021, 9, 794. [Google Scholar] [CrossRef]
- Guillot, N.; de la Chapelle, M.L. The electromagnetic effect in surface enhanced Raman scattering: Enhancement optimization using precisely controlled nanostructures. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 2321–2333. [Google Scholar] [CrossRef]
- Horcas, I.; Fernández, R.; Gómez-Rodriguez, J.M.; Colchero, J.; Gomez-Herrero, J.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 13705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smitha, S.; Gopchandran, K.; Smijesh, N.; Philip, R. Size-dependent optical properties of Au nanorods. Prog. Nat. Sci. 2013, 23, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.R.; Batten, T.; Smith, B.; Silhanek, A.V.; Wolveron, D.; Valev, V.K. Surface enhanced Raman scattering of crystal violet. In Nonlinear Optics and Applications XII 2021; Bertolotti, M., Zayats, A.V., Zheltikov, A.M., Eds.; SPIE: Virtual, Czech Republic, 2021; Volume 11770. [Google Scholar]
- Grys, D.; Chikkaraddy, R.; Kamp, M.; Scherman, O.A.; Baumberg, J.J.; Nijs, B. Eliminating irreproducibility in SERS substrates. J. Raman Spectrosc. 2020, 52, 412–419. [Google Scholar] [CrossRef]
- Ribut, S.H.; Abdullah, C.A.C.; Yusoff, M.Z.M. Investigations of structural and optical properties of zinc oxide thin films growth on various substrates. Results Phys. 2019, 13, 102146. [Google Scholar] [CrossRef]
- Mauricio, M.R.; Manso, F.C.; Kunita, M.H.; Velasco, D.S.; Bento, A.C.; Muniz, E.C.; de Carvalho, G.M.; Rubira, A.F. Synthesis and characterization of ZnO/PET composite using supercritical carbon dioxide impregnation technology. Compos. Part A Appl. Sci. Manuf. 2011, 42, 757–761. [Google Scholar] [CrossRef]
- Ching, C.G.; Ooi, P.K.; Ng, S.S.; Hassan, Z.; Hassan, H.; Abdullah, M.J. Structural properties of zinc oxide thin films deposited on various substrates. Sains Malays. 2014, 43, 923–927. [Google Scholar]
- Inguva, S.; Vijayaraghavan, R.K.; McGlynn, E.; Mosnier, J.-P. Highly transparent and reproducible nanocrystalline ZnO and AZO thin films grown by room temperature pulsed-laser deposition on flexible Zeonor plastic substrates. Mater. Res. Express 2015, 2, 096401. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Leem, J.-Y. Crystallization of ZnO thin films without polymer substrate deformation via thermal dissipation annealing method for next generation wearable devices. RSC Adv. 2021, 11, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Chaâbane, N.; i Cabarrocas, P.R.; Vach, H. Trapping of plasma produced nanocrystalline Si particles on a low temperature substrate. J. Non-Cryst. Solids 2004, 338–340, 51–55. [Google Scholar] [CrossRef]
- Lu, F.; Guo, Y.; Wang, Y.; Song, W.; Zhao, B. Micro-nano zinc oxide film fabricated by biomimetic mineralization: Designed architectures for SERS substrates. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 197, 83–87. [Google Scholar] [CrossRef]
- Chuang, K.-T.; Abdullah, H.; Leu, S.-J.; Cheng, K.-B.; Kuo, D.-H.; Chen, H.-C.; Chien, J.-H.; Hu, W.-T. Metal oxide composite thin films made by magnetron sputtering for bactericidal application. J. Photochem. Photobiol. A Chem. 2017, 337, 151–164. [Google Scholar] [CrossRef]
- Banholzer, M.J.; Millstone, J.E.; Qin, L.; Mirkin, C.A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 885–897. [Google Scholar] [CrossRef]
- Santoro, G.; Yu, S.; Schwartzkopf, M.; Zhang, P.; Vayalil, S.K.; Risch, J.F.H.; Rübhausen, M.A.; Hernández, M.; Domingo, C.; Roth, S.V. Silver substrates for surface enhanced Raman scattering: Correlation between nanostructure and Raman scattering enhancement. Appl. Phys. Lett. 2014, 104, 243107. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, R.; Dadgostar, S.; Manso–Silván, M.; Pérez-Casero, R.; Hernandez-Velez, M.; Jimenez, J.; Sanchez, O. Silver-enriched ZnO:Ag thin films deposited by magnetron co-sputtering: Post annealing effects on structural and physical properties. Mater. Sci. Eng. B 2021, 276, 115558. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, J.; Ma, L.; Sun, Y.; Wang, P.; Wang, T.; Peng, S. Preparation of the plasmonic Ag/AgBr/ZnO film substrate for reusable SERS detection: Implication to the Z-scheme photocatalytic mechanism. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 224, 117381. [Google Scholar] [CrossRef] [PubMed]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Ellmer, K. Magnetron sputtering of transparent conductive zinc oxide: Relation between the sputtering parameters and the electronic properties. J. Phys. D Appl. Phys. 2000, 33, R17–R32. [Google Scholar] [CrossRef]
- Szczyrbowski, J.; Dietrich, A.; Hartig, K. Bendable silver-based low emissivity coating on glass. Sol. Energy Mater. 1989, 19, 43–53. [Google Scholar] [CrossRef]
- Subramanyam, T.K.; Srinivasulu Naidu, B.; Uthanna, S. Physical properties of zinc oxide films prepared by DC reactive magnetron sputtering at different sputtering pressures. Cryst. Res. Technol. 2000, 35, 1193–1202. [Google Scholar] [CrossRef]
- Lee, J.; Lee, D.; Lim, D.; Yang, K. Structural, electrical and optical properties of ZnO:Al films deposited on flexible organic substrates for solar cell applications. Thin Solid Film. 2007, 515, 6094–6098. [Google Scholar] [CrossRef]
- Ismail, A.; Abdullah, M. The structural and optical properties of ZnO thin films prepared at different RF sputtering power. J. King Saud Univ. Sci. 2012, 25, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Chamorro, W.; Horwat, D.; Pigeat, P.; Miska, P.; Migot, S.; Soldera, F.; Boulet, P.; Mücklich, F. Near-room temperature single-domain epitaxy of reactively sputtered ZnO films. J. Phys. D Appl. Phys. 2013, 46, 235107. [Google Scholar] [CrossRef]
- Dave, P.Y.; Patel, K.H.; Chauhan, K.V.; Chawla, A.K.; Rawal, S.K. Examination of Zinc Oxide films prepared by magnetron sputtering. Procedia Technol. 2016, 23, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Costa, D.; Borges, J.; Mota, M.F.; Rodrigues, M.S.; Pereira-Silva, P.; Ferreira, A.; Pereira, C.S.; Sampaio, P.; Vaz, F. Effect of microstructural changes in the biological behavior of magnetron sputtered ZnO thin films. J. Vac. Sci. Technol. A 2018, 37, 011501. [Google Scholar] [CrossRef]
- Hammad, A.H.; Abdel-Wahab, M.S.; Vattamkandathil, S.; Ansari, A.R. Structural and optical properties of ZnO thin films prepared by RF sputtering at different thicknesses. Phys. B Condens. Matter 2018, 540, 1–8. [Google Scholar] [CrossRef]
- Kumar, G.A.; Reddy, M.V.R.; Reddy, K.N. Effect of annealing on ZnO thin films grown on quartz substrate by RF magnetron sputtering. J. Phys. Conf. Ser. 2012, 365, 012031. [Google Scholar] [CrossRef]
- Lung, C.; Marconi, D.; Toma, M.; Pop, A. Characterization of the aluminum concentration upon the properties of aluminum zinc oxide thin films. Anal. Lett. 2015, 49, 1278–1288. [Google Scholar] [CrossRef]
- Vincze, A.; Bruncko, J.; Michalka, M.; Figura, D. Growth and characterization of pulsed laser deposited ZnO thin films. Open Phys. 2007, 5, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Kaim, P.; Lukaszkowicz, K.; Szindler, M.; Szindler, M.M.; Basiaga, M.; Hajduk, B. The influence of magnetron sputtering process temperature on ZnO thin-film properties. Coatings 2021, 11, 1507. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Mei, Z.-X.; Liang, H.-L.; Du, X.-L. Review of flexible and transparent thin-film transistors based on zinc oxide and related materials. Chin. Phys. B 2017, 26, 047307. [Google Scholar] [CrossRef] [Green Version]
- Ozgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef] [Green Version]
- Cañamares, M.V.; Chenal, C.; Birke, R.L.; Lombardi, J.R. DFT, SERS, and single-molecule SERS of crystal violet. J. Phys. Chem. C 2008, 112, 20295–20300. [Google Scholar] [CrossRef]
- Meng, W.; Hu, F.; Zhang, L.Y.; Jiang, X.H.; Lu, L.D.; Wang, X. SERS and DFT study of crystal violet. J. Mol. Struct. 2013, 1035, 326–331. [Google Scholar] [CrossRef]
CV Raman Bands (cm−1) | SERS Substrates | Limits of Detection (M) | AEFs | ||||
---|---|---|---|---|---|---|---|
Assignments | Ag Thin Film Alone | ZnO-15 and Ag | ZnO-30 and Ag | ZnO-60 and Ag | |||
1612/1615 vs. | Zeonor® | ν(C–C)ring [81] | 10−6 | 10−7 | 6.9 × 103 | ||
Topas® | 10−5 | 10−6 | 10−5 | 10−6 | 0.5 × 103 | ||
Topas@2 | − | 10−6 | 1.2 × 104 | ||||
1580 m | Zeonor® | ν(C–C)ring [81] | 10−6 | 10−7 | 2 × 104 | ||
Topas® | 10−5 | 10−6 | 10−5 | 10−6 | 2.5 × 103 | ||
Topas@2 | − | 10−6 | 1.7 × 104 | ||||
1530–1537 m | Zeonor® | ν(CringN)/δs(CH3) [80] | − | 10−5 | 10−6 | 10−7 | 4.3 × 104 |
Topas® | 10−4 | 10−6 | 10−5 | 2.6 × 102 | |||
Topas@2 | 10−5 | 10−6 | 10−5 | 0.7 × 104 | |||
1366/1368 s | Zeonor® | νas(CCcenterC)/δ(CCC)ring/δ(CH) [80] | 10−5 | − | 10−6 | 3.5 × 103 | |
Topas® | 10−5 | 10−6 | 10−5 | 10−6 | 0.8 × 103 | ||
Topas@2 | − | 10−6 | 0.7 × 104 | ||||
1292–1295 m | Zeonor® | νas(CCcenterC)/δ(CCC)ring/δ(CH) [80] | 10−5 | 10−6 | 10−7 | 3.4 × 104 | |
Topas® | − | 10−6 | 10−7 | 10−6 | 0.9 × 103 | ||
Topas@2 | 10−5 | 10−7 | 10−6 | 1.7 × 104 | |||
1168–1170 vs. | Zeonor® | νs(CCcenterC)/δ(CCC)breathing/ρr(CH3) [80] | − | 10−5 | 10−6 | 1.3 × 104 | |
Topas® | 10−5 | 10−6 | 10−5 | 10−6 | 1.5 × 103 | ||
Topas@2 | 10−5 | 10−6 | 0.8 × 104 | ||||
908 vs. | Zeonor® | δ(CCcenterC) [80] | 10−7 | 10−7 | 10−7 | 10−7 | 1.9 × 104 |
Topas® | 10−5 | 10−6 | 10−7 | 1.4 × 104 | |||
Topas@2 | 10−6 | 10−8 | 10−9 | 10−8 | 1.4 × 106 | ||
796–804 m | Zeonor® | δin plane(C–H)\,ring [81] | 10−5 | 10−6 | 3.5 × 102 | ||
Topas® | 10−5 | 10−6 | 10−5 | 2.9 × 102 | |||
Topas@2 | 10−5 | 10−6 | 10−5 | 3.4 × 103 | |||
555 w | Zeonor® | γ(CCC)/δ(CNC)/δ(CCcenterC) [80] | 10−5 | 10−6 | 1.9 × 103 | ||
Topas® | 10−5 | 10−4 | 10−5 | 2.5 × 102 | |||
Topas@2 | 10−5 | 1.5 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brezeștean, I.A.; Marconi, D.; Dina, N.E.; Suciu, M.; Colniță, A. Fabrication and Characterization of Hybrid and Tunable ZnO@Ag Flexible Thin Films Used as SERS Substrates. Chemosensors 2023, 11, 441. https://doi.org/10.3390/chemosensors11080441
Brezeștean IA, Marconi D, Dina NE, Suciu M, Colniță A. Fabrication and Characterization of Hybrid and Tunable ZnO@Ag Flexible Thin Films Used as SERS Substrates. Chemosensors. 2023; 11(8):441. https://doi.org/10.3390/chemosensors11080441
Chicago/Turabian StyleBrezeștean, Ioana Andreea, Daniel Marconi, Nicoleta Elena Dina, Maria Suciu, and Alia Colniță. 2023. "Fabrication and Characterization of Hybrid and Tunable ZnO@Ag Flexible Thin Films Used as SERS Substrates" Chemosensors 11, no. 8: 441. https://doi.org/10.3390/chemosensors11080441
APA StyleBrezeștean, I. A., Marconi, D., Dina, N. E., Suciu, M., & Colniță, A. (2023). Fabrication and Characterization of Hybrid and Tunable ZnO@Ag Flexible Thin Films Used as SERS Substrates. Chemosensors, 11(8), 441. https://doi.org/10.3390/chemosensors11080441