Highly Crystalline Oxidase-like MnOOH Nanowire-Incorporated Paper Dipstick for One-Step Colorimetric Detection of Dopamine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Synthesis and Characterization of MNWs
2.3. Assessment of the Oxidase-like Activity of MNWs
2.4. Colorimetric Detection of Dopamine Using a Solution-Based Assay
2.5. Colorimetric Detection of Dopamine Using the MNWs-Incorporated Paper Dipstick
3. Results and Discussion
3.1. Synthesis and Characterization of MNWs
3.2. Investigation of the Dopamine Oxidase-like Activity of MNWs
3.3. Colorimetric Detection of Dopamine Using the MNWs-Containing Solution-Based Assay and MNWs-Incorporated Paper Dipstick
3.4. Practical Applicability of MNWs-Based Colorimetric Detection of Dopamine in Human Serum or Dopamine Injection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Damier, P.; Hirsch, E.C.; Agid, Y.; Graybiel, A. The substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 1999, 122, 1437–1448. [Google Scholar] [CrossRef] [PubMed]
- Manbohi, A.; Ahmadi, S.H. Sensitive and selective detection of dopamine using electrochemical microfluidic paper-based analytical nanosensor. Sens. Bio-Sens. Res. 2019, 23, 100270. [Google Scholar] [CrossRef]
- Paris, I.; Cardenas, S.; Lozano, J.; Perez-Pastene, C.; Graumann, R.; Riveros, A.; Caviedes, P.; Segura-Aguilar, J. Aminochrome as a preclinical experimental model to study degeneration of dopaminergic neurons in Parkinson’s disease. Neurotox. Res. 2007, 12, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.E.; Johnson, J.H.; Baaske, D.M. Dopamine hydrochloride. In Analytical Profiles of Drug Substances; Elsevier: Amsterdam, The Netherlands, 1982; pp. 257–272. [Google Scholar]
- MacCannell, K.L.; McNay, J.L.; Meyer, M.B.; Goldberg, L.I. Dopamine in the Treatment of Hypotension and Shock. N. Engl. J. Med. 1966, 275, 1389–1398. [Google Scholar] [CrossRef]
- Janků, S.; Komendová, M.; Urban, J. Development of an online solid-phase extraction with liquid chromatography method based on polymer monoliths for the determination of dopamine. J. Sep. Sci. 2016, 39, 4107–4115. [Google Scholar] [CrossRef]
- Hubbard, K.E.; Wells, A.; Owens, T.S.; Tagen, M.; Fraga, C.H.; Stewart, C.F. Determination of dopamine, serotonin, and their metabolites in pediatric cerebrospinal fluid by isocratic high performance liquid chromatography coupled with electrochemical detection. Biomed. Chromatogr. 2010, 24, 626–631. [Google Scholar] [CrossRef]
- Vuorensola, K.; Sirén, H. Determination of urinary catecholamines with capillary electrophoresis after solid-phase extraction. J. Chromatogr. A 2000, 895, 317–327. [Google Scholar] [CrossRef]
- Bouri, M.; Lerma-García, M.J.; Salghi, R.; Zougagh, M.; Ríos, A. Selective extraction and determination of catecholamines in urine samples by using a dopamine magnetic molecularly imprinted polymer and capillary electrophoresis. Talanta 2012, 99, 897–903. [Google Scholar] [CrossRef]
- Syslová, K.; Rambousek, L.; Kuzma, M.; Najmanová, V.; Bubeníková-Valešová, V.; Šlamberová, R.; Kačer, P. Monitoring of dopamine and its metabolites in brain microdialysates: Method combining freeze-drying with liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 3382–3391. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, Z.; Wang, Z. A simple dopamine detection method based on fluorescence analysis and dopamine polymerization. Microchem. J. 2019, 145, 55–58. [Google Scholar] [CrossRef]
- Tao, Y.; Lin, Y.; Ren, J.; Qu, X. A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Aunanoclusters. Biosens. Bioelectron. 2013, 42, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Hu, Y.; Zhang, Z.; Tang, Y. Universal fluorometric aptasensor platform based on water-soluble conjugated polymers/graphene oxide. Anal. Bioanal. Chem. 2018, 410, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Zayats, M.; Willner, I. Dopamine-, l-DOPA-, Adrenaline-, and Noradrenaline-Induced Growth of Au Nanoparticles: Assays for the Detection of Neurotransmitters and of Tyrosinase Activity. Anal. Chem. 2005, 77, 1566–1571. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, J. Biosensors and sensors for dopamine detection. View 2021, 2, 20200102. [Google Scholar] [CrossRef]
- Ivanova, M.N.; Grayfer, E.D.; Plotnikova, E.E.; Kibis, L.S.; Darabdhara, G.; Boruah, P.K.; Das, M.R.; Fedorov, V. Pt-Decorated Boron Nitride Nanosheets as Artificial Nanozyme for Detection of Dopamine. ACS Appl. Mater. Interfaces 2019, 11, 22102–22112. [Google Scholar] [CrossRef]
- Biniuri, Y.; Albada, B.; Wolff, M.; Golub, E.; Gelman, D.; Willner, I. Cu2+ or Fe3+ Terpyridine/Aptamer Conjugates: Nucleoapzymes Catalyzing the Oxidation of Dopamine to Aminochrome. ACS Catal. 2018, 8, 1802–1809. [Google Scholar] [CrossRef]
- Nag, R.; Rao, C.P. Development and demonstration of functionalized inorganic–organic hybrid copper phosphate nanoflowers for mimicking the oxidative reactions of metalloenzymes by working as a nanozyme. J. Mater. Chem. B 2021, 9, 3523–3532. [Google Scholar] [CrossRef]
- Le, T.N.; Le, X.A.; Tran, T.D.; Lee, K.J.; Kim, M.I. Laccase-mimicking Mn–Cu hybrid nanoflowers for paper-based visual detection of phenolic neurotransmitters and rapid degradation of dyes. J. Nanobiotechnol. 2022, 20, 358. [Google Scholar] [CrossRef]
- Xue, L.; Jin, N.; Guo, R.; Wang, S.; Qi, W.; Liu, Y.; Li, Y.; Lin, J. Microfluidic Colorimetric Biosensors Based on MnO2 Nanozymes and Convergence–Divergence Spiral Micromixers for Rapid and Sensitive Detection of Salmonella. ACS Sens. 2021, 6, 2883–2892. [Google Scholar] [CrossRef]
- Lu, W.; Chen, J.; Kong, L.; Zhu, F.; Feng, Z.; Zhan, J. Oxygen vacancies modulation Mn3O4 nanozyme with enhanced oxidase-mimicking performance for l-cysteine detection. Sens. Actuator B Chem. 2021, 333, 129560. [Google Scholar] [CrossRef]
- Li, Z.; Bao, H.; Miao, X.; Chen, X. A facile route to growth of γ-MnOOH nanorods and electrochemical capacitance properties. J. Colloid Interface Sci. 2011, 357, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Kumar, T.; Verma, K. A Theory Based on Conversion of RGB image to Gray image. Int. J. Comput. Appl. 2010, 7, 7–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Guo, F.; Hu, Y.; Liu, X.; Qian, Y. Single-crystal growth of MnOOH and beta-MnO2 microrods at lower temperatures. Solid State Commun. 2005, 134, 523–527. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Chen, M.; Zhong, Z.; Meng, Q.; Xing, W. Ultralight 3D-gamma-MnOOH porous materials fabricated by hydrothermal treatment and freeze-drying. Sci. China-Mater. 2019, 62, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Varghese, S.P.; Babu, A.T.; Babu, B.; Antony, R. γ-MnOOH nanorods: Efficient adsorbent for removal of methylene blue from aqueous solutions. J. Water Process Eng. 2017, 19, 1–7. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, M.; Cao, F.; Li, J.; Zhang, S.; Qu, Y. Single crystal MnOOH nanotubes for selective oxidative coupling of anilines to aromatic azo compounds. J. Mater. Chem. A 2021, 9, 19692–19697. [Google Scholar] [CrossRef]
- Ouyang, Y.; Fadeev, M.; Zhang, P.; Carmieli, R.; Li, J.; Sohn, Y.S.; Karmi, O.; Nechushtai, R.; Pikarsky, S.; Fan, C. Aptamer-Modified Au Nanoparticles: Functional Nanozyme Bioreactors for Cascaded Catalysis and Catalysts for Chemodynamic Treatment of Cancer Cells. ACS Nano 2022, 16, 18232–18243. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, Z.; Sun, T.; Li, B.; Wu, Z. Manganese-Based Nanozymes: Preparation, Catalytic Mechanisms, and Biomedical Applications. Adv. Healthc. Mater. 2022, 11, 2201733. [Google Scholar] [CrossRef]
- Salomäki, M.O.; Marttila, L.; Kivelä, H.; Ouvinen, T.; Lukkari, J.O. Effects of pH and Oxidants on the First Steps of Polydopamine Formation: A Thermodynamic Approach. J. Phys. Chem. B 2018, 122, 6314–6327. [Google Scholar] [CrossRef]
- Jiang, L.; Han, Y.; Fernández-García, S.; Tinoco, M.; Li, Z.; Nan, P.; Sun, J.; Delgado, J.J.; Pan, H.; Blanco, G.; et al. Multi-functional oxidase-like activity of praseodymia nanorods and nanoparticles. Appl. Surf. Sci. 2023, 610, 155502. [Google Scholar] [CrossRef]
- Ouyang, Y.; Biniuri, Y.; Fadeev, M.; Zhang, P.; Carmieli, R.; Vázquez-González, M.; Willner, I. Aptamer-modified Cu2+-functionalized C-Dots: Versatile means to improve nanozyme activities–“Aptananozymes”. J. Am. Chem. Soc. 2021, 143, 11510–11519. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Lin, F.; Zhang, Z.; Liu, B.; Jiang, S.; Yuan, Q.; Liu, J. Multicopper Laccase Mimicking Nanozymes with Nucleotides as Ligands. ACS Appl. Mater. Interfaces 2017, 9, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.D.; Nguyen, P.T.; Le, T.N.; Kim, M.I. DNA-copper hybrid nanoflowers as efficient laccase mimics for colorimetric detection of phenolic compounds in paper microfluidic devices. Biosens. Bioelectron. 2021, 182, 113187. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Huang, L.; Sun, D.W.; Pu, H.; Wei, Q.; Luo, L.; Wang, J. A colorimetric paper sensor based on the domino reaction of acetylcholinesterase and degradable γ-MnOOH nanozyme for sensitive detection of organophosphorus pesticides. Sens. Actuator. B Chem. 2019, 290, 573–580. [Google Scholar] [CrossRef]
- Manmana, Y.; Chutvirasakul, B.; Suntornsuk, L.; Nuchtavorn, N. Cost effective paper-based colorimetric devices for a simple assay of dopamine in pharmaceutical formulations using 3,3′,5,5′-tetramethylbenzidine–Silver nitrate as a chromogenic reagent. Pharm. Sci. Asia 2019, 46, 270–277. [Google Scholar] [CrossRef]
- Wang, T.; Song, R.; Song, W.; Zhao, Y.; Zhu, K.; Yuan, X. Improvement of mechanical properties for epoxy composites with modified titanate whiskers via dopamine self-oxidation. J. Polym. Res. 2021, 28, 1–11. [Google Scholar] [CrossRef]
- Zhu, J.; Peng, X.; Nie, W.; Wang, Y.; Gao, J.; Wen, W.; Selvaraj, J.N.; Zhang, X.; Wang, S. Hollow copper sulfide nanocubes as multifunctional nanozymes for colorimetric detection of dopamine and electrochemical detection of glucose. Biosens. Bioelectron. 2019, 141, 111450. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, Z.; Chi, M.; Li, M.; Wang, C.; Lu, X. Synthesis of hierarchical Co3O4@NiO core-shell nanotubes with a synergistic catalytic activity for peroxidase mimicking and colorimetric detection of dopamine. Talanta 2018, 181, 431–439. [Google Scholar] [CrossRef]
- Guo, M.X.; Li, Y.F. Cu (II)-based metal-organic xerogels as a novel nanozyme for colorimetric detection of dopamine. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2019, 207, 236–241. [Google Scholar] [CrossRef]
(a) MNWs-Containing Solution-Based Assay | ||||
---|---|---|---|---|
Original Dopamine (μM) | Added (μM) | Found (μM) a ± SD b | Recovery (%) | CV c (%) |
3 | 2.99 ± 0.03 | 98.03 | 1.00 | |
0.05 | 5 | 4.97 ± 0.15 | 98.42 | 3.02 |
10 | 9.62 ± 0.10 | 95.72 | 1.04 | |
(b) MNWs-Incorporated Paper Dipstick | ||||
Dopamine Formulation (mM) | Found (mM) d ± SD | Recovery (%) | CV (%) | |
4.14 | 4.03 ± 0.08 | 97.34 | 1.99 | |
2.09 | 2.05 ± 0.06 | 98.09 | 2.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chau, P.B.K.; Dang, T.V.; Kim, M.I. Highly Crystalline Oxidase-like MnOOH Nanowire-Incorporated Paper Dipstick for One-Step Colorimetric Detection of Dopamine. Chemosensors 2023, 11, 382. https://doi.org/10.3390/chemosensors11070382
Chau PBK, Dang TV, Kim MI. Highly Crystalline Oxidase-like MnOOH Nanowire-Incorporated Paper Dipstick for One-Step Colorimetric Detection of Dopamine. Chemosensors. 2023; 11(7):382. https://doi.org/10.3390/chemosensors11070382
Chicago/Turabian StyleChau, Phan Ba Khanh, Thinh Viet Dang, and Moon Il Kim. 2023. "Highly Crystalline Oxidase-like MnOOH Nanowire-Incorporated Paper Dipstick for One-Step Colorimetric Detection of Dopamine" Chemosensors 11, no. 7: 382. https://doi.org/10.3390/chemosensors11070382
APA StyleChau, P. B. K., Dang, T. V., & Kim, M. I. (2023). Highly Crystalline Oxidase-like MnOOH Nanowire-Incorporated Paper Dipstick for One-Step Colorimetric Detection of Dopamine. Chemosensors, 11(7), 382. https://doi.org/10.3390/chemosensors11070382