Synergism between Graphene and Molecularly Imprinted Polymers in Developing Electrochemical Sensors for Agri-Food and Environmental Analyses
Abstract
:1. Introduction
2. Molecularly Imprinted Polymers
3. Graphene
4. Electrochemical Sensors
5. MIPs and Graphene Electrochemical Sensors for Agri-Food Analyses
Electrode Material | Electrochemical Technique | Monomer | Template/Analyte | Samples | LoD, mol L−1 | Ref. |
---|---|---|---|---|---|---|
a mag-MIP/Gr-UiO-66/SPE | i CV | Methacrylic acid | Cannabidiol | CBD products | 5.00 × 10−8 | [54] |
b Pt-NPs-NH2-r-GO/GCE | ii EIS | Indole-6-carboxylic acid | Fluxapyroxad | Apple, cabbage | 1.00 × 10−10 | [55] |
c MIP/graphene/GCE | iii DPV | Acrylamide | Phoxim | Cucumber | 2.00 × 10−8 | [56] |
d MIP/rGO@Au/GCE | DPV | Methacrylic acid | Carbofuran | Cucumbers and cabbage | 2.00 × 10−8 | [57] |
e CS–PtNPs/GR–AuNPs/MIPs/gold electrode | iv CA | HAuCl4, 2-mercaptonicotinic acid (MNA) | Erythromycin | Milk, honey | 2.30 × 10−8 | [58] |
f MIP@GO/GCE | DPV | Pyrrole | Glyphosate | Corn | 1.10 × 10−5 | [59] |
g RGO/Fe3O4-MIP/GCE | DPV | 1-vinyl-3-butylimidazolium hexafluorophosphate ([VC4mim][PF6]) | Diphenylamine | Lake water, pear peel, apple peel | 5.00 × 10−8 | [60] |
h MIP/Fe3O4/GO/GCE | v SWV | 1-ethyl-3-methylimidazolium tetrafluoroborate | Patulin | Apple and pear juices | 3.33 × 10−13 | [61] |
i GCE-EG-MIP | DPV | Pyrrole | Ascorbic acid | - | 1.00 × 10−4 | [62] |
j MIPs/HA -MWCNTs/PPy- SG/GCE | CA | Pyrrole | Tryptamine | Cheese, lactobacillus beverage | 7.40 × 10−8 | [63] |
k GO /CCNTs/ IL /AuNPs/MIPs | DPV | Pyrrole | Vanillin | Tap water | 6.20 × 10−9 | [64] |
l MIPs/PPy/DGr/GCE (MIECS) | DPV | Pyrrole | Olaquindox | Fish and feedstuff | 7.50 × 10−9 | [65] |
m MIP/Au-PB/SH-G/AuNPs/GCE | DPV | o-aminophenol and resorcinol | Tebuconazole | Cucumber, green vegetable, strawberry | 1.25 × 10−8 | [66] |
n PEI-rGO-Au-NCs@MIP | DPV | Choline chloride | β-lactoglobulin | Milk | See text | [67] |
o PtNPs@MIP/SPGrE | vi ASV | Methacrylic acid | Paraquat | Cabbage, cucumber, yardlong bean, kale, tomato, onion, lettuce | 2.00 × 10−8 | [68] |
p PDDA-Gr-(Pd-Cu) @MIP-PDA /GCE | DPV | Dopamine | Amaranth | Soft drinks | 2.00 × 10−9 | [69] |
q GCE/GO–PtCo@MIPDA | DPV | Dopamine hydrochloride | Tartrazine | Orangeade, yellow wine, ice cream, jelly, instant juice powder, candy, cookie | 1.10 × 10−9 | [12] |
r MIP/GO/GC | DPV | β-cyclodextrin | Epigallocatechin gallate | Tea samples | 8.78 × 10−9 | [70] |
s MIPs/PtAu-GrCNTs/GCE | CA | o-phenylenediamine | Propyl gallate | Oil samples | 2.51 × 10−8 | [71] |
t GCE/rGO-MIP | DPV | Phenylboronic acid | Fructose | Orange, apple and grape juices | 3.20 × 10−15 | [72] |
u MIP/ERGO/GCE | DPV | o-phenylenediamine and resorcinol | Thiabendazole | Orange juice | 1.25 × 10−7 | [73] |
v GN/MIPs/GCE | vii LSV | p-Vinylbenzoic acid | Imidacloprid | Rice | 1.00 × 10−7 | [74] |
w MIP-GN/GCE | LSV | p-Vinylbenzoic acid | Thiamethoxam | Brown rice | 4.00 × 10−5 | [75] |
x MGO@AuNPs-MIPs | DPV | Methacrylic acid | Dibutyl phthalate | Wine samples | 8.00 × 10−10 | [76] |
y MIP/Ag/Ni-MOF/N-GQDs/GCE | DPV | Aniline | Olaquindox | Fish muscle, swine muscle, chicken breast | 2.20 × 10−9 | [77] |
6. MIPs and Graphene Electrochemical Sensors for Environmental Analyses
Electrode Material | Electrochemical Technique | Monomer | Analyte | Samples | LoD, mol L−1 | Ref. |
---|---|---|---|---|---|---|
a MIP/rGO/PGE | DPV | Pyrrole | Picric acid | Soil, water | 1.40 × 10−6 | [80] |
b MIP/GO/GCE | DPV | Methacrylic acid | 2,4-dichlorophenol | Lake water | 5.00 × 10−10 | [81] |
c MIP/PDA-rGO/GCE | DPV | 2,4-dichlorophenol | 2,4-dichlorophenol | Lake water | 8.00 × 10-10 | [82] |
d PDDA-G/MIP/GCE | DPV | Methacrylic acid | 4-chlorophenol | Tap water, lake water | 3.00 × 10−7 | [83] |
e MIP/HG/GCE | DPV | Methacrylic acid | p-aminophenol | Tap water, lake water | 6.00 × 10−8 | [84] |
f Au@Fe3O4@RGO-MIPs | DPV | Methacrylic acid | Ractopamine | Water | 2.00 × 10−11 | [85] |
g Gr/MIPs/ABPE | DPV | 4-vinylpyridine | Bisphenol A | Plastic pacifier, one-off plastic spoon, mineral water and the water of Yudai River | 9.60 × 10–11 | [86] |
h MIP/MXene/Au/GCE | DPV | 4-vinylpyridine | Tetrabromobisphenol A | Weihe River, tap water | 1.44 × 10−11 | [87] |
i MIP/NGNRs-IL/GCE | LSV | o-phenylenediamine and o-toluidine | 4-nonyl-phenol | Lake water, river water, tap water | 8.0 × 10−9 | [88] |
7. Future Perspectives and Challenges
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EU Missions in Horizon Europe. Available online: https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe_en (accessed on 29 March 2023).
- Barhoum, A.; Hamimed, S.; Slimi, H.; Othmani, A.; Abdel-Haleem, F.M.; Bechelany, M. Modern designs of electrochemical sensor platforms for environmental analyses: Principles, nanofabrication opportunities, and challenges. Trends Environ. Anal. Chem. 2023, 38, e00199. [Google Scholar] [CrossRef]
- Ayerdurai, V.; Cieplak, M.; Kutner, W. Molecularly imprinted polymer-based electrochemical sensors for food contaminants determination. TrAC Trends Anal. Chem. 2023, 158, 116830. [Google Scholar] [CrossRef]
- Ambrosi, A.; Chua, C.K.; Bonanni, A.; Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev. 2014, 114, 7150–7181. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Zhu, Y.; Zhang, Y.; Zhang, M.; Zhang, Y.; Qiao, L.; Yin, N.; Song, K.; Liu, M.; Wang, D. Recent advances in carbon nanomaterials-based electrochemical sensors for phenolic compounds detection. Microchem. J. 2021, 171, 106776. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, Q.; Chang, C.; Wang, R.; Liu, Z.; He, L. Recent progress regarding electrochemical sensors for the detection of typical pollutants in water environments. Anal. Sci. 2022, 38, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Afsharara, H.; Asadian, E.; Mostafiz, B.; Banan, K.; Bigdeli, S.A.; Hatamabadi, D.; Keshavarz, A.; Hussain, C.M.; Keçili, R.; Ghorbani-Bidkorpeh, F. Molecularly imprinted polymer-modified carbon paste electrodes (MIP-CPE): A review on sensitive electrochemical sensors for pharmaceutical determinations. TrAC Trends Anal. Chem. 2023, 160, 116949. [Google Scholar] [CrossRef]
- Ma, X.; Chen, M. Electrochemical sensor based on graphene doped gold nanoparticles modified electrode for detection of diethylstilboestrol. Sens. Actuators B Chem. 2015, 215, 445–450. [Google Scholar] [CrossRef]
- Motia, S.; Bouchikhi, B.; El Bari, N. An electrochemical molecularly imprinted sensor based on chitosan capped with gold nanoparticles and its application for highly sensitive butylated hydroxyanisole analysis in foodstuff products. Talanta 2021, 223, 121689. [Google Scholar] [CrossRef]
- Du, N. Application of nano-silver modified carbon nanotube electrode as electrochemical sensor for detecting cyanide in food. Integr. Ferroelectr. 2021, 215, 203–218. [Google Scholar] [CrossRef]
- Porto, L.S.; Ferreira, L.F.; Pio dos Santos, W.T.; Pereira, A.C. Determination of organophosphorus compounds in water and food samples using a non-enzymatic electrochemical sensor based on silver nanoparticles and carbon nanotubes nanocomposite coupled with batch injection analysis. Talanta 2022, 246, 123477. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Tang, D.; Zhang, Y.; Xu, L.; Liu, K.; Huang, K.; Yin, Z. Specific and sensitive detection of tartrazine on the electrochemical interface of a molecularly imprinted polydopamine-coated PtCo nanoalloy on graphene oxide. Biosensors 2022, 12, 326. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Xu, X.; Guo, X.; Cui, B.; Wang, L. Simple and ultrasensitive electrochemical sensor for oxalic acid detection in real samples by one step co-electrodeposition strategy. Anal. Bioanal. Chem. 2020, 412, 5719–5727. [Google Scholar] [CrossRef] [PubMed]
- Rao, H.; Chen, M.; Ge, H.; Lu, Z.; Liu, X.; Zou, P.; Wang, X.; He, H.; Zeng, X.; Wang, Y. A novel electrochemical sensor based on Au@PANI composites film modified glassy carbon electrode binding molecular imprinting technique for the determination of melamine. Biosens. Bioelectron. 2017, 87, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Santos, A.M.; Cardenas-Riojas, A.A.; Baena-Moncada, A.M.; Sotomayor, M.D.P.T. Voltammetric sensor based on glassy carbon electrode modified with hierarchical porous carbon, silver sulfide nanoparticles and fullerene for electrochemical monitoring of nitrite in food samples. Food Chem. 2022, 383, 132384. [Google Scholar] [CrossRef]
- Chiorcea-Paquim, A.; Pauliukaite, R.; Brett, C.M.A.; Oliveira-Brett, A.M. AFM nanometer surface morphological study of in situ electropolymerized neutral red redox mediator oxysilane sol-gel encapsulated glucose oxidase electrochemical biosensors. Biosens. Bioelectron. 2008, 24, 297–305. [Google Scholar] [CrossRef]
- Benešová, L.; Klouda, J.; Bláhová, E.; Nesměrák, K.; Kočovský, P.; Nádvorníková, J.; Barták, P.; Skopalová, J.; Schwarzová-Pecková, K. Non-enzymatic electrochemical determination of cholesterol in dairy products on boron-doped diamond electrode. Food Chem. 2022, 393, 133278. [Google Scholar] [CrossRef]
- Švorc, Ľ.; Haššo, M.; Sarakhman, O.; Kianičková, K.; Stanković, D.M.; Otřísal, P. A progressive electrochemical sensor for food quality control: Reliable determination of theobromine in chocolate products using a miniaturized boron-doped diamond electrode. Microchem. J. 2018, 142, 297–304. [Google Scholar] [CrossRef]
- Manoranjitham, J.J.; Narayanan, S.S. Electrochemical sensor for determination of butylated hydroxyanisole (BHA) in food products using poly O-cresolphthalein complexone coated multiwalled carbon nanotubes electrode. Food Chem. 2021, 342, 128246. [Google Scholar] [CrossRef]
- Lubert, K.-H.; Kalcher, K. History of electroanalytical methods. Electroanalysis 2010, 22, 1937–1946. [Google Scholar] [CrossRef]
- Wang, H.; Yao, S.; Liu, Y.; Wei, S.; Su, J.; Hu, G. Molecularly imprinted electrochemical sensor based on au nanoparticles in carboxylated multi-walled carbon nanotubes for sensitive determination of olaquindox in food and feedstuffs. Biosens. Bioelectron. 2017, 87, 417–421. [Google Scholar] [CrossRef]
- Wulff, G.; Sarhan, A. Use of polymers with enzyme-analogous structures for resolution of racemates. Angew. Chem. Int. Ed. Engl. 1972, 11, 341. [Google Scholar]
- Wulff, G.; Sarhan, A.; Zabrocki, K. Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Lett. 1973, 14, 4329–4332. [Google Scholar] [CrossRef]
- Wulff, G.; Sarhan, A. Enzymanaloge Polymere. German Patent Application DE-A 2242796, 1974. [Google Scholar]
- Azzouz, A.; Goud, K.Y.; Raza, N.; Ballesteros, E.; Lee, S.-E.; Hong, J.; Deep, A.; Kim, K.-H. Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices. TrAC Trends Anal. Chem. 2019, 110, 15–34. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Rajaji, U.; Arumugam, R.; Chen, S.; Chen, T.; Tseng, T.; Chinnapaiyan, S.; Lee, S.Y.; Chang, W. Graphene nanoribbons in electrochemical sensors and biosensors: A review. Int. J. Electrochem. Sci. 2018, 13, 6643–6654. [Google Scholar] [CrossRef]
- Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Xu, Z.; Liu, M. A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. J. Hazard. Mater. 2012, 201–202, 250–259. [Google Scholar] [CrossRef]
- Irkham, I.; Ibrahim, A.U.; Pwavodi, P.C.; Al-Turjman, F.; Hartati, Y.W. Smart graphene-based electrochemical nanobiosensor for clinical diagnosis: Review. Sensors 2023, 23, 2240. [Google Scholar] [CrossRef]
- Justino, C.I.L.; Gomes, A.R.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 2017, 91, 53–66. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, L.; Zhang, Y.; Tang, H. Electrochemical sensoring of 2,4-dinitrophenol by using composites of graphene oxide with surface molecular imprinted polymer. Sens. Actuators B Chem. 2012, 171–172, 1151–1158. [Google Scholar] [CrossRef]
- Pilvenyte, G.; Ratautaite, V.; Boguzaite, R.; Samukaite-Bubniene, U.; Plausinaitis, D.; Ramanaviciene, A.; Bechelany, M.; Ramanavicius, A. Molecularly imprinted polymers for the recognition of biomarkers of certain neurodegenerative diseases. J. Pharm. Biomed. Anal. 2023, 228, 115343. [Google Scholar] [CrossRef] [PubMed]
- Turiel, E.; Esteban, A.M. 8—Molecularly imprinted polymers. In Handbooks in Separation Science, Solid-Phase Extraction; Poole, C.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 215–233. [Google Scholar]
- Qi, P.; Wang, J.; Wang, L.; Li, Y.; Jin, J.; Su, F.; Tian, Y.; Chen, J. Molecularly imprinted polymers synthesized via semi-covalent imprinting with sacrificial spacer for imprinting phenols. Polymer 2010, 51, 5417–5423. [Google Scholar] [CrossRef]
- Shahhoseini, F.; Azizi, A.; Bottaro, C.S. A critical evaluation of molecularly imprinted polymer (MIP) coatings in solid phase microextraction devices. TrAC Trends Anal. Chem. 2022, 156, 116695. [Google Scholar] [CrossRef]
- Zaidi, S.A.; Shin, J.H. Molecularly imprinted polymer electrochemical sensors based on synergistic effect of composites synthesized from graphene and other nanosystems. Int. J. Electrochem. Sci. 2014, 9, 4598–4616. [Google Scholar] [CrossRef]
- Bollella, P.; Fusco, G.; Tortolini, C.; Sanzò, G.; Favero, G.; Gorton, L.; Antiochia, R. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosens. Bioelectron. 2017, 89, 152–166. [Google Scholar] [CrossRef]
- Kumar, S.; Bukkitgar, S.D.; Singh, S.; Pratibha Singh, V.; Reddy, K.R.; Shetti Nagaraj, P.; Venkata Reddy, C.; Sadhu, V.; Naveen, S. Electrochemical sensors and biosensors based on graphene functionalized with metal oxide nanostructures for healthcare applications. ChemistrySelect 2019, 4, 5322–5337. [Google Scholar] [CrossRef]
- Arnold, H.N.; Cress, C.D.; McMorrow, J.J.; Schmucker, S.W.; Sangwan, V.K.; Jaber-Ansari, L.; Kumar, R.; Puntambekar, K.P.; Luck, K.A.; Marks, T.J.; et al. Tunable radiation response in hybrid organic-inorganic gate dielectrics for low-voltage graphene electronics. ACS Appl. Mater. Interfaces 2016, 8, 5058–5064. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-B.; Liu, J.S.; Lin, P. Recent trend in graphene for optoelectronics. J. Nanopart. Res. 2013, 15, 1454. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, S.; Song, Z.-L.; Zhang, X.; Zhang, S.; Song, W.; Chen, Z. Alkyne functionalized graphene-isolated-au-nanocrystal for the ratiometric SERS sensing of alkaline phosphatase with acetonitrile solvent as an internal standard. Sens. Actuators B Chem. 2021, 331, 129373. [Google Scholar] [CrossRef]
- Edwards, R.S.; Coleman, K.S. Graphene synthesis: Relationship to applications. Nanoscale 2013, 5, 38–51. [Google Scholar] [CrossRef]
- Wisitsoraat, A.; Mensing, J.P.; Karuwan, C.; Sriprachuabwong, C.; Jaruwongrungsee, K.; Phokharatkul, D.; Daniels, T.M.; Liewhiran, C.; Tuantranont, A. Printed organo-functionalized graphene for biosensing applications. Biosens. Bioelectron. 2017, 87, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.W.; Baek, J.-B. Eco-friendly synthesis of graphene nanoplatelets. J. Mater. Chem. A 2016, 4, 15281–15293. [Google Scholar] [CrossRef]
- Zhu, Y.; Pan, D.; Hu, X.; Han, H.; Lin, M.; Wang, C. An electrochemical sensor based on reduced graphene oxide/gold nanoparticles modified electrode for determination of iron in coastal waters. Sens. Actuators B Chem. 2017, 243, 1–7. [Google Scholar] [CrossRef]
- Jiříčková, A.; Jankovský, O.; Sofer, Z.; Sedmidubský, D. Synthesis and applications of graphene oxide. Materials 2022, 15, 920. [Google Scholar] [CrossRef] [PubMed]
- Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Kumar, C.V.; Pattammattel, A. Chapter 1—Discovery of Graphene and Beyond. In Introduction to Graphene; Kumar, C.V., Pattammattel, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–15. ISBN 9780128131824. [Google Scholar]
- Ahmad, O.S.; Bedwell, T.S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S.A. Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol. 2019, 37, 294–309. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical sensors and their applications: A review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Lawal, A.T. Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta 2015, 131, 424–443. [Google Scholar] [CrossRef]
- Gui, R.; Jin, H.; Guo, H.; Wang, Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens. Bioelectron. 2018, 100, 56–70. [Google Scholar] [CrossRef]
- Tang, X.; Gu, Y.; Tang, P.; Liu, L. Electrochemical sensor based on magnetic molecularly imprinted polymer and graphene-UiO-66 composite modified screen-printed electrode for cannabidiol detection. Int. J. Electrochem. Sci. 2022, 17, 220562. [Google Scholar] [CrossRef]
- Shi, L.; Duan, J.; Xu, S.; Yang, H.; Yang, G. One-step synthesis of ultrasmall platinum nanoparticles supported on amino-functionalized graphene to create an electrochemical molecularly imprinted polymer sensor for fluxapyroxad. Int. J. Electrochem. Sci. 2021, 16, 1–12. [Google Scholar] [CrossRef]
- Tan, X.; Wu, J.; Hu, Q.; Li, X.; Li, P.; Yu, H.; Li, X.; Lei, F. An electrochemical sensor for the determination of phoxim based on a graphene modified electrode and molecularly imprinted polymer. Anal. Methods 2015, 7, 4786–4792. [Google Scholar] [CrossRef]
- Tan, X.; Hu, Q.; Wu, J.; Li, X.; Li, P.; Yu, H.; Li, X.; Lei, F. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran. Sens. Actuators B Chem. 2015, 220, 216–221. [Google Scholar] [CrossRef]
- Lian, W.; Liu, S.; Yu, J.; Xing, X.; Li, J.; Cui, M.; Huang, J. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens. Bioelectron. 2012, 38, 163–169. [Google Scholar] [CrossRef]
- Ren, X.; Zeng, H.; Zhang, Q.; Cai, H.; Yang, W. Electrochemical sensor based on molecularly imprinted polymer and graphene oxide nanocomposite for monitoring glyphosate content in corn. Int. J. Electrochem. Sci. 2022, 17, 221292. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, X.; Zeng, Y.; Wang, H.; Lu, Y.; Zhang, J.; Yin, Z.; Chen, Z.; Yang, Y.; Li, L. An electrochemical sensor for diphenylamine detection based on reduced graphene oxide/Fe3O4-molecularly imprinted polymer with 1,4-butanediyl-3,3’-bis-l-vinylimidazolium dihexafluorophosphate ionic liquid as cross-linker. Polymers 2018, 10, 1329. [Google Scholar] [CrossRef] [Green Version]
- Afzali, Z.; Mohadesi, A.; Ali Karimi, M.; Fathirad, F. A highly selective and sensitive electrochemical sensor based on graphene oxide and molecularly imprinted polymer magnetic nanocomposite for patulin determination. Microchem. J. 2022, 177, 107215. [Google Scholar] [CrossRef]
- Oliveira, S.M.; Luzardo, J.M.; Silva, L.A.; Aguiar, D.C.; Senna, C.A.; Verdan, R.; Kuznetsov, A.; Vasconcelos, T.L.; Archanjo, B.S.; Achete, C.A.; et al. High-performance electrochemical sensor based on molecularly imprinted polypyrrole-graphene modified glassy carbon electrode. Thin Solid Film. 2020, 699, 137875. [Google Scholar] [CrossRef]
- Xing, X.; Liu, S.; Yu, J.; Lian, W.; Huang, J. Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine. Biosens. Bioelectron. 2012, 31, 277–283. [Google Scholar] [CrossRef]
- Wang, X.; Luo, C.; Li, L.; Duan, H. An ultrasensitive molecularly imprinted electrochemical sensor based on graphene oxide/carboxylated multiwalled carbon nanotube/ionic liquid/gold nanoparticle composites for vanillin analysis. RSC Adv. 2015, 5, 92932–92939. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, B.; Liu, M.; Hu, X.; Fang, G.; Wang, S. Molecularly imprinted electrochemical sensor based on polypyrrole/dopamine@graphene incorporated with surface molecularly imprinted polymers thin film for recognition of olaquindox. Bioelectrochemistry 2020, 132, 107398. [Google Scholar] [CrossRef]
- Qi, P.; Wang, J.; Wang, Z.; Wang, X.; Wang, X.; Xu, X.; Xu, H.; Di, S.; Zhang, H.; Wang, Q. Construction of a probe-immobilized molecularly imprinted electrochemical sensor with dual signal amplification of thiol graphene and gold nanoparticles for selective detection of tebuconazole in vegetable and fruit samples. Electrochim. Acta 2018, 274, 406–414. [Google Scholar] [CrossRef]
- Wang, B.; Hong, J.; Liu, C.; Zhu, L.; Jiang, L. An electrochemical molecularly imprinted polymer sensor for rapid β-lactoglobulin detection. Sensors 2021, 21, 8240. [Google Scholar] [CrossRef] [PubMed]
- Somnet, K.; Thimoonnee, S.; Karuwan, C.; Kamsong, W.; Tuantranont, A.; Amatatongchai, M. Ready-to-use paraquat sensor using a graphene-screen printed electrode modified with a molecularly imprinted polymer coating on a platinum core. Analyst 2021, 146, 6270–6280. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zheng, H.; Guo, L.; Qu, L.; Yu, L. A sensitive and selective molecularly imprinted electrochemical sensor based on Pd-Cu bimetallic alloy functionalized graphene for detection of amaranth in soft drink. Talanta 2019, 197, 68–76. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, L.; Hu, Y.; Peng, X.; Du, J. A novel electrochemical sensor based on a molecularly imprinted polymer for the determination of epigallocatechin gallate. Food Chem. 2017, 221, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Huang, J.; Wang, Y.; Wu, Y.; Luo, X. Molecularly imprinted electrochemical sensor for propyl gallate based on PtAu bimetallic nanoparticles modified graphene-carbon nanotube composites. Biosens. Bioelectron. 2015, 68, 563–569. [Google Scholar] [CrossRef]
- Moreira, L.F.P.P.; Buffon, E.; de Sá, A.C.; Stradiotto, N.R. Fructose determination in fruit juices using an electrosynthesized molecularly imprinted polymer on reduced graphene oxide modified electrode. Food Chem. 2021, 352, 129430. [Google Scholar] [CrossRef]
- Li, J.; Ma, X.; Zhang, M.; Li, D.; Yuan, Y.; Fan, Y.; Xie, X.; Guo, L.; Zeng, G. Preparation of molecularly imprinted polymer sensor on electrochemically reduced graphene oxide modified electrode for selective probing of thiabendazole. J. Electrochem. Soc. 2019, 166, B84–B91. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, H.T.; Xie, T.J.; Yang, X.; Dong, A.J.; Zhang, H.; Wang, J.; Wang, Z.Y. Molecularly imprinted polymer on graphene surface for selective and sensitive electrochemical sensing imidacloprid. Sens. Actuators B Chem. 2017, 252, 991–1002. [Google Scholar] [CrossRef]
- Xie, T.; Zhang, M.; Chen, P.; Zhao, H.; Yang, X.; Yao, L.; Zhang, H.; Dong, A.; Wanj, J.; Wang, Z. A facile molecularly imprinted electrochemical sensor based on graphene: Application to the selective determination of thiamethoxam in grain. RSC Adv. 2017, 7, 38884–38894. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, X.; Li, L.; Duan, H.; Luo, C. Electrochemical sensor based on magnetic graphene oxide@gold nanoparticles-molecular imprinted polymers for determination of dibutyl phthalate. Talanta 2015, 131, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Sun, R.; Zhao, L.; Yan, C.; Chu, H. Molecularly imprinted electrochemical sensor based on synergistic interaction of honeycomb-like ni-MOF decorated with AgNPs and N-GQDs for ultra-sensitive detection of olaquindox in animal-origin food. Food Chem. 2023, 418, 136001. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, M.D. Thiabendazole. In xPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1–5. [Google Scholar]
- Dumancas, G.G.; Hikkaduwa Koralege, R.S.; Mojica, E.-R.E.; Murdianti, B.S.; Pham, P.J. Thiabendazole. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 533–536. [Google Scholar]
- Karthika, P.; Shanmuganathan, S.; Viswanathan, S. Electrochemical sensor for picric acid by using molecularly imprinted polymer and reduced graphene oxide modified pencil graphite electrode. Proc. Indian Natl. Sci. Acad. 2022, 88, 263–276. [Google Scholar] [CrossRef]
- Liang, Y.; Yu, L.; Yang, R.; Li, X.; Qu, L.; Li, J. High sensitive and selective graphene oxide/molecularly imprinted polymer electrochemical sensor for 2,4-dichlorophenol in water. Sens. Actuators B Chem. 2017, 240, 1330–1335. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, Y.; Yang, R.; Li, J.; Qu, L. A highly sensitive and selective electrochemical sensor based on polydopamine functionalized graphene and molecularly imprinted polymer for the 2,4-dichlorophenol recognition and detection. Talanta 2019, 195, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Okoth, O.K.; Yan, K.; Zhang, J. A highly selective electrochemical sensor for 4-chlorophenol determination based on molecularly imprinted polymer and PDDA-functionalized graphene. Sens. Actuators B Chem. 2016, 236, 294–303. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, K.; Wang, B.; Yang, C.; Zhang, J. An electrochemical sensor for selective detection of p-aminophenol using hemin-graphene composites and molecularly imprinted polymer. J. Electrochem. Soc. 2017, 164, B776–B780. [Google Scholar] [CrossRef]
- Li, Y.; Xu, W.; Zhao, X.; Huang, Y.; Kang, J.; Qi, Q.; Zhong, C. Electrochemical sensors based on molecularly imprinted polymers on Fe3O4/graphene modified by gold nanoparticles for highly selective and sensitive detection of trace ractopamine in water. Analyst 2018, 143, 5094–5102. [Google Scholar] [CrossRef]
- Xu, W.; Yuan, F.; Li, C.; Huang, W.; Wu, X.; Yin, Z.; Yang, W. Acetylene black paste electrode modified with molecularly imprinted polymers/graphene for the determination of bisphenol A. J. Sep. Sci. 2016, 39, 4851–4857. [Google Scholar] [CrossRef]
- Shao, Y.; Zhu, Y.; Zheng, R.; Wang, P.; Zhao, Z.; An, J. Highly sensitive and selective surface molecularly imprinted polymer electrochemical sensor prepared by au and MXene modified glassy carbon electrode for efficient detection of tetrabromobisphenol A in water. Adv. Compos. Hybrid Mater. 2022, 5, 3104–3116. [Google Scholar] [CrossRef]
- Pan, Y.; Shang, L.; Zhao, F.; Zeng, B. A novel electrochemical 4-nonyl-phenol sensor based on molecularly imprinted poly (o-phenylenediamine-co-o-toluidine)-nitrogen-doped graphene nanoribbons-ionic liquid composite film. Electrochim. Acta 2015, 151, 423–428. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, X.; Li, P.; Huang, Y.; Wang, J.; Zhang, J. Highly sensitive Fe3O4 nanobeads/graphene-based molecularly imprinted electrochemical sensor for 17β-estradiol in water. Anal. Chim. Acta 2015, 884, 106–113. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radu, G.-L.; Lițescu, S.C.; Enache, A.; Albu, C.; Eremia, S.A.V. Synergism between Graphene and Molecularly Imprinted Polymers in Developing Electrochemical Sensors for Agri-Food and Environmental Analyses. Chemosensors 2023, 11, 380. https://doi.org/10.3390/chemosensors11070380
Radu G-L, Lițescu SC, Enache A, Albu C, Eremia SAV. Synergism between Graphene and Molecularly Imprinted Polymers in Developing Electrochemical Sensors for Agri-Food and Environmental Analyses. Chemosensors. 2023; 11(7):380. https://doi.org/10.3390/chemosensors11070380
Chicago/Turabian StyleRadu, Gabriel-Lucian, Simona Carmen Lițescu, Alin Enache, Camelia Albu, and Sandra A. V. Eremia. 2023. "Synergism between Graphene and Molecularly Imprinted Polymers in Developing Electrochemical Sensors for Agri-Food and Environmental Analyses" Chemosensors 11, no. 7: 380. https://doi.org/10.3390/chemosensors11070380
APA StyleRadu, G. -L., Lițescu, S. C., Enache, A., Albu, C., & Eremia, S. A. V. (2023). Synergism between Graphene and Molecularly Imprinted Polymers in Developing Electrochemical Sensors for Agri-Food and Environmental Analyses. Chemosensors, 11(7), 380. https://doi.org/10.3390/chemosensors11070380