Locally Enhanced Electric Field Treatment of E. coli: TEM, FT-IR and Raman Spectrometry Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Fabrication
2.2. Bacterial Culture Preparation
2.3. Electroporation of Bacteria
2.4. Photoluminescence Spectra
2.5. Raman Spectrometry
2.6. FT-IR Spectrometry
2.7. SEM
2.8. TEM
2.9. Numerical Simulation
3. Results and Discussion
3.1. Microbiological Tests
3.2. SEM, TEM and Photoluminescence Analysis
3.3. FT-IR Spectrometry
- DNA
- Membrane
- Proteins
Functional Groups | Frequency, cm−1 Bandwidth, a. u. Area, a. u. | After EP |
---|---|---|
Control | ||
C-O-C ring deoxyribose [32] | 931.96 ± 0.21 | 932.34 ± 1.19 |
C-C, C-O deoxyribose in the DNA backbone [32,37] | 963.15 ± 0.72 | 963.30 ± 1.09 |
C-O-C in ether linkages [45] | 1010.89 ± 0.54 | 1010.73 ± 0.50 |
PO2− in nucleic acids and phospholipids [37,43] | 1081.97 ± 1.09 | 1083.49 ± 0.34 |
C-C DNA and RNA backbones [32] | 1127.83 ± 0.36 | 1128.88 ± 0.44 |
C-OH, C-O, C-O in amino acids peptidoglycan [36,43] | 1155.01 ± 0.18 | 1154.57 ± 0.52 |
PO2− β-helical form of DNA [38,43] | 1222.11 ± 2.21 | 1220.05 ± 1.06 |
PO2− α-helical nucleic acids [32,36,38] | 1240.04 ± 0.01 55.24 ± 14.30 1.22 ± 0.55 | 1242.45 ± 0.96 62.50 ± 18.52 1.19 ± 0.66 |
Amide III (C-N coupled with N-H) [44] proteins | 1288.10 ± 0.46 | 1287.79 ± 0.92 |
CH2 in fatty acids [44] | 1312.36 ± 0.10 102.31 ± 8.73 2.75 ± 0.52 | 1318.14 ± 1.11 74.63 ± 12.79 1.5 ± 0.37 |
CH2 in fatty acids [47,48] | 1342.25 16.99 ± 4.47 0.09 ± 0.05 | 1343.53 ± 1.11 16.66 ± 6.55 0.11 ± 0.07 |
CH2 in fatty acids [48] | 1369.39 ± 0.22 | 1369.30 ± 0.263 |
COO− in amino acids, fatty acids or side groups of peptidoglycan [41] | 1396.25 62.56 ± 1.95 3.48 ± 0.29 | 1394.32 74.62 ± 3.08 3.32 ± 0.32 |
C-O-H in-plane bending in the DNA/RNA backbone [35,36] | 1417.29 ± 0.32 | 1417.96 ± 0.92 |
C–H of CH2 in lipids (peptidoglycan) [32,43] | 1452.18 51.12 ± 0.98 1.53 ± 0.10 | 1453.62 ± 0.96 45.85 ± 3.99 1.12 ± 0.15 |
C-C of the tyrosine ring [55,56] | 1515.82 43.61 ± 2.46 1.4 ± 0.22 | 1517.26 ± 0.96 45.11 ± 5.16 1.52 ± 0.31 |
Amide II N-H, C-N of proteins [32,36,44] | 1544.26 ± 0.96 77.75 ± 1.49 8.58 ± 0.24 | 1543.30 ± 0.96 76.97 ± 1.13 7.97 ± 0.37 |
Amide I β-pleated sheets in proteins [55] | 1629.60 61.99 ± 0.55 5.31 ± 0.18 | 1629.60 51.56 ± 1.66 4.58 ± 0.47 |
Amide I α-helices in proteins [55] | 1654.67 62.99 ± 0.40 8.78 ± 0.20 | 1655.15 ± 0.96 56.92 ± 3.88 8.28 ± 0.93 |
Amide I β-pleated sheets in proteins [36] | 1695.58 ± 0.17502 | 1695.80 ± 0.20 |
Base pair (Guanine) vibrations in DNA [38,40] | 1716.96 ± 0.10 | 1716.98 ± 0.71 |
C=O in lipids and phospholipids [38,43] | 1747.57 ± 0.86 | 1746.04 ± 1.63 |
C-H of CH3 in proteins [36,43] | 2871.58 104.03 ± 4.30 4.94 ± 0.39 | 2871.58 110.51 ± 2.93 3.95 ± 0.07 |
C-H of CH2 in fatty acids [50,51] | 2935.22 27.41 ± 0.03 1.01 ± 0.06 | 2935.86 ± 1.11 35.14 ± 5.51 1.18 ± 0.37 |
C-H in CH3 of fatty acids [32,44] | 2962.22 ± 0.01 37.07 ± 1.65 1.88 ± 0.20 | 2964.15 ± 0.01 36.96 ± 1.62 1.72 ± 0.14 |
C-H in CH3 of fatty acids [32,44] | 3063.14 ± 1.11 187.22 ± 14.32 13.83 ± 1.05 | 3064.43 147.95 ± 8.41 9.07 ± 0.71 |
3.4. Raman Spectrometry
- DNA
- Membrane damage
- Carbohydrates
- Proteins
Band Assignment | Frequency, cm−1 (Control) | Frequency, cm−1 (after EP) |
---|---|---|
Skeletal stretching COO-, C-C in proteins [57] | 918–926 | 918–926 |
CH2, C-C, α-helix in proteins [63] | 972 | 972 |
C-C ring breathing in Phe in proteins [57] | 981 | - |
Phe ring breathing, C-C skeletal in proteins [41,63] | 1001 | 1001 |
δ(CH), Tyr, Phe aromatic compound in phospholipids/ carbohydrates [63] | 1027 | 1030 |
C-C chain of cell wall lipids [41,58] | 1061 | 1061 |
PO2, (C-C), C-O Nucleic acid, lipid, carbohydrates [41,57] | 1085 | 1090 |
C-C str, C-O-C in carbohydrates [41,57] | 1100 | 1101 |
CH Cytochrome (proteins) [63,66] | 1123 | 1121 |
Aromatic amino acids in proteins [71] | 1166 | 1161 |
Amide III, adenine, polyadenine and DNA DNA/RNA [57,63] | 1224 | 1221 |
Amide III β-sheet in proteins [57,58] | 1245 | 1240 |
CH2 str amide III in proteins [57] | 1272 | 1272 |
CH2 in saturated lipid [41,63] | 1299 | 1298 |
NH2 in A, polyadenine, C-H in DNA/RNA [57] | 1330 | 1330 |
A, G, CH in nucleic acids, proteins [63] | 1359 | - |
CH3 in lipids [63] | 1394 | 1388 |
COO- [66] | 1411 | - |
G, A, C-H in nucleic acids, proteins, lipids, carbohydrates [63] | 1445 | 1445 |
ν3 band of heme in Cytochrome bo [63,70] | - | 1476 |
ν3 band of heme in Cytochrome bo [70] | 1503 | 1510 |
N-H and C-N in amide II [57,70,73] | 1549 | - |
G, A in nucleic acids [41,63] | 1576 | 1576 |
Phe [41,65] | 1605 | 1605 |
C=C, amide I envelope in proteins [57,63] | 1658 | 1658 |
Amide I [41,57,58] | 1681 | 1676 |
CH2 [41] | 2870–2890 | 2870–2890 |
CH3 and CH2 [41,59] | 2933 | 2933 |
CH2 in lipids [59,60] | 2960 | - |
CH3 [41] | 2975 | 2975 |
CH in Phe [41,64] | 3058 | 3057 |
3.5. Numerical Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kotnik, T.; Frey, W.; Sack, M.; Meglič, S.H.; Peterka, M.; Miklavčič, D. Electroporation-based applications in biotechnology. Trends Biotechnol. 2015, 33, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Golberg, A.; Sheviryov, J.; Solomon, O.; Anavy, L.; Yakhini, Z. Molecular harvesting with electroporation for tissue profiling. Sci. Rep. 2019, 9, 15750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somkuti, G.A.; Steinberg, D.H. Genetic transformation of Streptococcus thermophilus by electroporation. Biochimie 1988, 70, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Holo, H.; Nes, I.F. Transformation of Lactococcus by electroporation. Electroporation Protoc. Microorg. 1995, 47, 195–199. [Google Scholar] [CrossRef]
- Tian, J.; Feng, H.; Yan, L.; Yu, M.; Ouyang, H.; Li, H.; Wang, Z.L. A self-powered sterilization system with both instant and sustainable anti-bacterial ability. Nano Energy 2017, 36, 241–249. [Google Scholar] [CrossRef]
- Yu, D.; Liu, L.; Ding, B.; Yu, J.; Si, Y. Spider-Web-Inspired SiO2/Ag nanofibrous aerogels with superelastic and conductive networks for electroporation water disinfection. Chem. Eng. J. 2023, 461, 141908. [Google Scholar] [CrossRef]
- Suzuki, H.; Wang, Z.Y.; Yamakoshi, M.; Kobayashi, M.; Nozawa, T. Probing the transmembrane potential of bacterial cells by voltage-sensitive dyes. Anal. Sci. 2003, 19, 1239–1242. [Google Scholar] [CrossRef] [Green Version]
- Biener, G.; Masson-Meyers, D.S.; Bumah, V.V.; Hussey, G.; Stoneman, M.R.; Enwemeka, C.S.; Raicu, V. Blue/violet laser inactivates methicillin-resistant Staphylococcus aureus by altering its transmembrane potential. J. Photochem. Photobiol. B Biol. 2017, 170, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Yarmush, M.L.; Golberg, A.; Serša, G.; Kotnik, T.; Miklavčič, D. Electroporation-based technologies for medicine: Principles, applications, and challenges. Annu. Rev. Biomed. Eng. 2014, 16, 295–320. [Google Scholar] [CrossRef] [Green Version]
- Schoenbach, K.H.; Joshi, R.P.; Stark, R.H.; Dobbs, F.C.; Beebe, S.J. Bacterial decontamination of liquids with pulsed electric fields. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 637–645. [Google Scholar] [CrossRef]
- Pillet, F.; Formosa-Dague, C.; Baaziz, H.; Dague, E.; Rols, M.P. Cell wall as a target for bacteria inactivation by pulsed electric fields. Sci. Rep. 2016, 6, 19778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siemer, C.; Toepfl, S.; Heinz, V. Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) in combination with thermal energy–I. Influence of process-and product parameters. Food Control 2014, 39, 163–171. [Google Scholar] [CrossRef]
- Jin, Z.T.; Su, Y.; Tuhela, L.; Zhang, Q.H.; Sastry, S.K.; Yousef, A.E. Inactivation of Bacillus subtilis spores using high voltage pulsed electric fields. In Pulsed Electric Fields in Food Processing, 1st ed.; Barbosa-Canovas, G.V., Zhang, Q.H., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 167–181. [Google Scholar] [CrossRef]
- Wu, W.J.; Chang, J. Inactivation of vegetative cells, germinated spores, and dormant spores of Bacillus atrophaeus by pulsed electric field with fixed energy input. J. Food Process Eng. 2022, 45, e13959. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, C.; Wang, T.; Xie, X. Development of nanowire-modified electrodes applied in the locally enhanced electric field treatment (LEEFT) for water disinfection. J. Mater. Chem. A 2020, 8, 12262–12277. [Google Scholar] [CrossRef]
- Pi, S.Y.; Sun, M.Y.; Zhao, Y.F.; Chong, Y.X.; Chen, D.; Liu, H. Electroporation-coupled electrochemical oxidation for rapid and efficient water disinfection with Co3O4 nanowire arrays-modified graphite felt electrodes. Chem. Eng. J. 2022, 435, 134967. [Google Scholar] [CrossRef]
- Wang, T.; Brown, D.K.; Xie, X. Operando investigation of locally enhanced electric field treatment (LEEFT) harnessing lightning-rod effect for rapid bacteria inactivation. Nano Lett. 2021, 22, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Dhar, A.; Vaish, R. Hand-powered and portable water disinfection system by locally enhanced electric field treatment (LEEFT) with modified nanowire electrodes. Eur. Phys. J. Plus 2022, 137, 709. [Google Scholar] [CrossRef]
- Pi, S.Y.; Wang, Y.; Lu, Y.W.; Liu, G.L.; Wang, D.L.; Wu, H.M.; Liu, H. Fabrication of polypyrrole nanowire arrays-modified electrode for point-of-use water disinfection via low-voltage electroporation. Water Res. 2021, 207, 117825. [Google Scholar] [CrossRef] [PubMed]
- Allocati, N.; Masulli, M.; Alexeyev, M.F.; Di Ilio, C. Escherichia coli in Europe: An overview. Int. J. Environ. Res. Public Health 2013, 10, 6235–6254. [Google Scholar] [CrossRef] [Green Version]
- Huo, Z.Y.; Liu, H.; Wang, W.L.; Wang, Y.H.; Wu, Y.H.; Xie, X.; Hu, H.Y. Low-voltage alternating current powered polydopamine-protected copper phosphide nanowire for electroporation-disinfection in water. J. Mater. Chem. A 2019, 7, 7347–7354. [Google Scholar] [CrossRef]
- Liu, C.; Xie, X.; Zhao, W.; Liu, N.; Maraccini, P.A.; Sassoubre, L.M.; Cui, Y. Conducting nanosponge electroporation for affordable and high-efficiency disinfection of bacteria and viruses in water. Nano Lett. 2013, 13, 4288–4293. [Google Scholar] [CrossRef]
- Xu, J.; Qu, K.; Zhao, J.; Jian, X.; Gao, Z.; Xu, J.; Song, Y.Y. In situ monitoring of the “point discharge” induced antibacterial process by the onsite formation of a Raman probe. Anal. Chem. 2019, 92, 2323–2330. [Google Scholar] [CrossRef] [PubMed]
- Saraeva, I.N.; Zayarny, D.A.; Tolordava, E.R.; Nastulyavichus, A.A.; Khaertdinova, L.F.; Kudryashov, S.I.; Gonchukov, S.A. Electroactive nanostructured antibacterial materials. Las. Phys. Lett. 2022, 19, 085601. [Google Scholar] [CrossRef]
- Rangan, S.; Kamal, S.; Konorov, S.O.; Schulze, H.G.; Blades, M.W.; Turner, R.F.; Piret, J.M. Types of cell death and apoptotic stages in Chinese Hamster Ovary cells distinguished by Raman spectroscopy. Biotechnol. Bioeng. 2018, 115, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Khmaladze, A.; Ganguly, A.; Kuo, S.; Raghavan, M.; Kainkaryam, R.; Cole, J.H.; Morris, M.D. Tissue-engineered constructs of human oral mucosa examined by Raman spectroscopy. Tissue Engin. Part C Methods 2013, 19, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Kansiz, M.; Billman-Jacobe, H.; McNaughton, D. Quantitative determination of the biodegradable polymer poly (β-hydroxybutyrate) in a recombinant Escherichia coli strain by use of mid-infrared spectroscopy and multivariative statistics. Appl. Env. Microbiol. 2000, 66, 3415–3420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhakhovskii, V.V.; Inogamov, N.A.; Petrov, Y.V.; Ashitkov, S.I.; Nishihara, K. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials. Appl. Surf. Sci. 2009, 255, 9592–9596. [Google Scholar] [CrossRef]
- Pagan, R.; Mañas, P. Fundamental aspects of microbial membrane electroporation. In Pulsed Electric Fields Technology for the Food Industry: Fundamentals and Applications, 1st ed.; Raso, J., Heinz, V., Eds.; Springer: Boston, MA, USA, 2006; pp. 73–94. [Google Scholar] [CrossRef]
- Rowan, N.J.; Macgregor, S.J.; Anderson, J.G.; Fouracre, R.A.; Farish, O. Pulsed electric field inactivation of diarrhoeagenic Bacillus cereus through irreversible electroporation. Lett. Appl. Microbiol. 2000, 31, 110–114. [Google Scholar] [CrossRef]
- Nikaido, H.; Nakae, T. The outer membrane of Gram-negative bacteria. Adv. Microb. Physiol. 1980, 20, 163–250. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q.; Li, B.; Liu, B.; Wu, G.; Ibrahim, M.; Sun, G. Differentiation in MALDI-TOF MS and FTIR spectra between two closely related species Acidovorax oryzae and Acidovorax citrulli. BMC Microbiol. 2012, 12, 182. [Google Scholar] [CrossRef] [Green Version]
- Kochan, K.; Lai, E.; Richardson, Z.; Neth-ercott, C.; Peleg, A.Y.; Heraud, P.; Wood, B.R. Vibrational spectroscopy as a sensitive probe for the chemistry of intraphase bacterial growth. Sensors 2020, 20, 3452. [Google Scholar] [CrossRef] [PubMed]
- Muntean, C.M.; Lapusan, A.; Mihaiu, L.; Stefan, R. Strain dependent UV degradation of Escherichia coli DNA monitored by Fourier transform infrared spectroscopy. J. Photochem. Photobiol. B Biol. 2014, 130, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Yu, C.; Irudayaraj, J. Spectroscopic characterization of microorganisms by Fourier transform infrared microspectroscopy. Biopolym. Orig. Res. Biomol. 2005, 77, 368–377. [Google Scholar] [CrossRef]
- Gupta, A.D.; Karthikeyan, S.; Chitra, A. Resistance mechanism of Ni2+ ion individually and in combination with the Cr6+ ion in Staphylococcus aureus species to characterize the molecular changes studied using infrared spectroscopy coupled with chemometrics. Infrared Phys. Technol. 2018, 94, 126–133. [Google Scholar] [CrossRef]
- Bumah, V.V.; Aboualizadeh, E.; Masson-Meyers, D.S.; Eells, J.T.; Enwemeka, C.S.; Hirschmugl, C.J. Spectrally resolved infrared microscopy and chemometric tools to reveal the interaction between blue light 470 nm, and methicillin-resistant Staphylococcus aureus. J. Photochem. Photobiol. B Biol. 2017, 167, 150–157. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Singla, S.; Sharma, M.; Singh, D.P.; Prasad, R.; Singh, J. Kinetic study of the biodegradation of acephate by indigenous soil bacterial isolates in the presence of humic acid and metal ions. Biomolecules 2020, 10, 433. [Google Scholar] [CrossRef] [Green Version]
- Banyay, M.; Sarkar, M.; Gräslund, A. A library of IR bands of nucleic acids in solution. Biophys. Chem. 2003, 104, 477–488. [Google Scholar] [CrossRef]
- Maquelin, K.; Kirschner, C.; Choo-Smith, L.P.; van den Braak, N.; Endtz, H.P.; Naumann, D.; Puppels, G.J. Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Methods 2002, 51, 255–271. [Google Scholar] [CrossRef]
- Kamnev, A.A.; Antonyuk, L.P.; Tugarova, A.V.; Tarantilis, P.A.; Polissiou, M.G.; Gardiner, P.H.E. Fourier transform infrared spectroscopic characterisation of heavy metal-induced metabolic changes in the plant-associated soil bacterium Azospirillum brasilense Sp7. J. Mol. Struct. 2002, 610, 127–131. [Google Scholar] [CrossRef]
- Cagnasso, M.; Boero, V.; Franchini, M.A.; Chorover, J. ATR-FTIR studies of phospholipid vesicle interactions with α-FeOOH and α-Fe2O3 surfaces. Colloids Surf. B 2010, 76, 456–467. [Google Scholar] [CrossRef]
- Quilès, F.; Humbert, F.; Delille, A. Analysis of changes in attenuated total reflection FTIR fingerprints of Pseudomonas fluorescens from planktonic state to nascent biofilm state. Spec. Act. Part A Mol. Biomol. Spec. 2010, 75, 610–616. [Google Scholar] [CrossRef]
- Ramteke, C.; Chakrabarti, T.; Saran-gi, B.K.; Pandey, R.A. Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. J. Chem. 2013, 2013, 278925. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, T.; Mayer, C. N-acetylmuramic acid 6-phosphate lyases (MurNAc etherases): Role in cell wall metabolism, distribution, structure, and mechanism. Cell. Mol. Life Sci. 2008, 65, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.J.; Liu, Z.X.; Wang, Y.D.; Li, X.L.; Hu, J.; Lü, J.H. Synchrotron FTIR spectroscopy reveals molecular changes in Escherichia coli upon Cu2+ exposure. Nucl. Sci. Tech. 2016, 27, 56. [Google Scholar] [CrossRef]
- Lewis, R.N.; McElhaney, R.N.; Monck, M.A.; Cullis, P.R. Studies of highly asymmetric mixed-chain diacyl phosphatidylcholines that form mixed-interdigitated gel phases: Fourier transform infrared and 2H NMR spectroscopic studies of hydrocarbon chain conformation and orientational order in the liquid-crystalline state. Biophys. J. 1994, 67, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.; Qiao, J.; Hong, F. Application of phosphoric acid and phytic acid-doped bacterial cellulose as novel proton-conducting membranes to PEMFC. Int. J. Hydrogen Energy 2012, 37, 9182–9192. [Google Scholar] [CrossRef]
- Beekes, M.; Lasch, P.; Naumann, D. Anal. applications of Fourier transform-infrared FT-IR, spectroscopy in microbiology and prion research. Vet. Microbiol. 2007, 123, 305–319. [Google Scholar] [CrossRef] [Green Version]
- Saulou, C.; Jamme, F.; Girbal, L.; Maranges, C.; Fourquaux, I.; Cocaign-Bousquet, M.; Mercier-Bonin, M. Synchrotron FTIR microspectroscopy of Escherichia coli at single-cell scale under silver-induced stress conditions. Anal. Bioanal. Chem. 2013, 405, 2685–2697. [Google Scholar] [CrossRef]
- Kardas, M.; Gozen, A.G.; Severcan, F. FTIR spectroscopy offers hints towards widespread molecular changes in cobalt-acclimated freshwater bacteria. Aquat. Toxicol. 2014, 155, 15–23. [Google Scholar] [CrossRef]
- Severcan, F. Vitamin E decreases the order of the phospholipid model membranes in the gel phase: An FTIR study. Biosci. Rep. 1997, 17, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.Z.; Bose, R.; Mantsch, H.H. Infrared spectroscopic study of diabetic platelets. Vib. Spectrosc. 2002, 28, 131–136. [Google Scholar] [CrossRef]
- Fabian, H.; Mäntele, W. Infrared spectroscopy of proteins. In Handbook of Vibrational Spectroscopy; John Wiley Sons: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Sukumaran, S.; Hauser, K.; Rauscher, A.; Mäntele, W. Thermal stability of outer membrane protein porin from Paracoccus denitrificans: FT-IR as a spectroscopic tool to study lipid–protein interaction. FEBS Lett. 2005, 579, 2546–2550. [Google Scholar] [CrossRef] [Green Version]
- Bashir, S.; Nawaz, H.; Majeed, M.I.; Mohsin, M.; Abdullah, S.; Ali, S.; Abdulraheem, A. Rapid and sensitive discrimination among carbapenem resistant and susceptible E. coli strains using Surf. Enhanced Raman Spectroscopy combined with chemometric tools. Photodiagn. Photodyn. Ther. 2021, 34, 102280. [Google Scholar] [CrossRef]
- Zheng, D.W.; Liu, X.Y.; Zhang, P.; Su, L.; Wang, L.M.; Wei, X.D.; Lin, T.F. Rapid identification of mixed enteropathogenic bacteria by means of Au nanoparticles@ bacteria using portable Raman spectrometer. J. Nanosci. Nanotechnol. 2018, 18, 6776–6785. [Google Scholar] [CrossRef] [PubMed]
- Azemtsop Matanfack, G.; Taubert, M.; Guo, S.; Bocklitz, T.; Küsel, K.; Rösch, P.; Popp, J. Monitoring deuterium uptake in single bacterial cells via two-dimensional Raman correlation spectroscopy. Anal. Chem. 2021, 93, 7714–7723. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Tselios, C.; Varotsis, C. Photosensitivity responses of Sagittula stellata probed by FTIR, fluorescence and Raman microspectroscopy. RSC Adv. 2019, 9, 27391–27397. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Wu, T.; Pan, S.; Xu, X. Antimicrobial mechanism of flavonoids against Escherichia coli ATCC 25922 by model membrane study. Appl. Surf. Sci. 2014, 305, 515–521. [Google Scholar] [CrossRef]
- Gardikis, K.; Hatziantoniou, S.; Viras, K.; Wagner, M.; Demetzos, C. A DSC and Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes. Int. J. Pharm. 2006, 318, 118–123. [Google Scholar] [CrossRef]
- Germond, A.; Ichimura, T.; Horinouchi, T.; Fujita, H.; Furusawa, C.; Watanabe, T.M. Raman spectral signature reflects transcriptomic features of antibiotic resistance in Escherichia coli. Comm.Biol. 2018, 1, 85. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.Q.; Cao, X.; Vance, A. Conformation and side chains environments of recombinant human interleukin-1 receptor antagonist rh-IL-1ra, probed by Raman, Raman optical activity, and UV-resonance Raman spectroscopy. J. Pharm. Sci. 2008, 97, 2228–2241. [Google Scholar] [CrossRef]
- Jayan, H.; Pu, H.; Sun, D.W. Analyzing macromolecular composition of E. Coli O157: H7 using Raman-stable isotope probing. Spectrochim. Acta Part A 2022, 276, 121217. [Google Scholar] [CrossRef]
- Feng, J.; De La Fuente-Núñez, C.; Trimble, M.J.; Xu, J.; Hancock, R.E.; Lu, X. An in situ Raman spectroscopy-based microfluidic “lab-on-a-chip” platform for non-destructive and continuous characterization of Pseudomonas aeruginosa biofilms. Chem. Comm. 2015, 51, 8966–8969. [Google Scholar] [CrossRef]
- Gennis, R.B. The cytochromes of Escherichia coli. FEMS Microbiol. Rev. 1987, 3, 387–399. [Google Scholar] [CrossRef]
- Thöny-Meyer, L.; Fischer, F.; Künzler, P.; Ritz, D.; Hennecke, H. Escherichia coli genes required for cytochrome c maturation. J. Bacteriol. 1995, 177, 4321–4326. [Google Scholar] [CrossRef] [Green Version]
- Puustinen, A.; Finel, M.; Haltia, T.; Gennis, R.B.; Wikstrom, M. Properties of the two terminal oxidases of Escherichia coli. Biochemistry 1991, 30, 3936–3942. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Mogi, T.; Kitagawa, T. Resonance Raman studies of oxo intermediates in the reaction of pulsed cytochrome bo with hydrogen peroxide. Biochemistry 2000, 39, 6669–6678. [Google Scholar] [CrossRef]
- Laucks, M.L.; Sengupta, A.; Junge, K.; Davis, E.J.; Swanson, B.D. Comparison of psychro-active arctic marine bacteria and common mesophillic bacteria using surface-enhanced Raman spectroscopy. Appl. Spectrosc. 2005, 59, 1222–1228. [Google Scholar] [CrossRef]
- Rastogi, S.K.; Jabal, J.; Zhang, H.; Haler, K.J.; Gibson, C.M.; Qiang, Y.; Branen, A.L. Silica coated Magnetic Nanoparticles SMNPs): Capture and Identification of Escherichia coli Cells using surface-enhanced Raman Spectroscopy. NSTI-Nanotech 2011, 2011, 3. [Google Scholar]
- Predoi, D.; Iconaru, S.L.; Albu, M.; Petre, C.C.; Jiga, G. Physicochemical and antimicrobial properties of silver-doped hydroxyapatite collagen biocomposite. Polym. Eng. Sci. 2017, 57, 537–545. [Google Scholar] [CrossRef]
- Bai, W.; Zhao, K.S.; Asami, K. Dielectric properties of E. coli cell as simulated by the three-shell spheroidal model. Biophys. Chem. 2006, 122, 136–142. [Google Scholar] [CrossRef]
- Asami, K.; Hanai, T.; Koizumi, N. Dielectric analysis of Escherichia coli suspensions in the light of the theory of interfacial polarization. Biophys. J. 1980, 31, 215–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saraeva, I.; Zayarny, D.; Tolordava, E.; Nastulyavichus, A.; Khmelnitsky, R.; Khmelenin, D.; Shelygina, S.; Kudryashov, S. Locally Enhanced Electric Field Treatment of E. coli: TEM, FT-IR and Raman Spectrometry Study. Chemosensors 2023, 11, 361. https://doi.org/10.3390/chemosensors11070361
Saraeva I, Zayarny D, Tolordava E, Nastulyavichus A, Khmelnitsky R, Khmelenin D, Shelygina S, Kudryashov S. Locally Enhanced Electric Field Treatment of E. coli: TEM, FT-IR and Raman Spectrometry Study. Chemosensors. 2023; 11(7):361. https://doi.org/10.3390/chemosensors11070361
Chicago/Turabian StyleSaraeva, Irina, Dmitry Zayarny, Eteri Tolordava, Alena Nastulyavichus, Roman Khmelnitsky, Dmitry Khmelenin, Svetlana Shelygina, and Sergey Kudryashov. 2023. "Locally Enhanced Electric Field Treatment of E. coli: TEM, FT-IR and Raman Spectrometry Study" Chemosensors 11, no. 7: 361. https://doi.org/10.3390/chemosensors11070361
APA StyleSaraeva, I., Zayarny, D., Tolordava, E., Nastulyavichus, A., Khmelnitsky, R., Khmelenin, D., Shelygina, S., & Kudryashov, S. (2023). Locally Enhanced Electric Field Treatment of E. coli: TEM, FT-IR and Raman Spectrometry Study. Chemosensors, 11(7), 361. https://doi.org/10.3390/chemosensors11070361