Gas-Sensing Performance of Gadolinium Ferrates with Rod and Butterfly Morphologies
Abstract
:1. Introduction
2. Experiment
2.1. Synthesis of Precursors
2.2. Synthesis of GdFeO3
2.3. Characterization of GdFe(CN)6·4H2O and GdFeO3
2.4. Fabrication and Measurement of Gas-Sensing Devices
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Arafat, M.M.; Dinan, B.; Akbar, S.A.; Haseeb, A. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review. Sensors 2012, 12, 7207–7258. [Google Scholar] [CrossRef]
- Yang, S.X.; Jiang, C.B.; Wei, S.H. Gas sensing in 2D materials. Appl. Phys. Rev. 2017, 4, 021304. [Google Scholar] [CrossRef]
- Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z.W.; Wang, Z.L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869–1871. [Google Scholar] [CrossRef] [Green Version]
- Bulemo, P.M.; Kim, I.D. Recent advances in ABO3 perovskites: Their gas-sensing performance as resistive-type gas sensors. J. Korean Ceram. Soc. 2020, 57, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Hao, P.; Qiu, G.; Song, P.; Yang, Z.X.; Wang, Q. Construction of porous LaFeO3 microspheres decorated with NiO nanosheets for high response ethanol gas sensors. Appl. Surf. Sci. 2020, 515, 146025. [Google Scholar] [CrossRef]
- Zhang, G.; Song, X.-Z.; Wang, X.-F.; Liu, N.; Li, X.; Wei, Z.; Qian, G.; Wang, Z.; Yu, S.; Tan, Z. LnFeO3 (Ln=La, Nd, Sm) derived from bimetallic organic frameworks for gas sensor. J. Alloys Compd. 2022, 902, 163803. [Google Scholar] [CrossRef]
- Wang, X.F.; Li, X.; Zhang, G.Z.; Liu, N.N.; Liang, H.J.; Wang, Z.H.; Tan, Z.Q.; Song, X.Z. La[Fe(CN)6]·5H2O-derived LaFeO3 hexagonal nano-sheets as low-power n-propanol sensors. Appl. Phys. A 2022, 128, 829. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, B.; Li, Y.; Xu, X.; Sun, G.; Cao, J.; Wang, Y. Synthesis of spindle-like Co-doped LaFeO3 porous microstructure for high performance n-butanol sensor. Sens. Actuators B Chem. 2021, 343, 130125. [Google Scholar] [CrossRef]
- Yang, K.; Ma, J.; Qiao, X.; Cui, Y.; Jia, L.; Wang, H. Hierarchical porous LaFeO3 nanostructure for efficient trace detection of formaldehyde. Sens. Actuators B Chem. 2020, 313, 128022. [Google Scholar] [CrossRef]
- Chumakova, V.; Marikutsa, A.; Platonov, V.; Khmelevsky, N.; Rumyantseva, M. Distinct Roles of Additives in the Improved Sensitivity to CO of Ag- and Pd-Modified Nanosized LaFeO3. Chemosensors 2023, 11, 60. [Google Scholar] [CrossRef]
- Sheng, H.; Ma, S.Y.; Han, T.; Yun, P.D.; Yang, T.T.; Ren, J.F. A highly sensitivity and anti-humidity gas sensor for ethanol detection with NdFeO3 nano-coral granules. Vacuum 2022, 195, 110642. [Google Scholar] [CrossRef]
- Huang, H.T.; Zhang, W.L.; Zhang, X.D.; Guo, X. NO2 sensing properties of SmFeO3 porous hollow microspheres. Sens. Actuators B Chem. 2018, 265, 443–451. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, A.; Yang, X.; He, H.; Fan, Y.; Yao, C. Cubic GdFeO3 particle by a simple hydrothermal synthesis route and its photoluminescence and magnetic properties. CrytEngComm 2012, 14, 8432. [Google Scholar] [CrossRef]
- Prakash, B.J.; Rudramadevi, B.H.; Buddhudu, S. Analysis of Ferroelectric, Dielectric and Magnetic Properties of GdFeO3 Nanoparticles. Ferroelectr. Lett. 2014, 41, 110–122. [Google Scholar] [CrossRef]
- Yu, H.; Deng, Y.; Chen, B.; Zhang, Y.; Zhao, H. Electrospinning Preparation and Electrochemical Properties of BiFeO3 and GdFeO3 Nanofibers for their Potential Lithium-Ion Battery Applications. J. Electron. Mater. 2023, 52, 3008–3017. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Lan, Y.; Gu, W.; Zhang, S.L. Synthesis, Photocatalytic and Electrocatalytic Activities of Wormlike GdFeO3 Nanoparticles by a Glycol-Assisted Sol-Gel Process. Ind. Eng. Chem. Res. 2013, 52, 9130–9136. [Google Scholar] [CrossRef]
- Wang, X.; Ma, W.; Sun, K.; Hu, J.; Qin, H. Nanocrystalline Gd1–xCaxFeO3 sensors for detection of methanol gas. J. Rare Earth. 2017, 35, 690–696. [Google Scholar]
- Lee, K.; Hajra, S.; Sahu, M.; Mishra, Y.K.; Kim, H.J. Co+3 substituted gadolinium nano-orthoferrites for environmental monitoring: Synthesis, device fabrication, and detailed gas sensing performance. J. Ind. Eng. Chem. 2022, 106, 512–519. [Google Scholar] [CrossRef]
- Balamurugan, C.; Song, S.J.; Lee, D.W. Porous nanostructured GdFeO3 perovskite oxides and their gas response performance to NOx. Sens. Actuators B Chem. 2018, 272, 400–414. [Google Scholar] [CrossRef]
- Wang, X.-F.; Liu, N.; Liang, H.; Wu, H.; Wan, Z.; Meng, Y.; Tan, Z.; Song, X.-Z. Ultrafast synthesized LaFeO3-based oxides for highly sensitive n-propanol sensor. J. Alloys Compd. 2023, 954, 170217. [Google Scholar] [CrossRef]
- Qu, F.; Jiang, H.; Yang, M. Designed formation through a metal organic framework route of ZnO/ZnCo2O4 hollow core-shell nanocages with enhanced gas sensing properties. Nanoscale 2016, 8, 16349–16356. [Google Scholar] [CrossRef] [PubMed]
- Koo, W.T.; Yu, S.; Choi, S.J.; Jang, J.S.; Cheong, J.Y.; Kim, I.D. Nanoscale PdO Catalyst Functionalized Co3O4 Hollow Nanocages Using MOF Templates for Selective Detection of Acetone Molecules in Exhaled Breath. ACS Appl. Mater. Interfaces 2017, 9, 8201–8210. [Google Scholar] [CrossRef]
- Wang, X.-F.; Ma, W.; Jiang, F.; Cao, E.-S.; Sun, K.-M.; Cheng, L.; Song, X.-Z. Prussian Blue analogue derived porous NiFe2O4 nanocubes for low-concentration acetone sensing at low working temperature. Chem. Eng. J. 2018, 338, 504–512. [Google Scholar] [CrossRef]
- Li, P.; Ren, J.; Li, C.; Li, J.; Zhang, K.; Wu, T.; Li, B.; Wang, L. MOF-derived defect-rich CeO2 as ion-selective smart artificial SEI for dendrite-free Zn-ion battery. Chem. Eng. J. 2023, 451, 138769. [Google Scholar] [CrossRef]
- Hussain, I.; Sahoo, S.; Hussain, T.; Ahmad, M.; Javed, M.S.; Lamiel, C.; Gu, S.; Kaewmaraya, T.; Sayed, M.S.; Zhang, K. Theoretical and Experimental Investigation of In Situ Grown MOF-Derived Oriented Zr-Mn-oxide and Solution-Free CuO as Hybrid Electrode for Supercapacitors. Adv. Funct. Mater. 2022, 33, 2210002. [Google Scholar] [CrossRef]
- Neri, G.; Bonavita, A.; Micali, G.; Rizzo, G.; Callone, E.; Carturan, G. Resistive CO gas sensors based on In2O3 and InSnOx nanopowders synthesized via starch-aided sol-gel process for automotive applications. Sens. Actuators B Chem. 2008, 132, 224–233. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, J.Y.; Wang, C.; Sun, P.; Hu, X.L.; Li, X.W.; Shimanoe, K.; Yamazoe, N.; Lu, G.Y. Highly sensitive acetone gas sensor based on porous ZnFe2O4 nanospheres. Sens. Actuators B Chem. 2015, 206, 577–583. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Theory of power laws for semiconductor gas sensors. Sens. Actuators B Chem. 2008, 128, 566–573. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Qin, W.B.; Zhang, R.Z.; Yuan, Z.Y.; Shen, Y.B.; Wang, G.M.; Meng, F.L. Exposure Surface Active Sites of Perovskite-Type LaFeO3 Gas Sensors by Selectively Dissolving La Cations for Enhancing Gas Sensing Properties to Acetone. Adv. Mater. Technol. 2022, 7, 2200255. [Google Scholar] [CrossRef]
- Ujwal, M.P.; Yashas, S.R.; Shivaraju, H.P.; Kumara Swamy, N. Gadolinium ortho-ferrite interfaced polyaniline: Bi-functional catalyst for electrochemical detection and photocatalytic degradation of acetaminophen. Surf. Interfaces 2022, 30, 101878. [Google Scholar] [CrossRef]
- Lu, Y.; Zhan, W.; He, Y.; Wang, Y.; Kong, X.; Kuang, Q.; Xie, Z.; Zheng, L. MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 2014, 6, 4186–4195. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhu, D.; Miao, T.; Liu, W.; Chen, J.; Cheng, B.; Qin, H.; Hu, J. Highly Sensitive p-SmFeO3/p-YFeO3 Planar-Electrode Sensor for Detection of Volatile Organic Compounds. Chemosensors 2023, 11, 187. [Google Scholar] [CrossRef]
- Tong, B.; Deng, Z.; Xu, B.; Meng, G.; Shao, J.; Liu, H.; Dai, T.; Shan, X.; Dong, W.; Wang, S.; et al. Oxygen Vacancy Defects Boosted High Performance p-Type Delafossite CuCrO2 Gas Sensors. ACS Appl. Mater. Interfaces 2018, 10, 34727–34734. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Liu, N.; Zhang, T.; Liang, H.; Zhang, G.; Wang, X. Gas-Sensing Performance of Gadolinium Ferrates with Rod and Butterfly Morphologies. Chemosensors 2023, 11, 355. https://doi.org/10.3390/chemosensors11070355
Lin J, Liu N, Zhang T, Liang H, Zhang G, Wang X. Gas-Sensing Performance of Gadolinium Ferrates with Rod and Butterfly Morphologies. Chemosensors. 2023; 11(7):355. https://doi.org/10.3390/chemosensors11070355
Chicago/Turabian StyleLin, Jianbo, Ningning Liu, Tongxiao Zhang, Hongjian Liang, Guozheng Zhang, and Xiaofeng Wang. 2023. "Gas-Sensing Performance of Gadolinium Ferrates with Rod and Butterfly Morphologies" Chemosensors 11, no. 7: 355. https://doi.org/10.3390/chemosensors11070355
APA StyleLin, J., Liu, N., Zhang, T., Liang, H., Zhang, G., & Wang, X. (2023). Gas-Sensing Performance of Gadolinium Ferrates with Rod and Butterfly Morphologies. Chemosensors, 11(7), 355. https://doi.org/10.3390/chemosensors11070355