Enzymatic Electrochemical Biosensors for Neurotransmitters Detection: Recent Achievements and Trends
Abstract
:1. Introduction
2. Electrochemical Biosensors
2.1. Significance of Electrochemical Sensors
2.2. Electrode Materials and Their Performances
2.3. Electron Transfer Mechanisms
- Direct Electron Transfer (DET): DET occurs when an electron is transferred directly between an electrode and a redox-active molecule (such as a protein, enzyme, or other biomolecule) without the need for any mediator. This mechanism is typically faster than indirect electron transfer, as it avoids the need for a mediator, which can introduce additional steps and slow down the reaction. In DET, the redox-active molecule must be able to directly interact with the electrode surface, often through specific binding interactions or through a suitable electronic pathway.
- Indirect Electron Transfer (IET): The process of IET in electrochemistry involves the utilization of a mediator molecule to shuttle electrons between the electrode and the redox-active molecule. The mediator molecule can accept electrons from the electrode and transfer them to the redox-active molecule, or vice versa. This mechanism is typically slower than DET, as it introduces an additional step and requires a mediator molecule that must be carefully selected to match the redox properties of the target molecule. Nevertheless, IET can be a valuable approach in situations where the redox-active molecule is unable to interact directly with the electrode surface, or when the redox reaction occurs at a considerable distance from the electrode.
2.4. Electroanalytical Techniques
2.4.1. Cyclic Voltammetry (CV)
2.4.2. Differential Pulse Voltammetry (DPV)
2.4.3. Square Wave Voltammetry (SWV)
2.4.4. Amperometry
2.4.5. Chronoamperometry
2.4.6. Chronocoulometry
2.4.7. Electrochemical Impedance Spectroscopy (EIS)
2.4.8. Potentiometric Techniques
2.4.9. Conductometric Techniques
3. Applications of Enzyme-Based Biosensors for NTs Detection in Complex Matrix
3.1. Tyrosinase-Based NTs Biosensors
3.2. Laccase-Based NTs Biosensors
3.3. Acetylcholinesterase-Choline Based NTs Biosensors
3.4. Glutamate Oxidase-Based NTs Biosensors
3.5. Glucose Oxidase-Based NTs Biosensors
3.6. Other Enzymes-Based NTs Biosensors
4. Application of Enzyme-Based NTs Biosensors: In Vivo Monitoring
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bosticardo, M.; Notarangelo, L.D. Human Thymus in Health and Disease: Recent Advances in Diagnosis and Biology. Semin. Immunol. 2023, 66, 101732. [Google Scholar] [CrossRef]
- Komoto, Y.; Ohshiro, T.; Yoshida, T.; Tarusawa, E.; Yagi, T.; Washio, T.; Taniguchi, M. Time-Resolved Neurotransmitter Detection in Mouse Brain Tissue Using an Artificial Intelligence-Nanogap. Sci. Rep. 2020, 10, 11244. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Kumar, P. Restoration and Targeting of Aberrant Neurotransmitters in Parkinson’s Disease Therapeutics. Neurochem. Int. 2022, 156, 105327. [Google Scholar] [CrossRef]
- Andersen, J.V.; Schousboe, A.; Verkhratsky, A. Astrocyte Energy and Neurotransmitter Metabolism in Alzheimer’s Disease: Integration of the Glutamate/GABA-Glutamine Cycle. Prog. Neurobiol. 2022, 217, 102331. [Google Scholar] [CrossRef]
- Kasper, J.; Eickhoff, S.B.; Peter, J.; Dogan, I.; Wolf, R.C.; Reetz, K.; Dukart, J.; Orth, M. Functional MRI Derived Resting-State Alterations in Huntington’s Disease Are Associated With the Distribution of Serotonergic and Dopaminergic Neurotransmitter Systems. Biol. Psychiatry 2021, 89, S172. [Google Scholar] [CrossRef]
- Hahn, L.; Raabe, F.J.; Keeser, D.; Rossner, M.J.; Vetter, C.; Hasan, A.; Papzova, I.; Kambeitz, J.; Salokangas, R.K.R.; Hietala, J.; et al. The Co-Localisation with Specific Neurotransmitter Systems Discriminates Schizophrenia Patients from Healthy Controls. Neurosci. Appl. 2023, 2, 101073. [Google Scholar] [CrossRef]
- Adotevi, N.; Su, A.; Peiris, D.; Hassan, M.; Leitch, B. Altered Neurotransmitter Expression in the Corticothalamocortical Network of an Absence Epilepsy Model with Impaired Feedforward Inhibition. Neuroscience 2021, 467, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Minami, K.; Suto, H.; Sato, A.; Ogata, K.; Kosaka, T.; Hojo, H.; Takahashi, N.; Tomiyama, N.; Fukuda, T.; Iwashita, K.; et al. Feasibility Study for a Downsized Comparative Thyroid Assay with Measurement of Brain Thyroid Hormones and Histopathology in Rats: Case Study with 6-Propylthiouracil and Sodium Phenobarbital at High Dose. Regul. Toxicol. Pharmacol. 2023, 1, 105283. [Google Scholar] [CrossRef] [PubMed]
- Sinha, K.; Mukhopadhyay, C.D. Quantitative Detection of Neurotransmitter Using Aptamer: From Diagnosis to Therapeutics. J. Biosci. 2020, 45, 44. [Google Scholar] [CrossRef]
- Kim, D.-S.; Kang, E.-S.; Baek, S.; Choo, S.-S.; Chung, Y.-H.; Lee, D.; Min, J.; Kim, T.-H. Electrochemical Detection of Dopamine Using Periodic Cylindrical Gold Nanoelectrode Arrays. Sci. Rep. 2018, 8, 14049. [Google Scholar] [CrossRef] [Green Version]
- Forgacsova, A.; Galba, J.; Garruto, R.M.; Majerova, P.; Katina, S.; Kovac, A. A Novel Liquid Chromatography/Mass Spectrometry Method for Determination of Neurotransmitters in Brain Tissue: Application to Human Tauopathies. J. Chromatogr. B 2018, 1073, 154–162. [Google Scholar] [CrossRef]
- Cao, Q.; Wang, Y.; Chen, B.; Ma, F.; Hao, L.; Li, G.; Ouyang, C.; Li, L. Visualization and Identification of Neurotransmitters in Crustacean Brain via Multifaceted Mass Spectrometric Approaches. ACS Chem. Neurosci. 2019, 10, 1222–1229. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, M.V.; Ribeiro, F.C.; Santos, L.E.; Beckman, D.; Melo, H.M.; Sudo, F.K.; Drummond, C.; Assunção, N.; Vanderborght, B.; Tovar-Moll, F.; et al. Cerebrospinal Fluid Neurotransmitters, Cytokines, and Chemokines in Alzheimer’s and Lewy Body Diseases. J. Alzheimers Dis. 2021, 82, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Nemčeková, K.; Labuda, J. Advanced Materials-Integrated Electrochemical Sensors as Promising Medical Diagnostics Tools: A Review. Mater. Sci. Eng. C 2021, 120, 111751. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Miyazaki, M. Enzyme-Immobilized Microfluidic Devices for Biomolecule Detection. TrAC Trends Anal. Chem. 2023, 159, 116908. [Google Scholar] [CrossRef]
- Su, Y.; Bian, S.; Sawan, M. Real-Time in Vivo Detection Techniques for Neurotransmitters: A Review. Analyst 2020, 145, 6193–6210. [Google Scholar] [CrossRef]
- Fredj, Z.; Sawan, M. Advanced Nanomaterials-Based Electrochemical Biosensors for Catecholamines Detection: Challenges and Trends. Biosensors 2023, 13, 211. [Google Scholar] [CrossRef]
- Alvarado-Ramírez, L.; Rostro-Alanis, M.; Rodríguez-Rodríguez, J.; Sosa-Hernández, J.E.; Melchor-Martínez, E.M.; Iqbal, H.M.N.; Parra-Saldívar, R. Enzyme (Single and Multiple) and Nanozyme Biosensors: Recent Developments and Their Novel Applications in the Water-Food-Health Nexus. Biosensors 2021, 11, 410. [Google Scholar] [CrossRef]
- Ferapontova, E.E. Electrochemical Analysis of Dopamine: Perspectives of Specific In Vivo Detection. Electrochim. Acta 2017, 245, 664–671. [Google Scholar] [CrossRef]
- Zina, F.; Nooredeen, N.M.; Azzouzi, S.; Ali, M.B.; Abbas, M.N.; Errachid, A. Novel Sensitive Impedimetric Microsensor for Phosphate Detection Based on a Novel Copper Phthalocyanine Derivative. Anal. Lett. 2018, 51, 371–386. [Google Scholar] [CrossRef]
- Hara, T.O.; Singh, B. Electrochemical Biosensors for Detection of Pesticides and Heavy Metal Toxicants in Water: Recent Trends and Progress. ACS ES&T Water 2021, 1, 462–478. [Google Scholar] [CrossRef]
- Bahri, M.; Amin Elaguech, M.; Nasraoui, S.; Djebbi, K.; Kanoun, O.; Qin, P.; Tlili, C.; Wang, D. Laser-Induced Graphene Electrodes for Highly Sensitive Detection of DNA Hybridization via Consecutive Cytosines (PolyC)-DNA-Based Electrochemical Biosensors. Microchem. J. 2023, 185, 108208. [Google Scholar] [CrossRef]
- Fredj, Z.; Baraket, A.; Ben Ali, M.; Zine, N.; Zabala, M.; Bausells, J.; Elaissari, A.; Benson, N.U.; Jaffrezic-Renault, N.; Errachid, A. Capacitance Electrochemical PH Sensor Based on Different Hafnium Dioxide (HfO2) Thicknesses. Chemosensors 2021, 9, 13. [Google Scholar] [CrossRef]
- Zheng, Y.; Song, X.; Fredj, Z.; Bian, S.; Sawan, M. Challenges and Perspectives of Multi-Virus Biosensing Techniques: A Review. Anal. Chim. Acta 2023, 1244, 340860. [Google Scholar] [CrossRef]
- Bahri, M.; Dermoul, I.; Getaye, M.; Ben Ali, M.; Abdelhamid, E. 2D Simulation of a Microfluidic Biosensor for CRP Detection into a Rotating Micro-Channel. SN Appl. Sci. 2019, 1, 1199. [Google Scholar] [CrossRef] [Green Version]
- Bahri, M.; Dermoul, I.; Getaye, M.; Elaguech, M.A.; Djebbi, K.; Ali, M.B.; Tlili, C.; Wang, D. CRP Binding Kinetics Enhancement Using Local Narrowing into a Bent Channel: Finite Element Analysis. Engineering 2022, 14, 62–75. [Google Scholar] [CrossRef]
- Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A.J. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem. Rev. 2019, 119, 120–194. [Google Scholar] [CrossRef]
- Abdulbari, H.A.; Basheer, E.A.M. Electrochemical Biosensors: Electrode Development, Materials, Design, and Fabrication. ChemBioEng Rev. 2017, 4, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Mizuhashi, M. Electrical Properties of Vacuum-Deposited Indium Oxide and Indium Tin Oxide Films. Thin Solid Films 1980, 70, 91–100. [Google Scholar] [CrossRef]
- Wen, Y.; Xu, J. Scientific Importance of Water-Processable PEDOT–PSS and Preparation, Challenge and New Application in Sensors of Its Film Electrode: A Review. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 1121–1150. [Google Scholar] [CrossRef] [Green Version]
- Barek, J.; Fogg, A.G.; Muck, A.; Zima, J. Polarography and Voltammetry at Mercury Electrodes. Crit. Rev. Anal. Chem. 2001, 31, 291–309. [Google Scholar] [CrossRef]
- Hou, P.-X.; Zhang, F.; Zhang, L.; Liu, C.; Cheng, H.-M. Synthesis of Carbon Nanotubes by Floating Catalyst Chemical Vapor Deposition and Their Applications. Adv. Funct. Mater. 2022, 32, 2108541. [Google Scholar] [CrossRef]
- Bahri, M.; Gebre, S.H.; Elaguech, M.A.; Dajan, F.T.; Sendeku, M.G.; Tlili, C.; Wang, D. Recent Advances in Chemical Vapour Deposition Techniques for Graphene-Based Nanoarchitectures: From Synthesis to Contemporary Applications. Coord. Chem. Rev. 2023, 475, 214910. [Google Scholar] [CrossRef]
- Brown, M.A.; Zappitelli, K.M.; Singh, L.; Yuan, R.C.; Bemrose, M.; Brogden, V.; Miller, D.J.; Smear, M.C.; Cogan, S.F.; Gardner, T.J. Direct Laser Writing of 3D Electrodes on Flexible Substrates. Nat. Commun. 2023, 14, 3610. [Google Scholar] [CrossRef]
- Navaee, A.; Salimi, A. Chapter 7—Enzyme-Based Electrochemical Biosensors. Electrochem. Biosens. 2019, 167–211. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Saeed, A.A.; Abbas, M.N.; El-Hawary, W.F.; Issa, Y.M.; Singh, B. A Core–Shell Au@TiO2 and Multi-Walled Carbon Nanotube-Based Sensor for the Electroanalytical Determination of H2O2 in Human Blood Serum and Saliva. Biosensors 2022, 12, 778. [Google Scholar] [CrossRef] [PubMed]
- Ensafi, A.A. Chapter 1—An Introduction to Sensors and Biosensors. In Electrochemical Biosensors; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Chaubey, A.; Malhotra, B.D. Mediated Biosensors. Biosens. Bioelectron. 2002, 17, 441–456. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical Biosensors: Recommended Definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors—Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [Green Version]
- Fredj, Z.; Azzouzi, S.; Turner, A.P.F.; Ali, M.B.; Mak, W.C. Neutravidin Biosensor for Direct Capture of Dual-Functional Biotin-Molecular Beacon-AuNP Probe for Sensitive Voltammetric Detection of MicroRNA. Sens. Actuators B Chem. 2017, 248, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; McCracken, S.; Hossain, M.F.; Slaughter, G. Electrochemical Detection of Neurotransmitters. Biosensors 2020, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Jamal, M.; Chakrabarty, S.; Shao, H.; McNulty, D.; Yousuf, M.A.; Furukawa, H.; Khosla, A.; Razeeb, K.M. A Non Enzymatic Glutamate Sensor Based on Nickel Oxide Nanoparticle. Microsyst. Technol. 2018, 24, 4217–4223. [Google Scholar] [CrossRef]
- Millar, J.; Stamford, J.A.; Kruk, Z.L.; Wightman, R.M. Electrochemical, Pharmacological and Electrophysiological Evidence of Rapid Dopamine Release and Removal in the Rat Caudate Nucleus Following Electrical Stimulation of the Median Forebrain Bundle. Eur. J. Pharmacol. 1985, 109, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.P.; Dietz, S.M.; Wightman, R.M. Fast-Scan Cyclic Voltammetry of 5-Hydroxytryptamine. Anal. Chem. 1995, 67, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.G.; Sombers, L.A. Fast-Scan Cyclic Voltammetry: Chemical Sensing in the Brain and Beyond. Anal. Chem. 2018, 90, 490–504. [Google Scholar] [CrossRef]
- Rodeberg, N.T.; Sandberg, S.G.; Johnson, J.A.; Phillips, P.E.M.; Wightman, R.M. Hitchhiker’s Guide to Voltammetry: Acute and Chronic Electrodes for in Vivo Fast-Scan Cyclic Voltammetry. ACS Chem. Neurosci. 2017, 8, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Bataillard, P.; Gardies, F.; Jaffrezic-Renault, N.; Martelet, C.; Colin, B.; Mandrand, B. Direct Detection of Immunospecies by Capacitance Measurements. Anal. Chem. 1988, 60, 2374–2379. [Google Scholar] [CrossRef]
- Venton, B.J.; Cao, Q. Fundamentals of Fast-Scan Cyclic Voltammetry for Dopamine Detection. Analyst 2020, 145, 1158–1168. [Google Scholar] [CrossRef]
- Kaur, H.; Siwal, S.S.; Saini, R.V.; Singh, N.; Thakur, V.K. Significance of an Electrochemical Sensor and Nanocomposites: Toward the Electrocatalytic Detection of Neurotransmitters and Their Importance within the Physiological System. ACS Nanosci. Au 2023, 3, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Fredj, Z.; Ali, M.; Singh, B.; Dempsey, E. Simultaneous Voltammetric Detection of 5-Hydroxyindole-3-Acetic Acid and 5-Hydroxytryptamine Using a Glassy Carbon Electrode Modified with Conducting Polymer and Platinised Carbon Nanofibers. Mikrochim. Acta 2018, 185, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, A.; Shah, B. Electrochemical Sensing and Biosensing Based on Square Wave Voltammetry. Anal. Methods 2013, 5, 2158–2173. [Google Scholar] [CrossRef]
- Mirceski, V.; Gulaboski, R.; Lovric, M.; Bogeski, I.; Kappl, R.; Hoth, M. Square-Wave Voltammetry: A Review on the Recent Progress. Electroanalysis 2013, 25, 2411–2422. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Xiong, Y.; Wang, Y.; Hong, D.; Zhao, M. Fabrication of NiO/MWNTs Modified Screen Printed Electrodes for the Determination of Norepinephrine in the Biological Fluids. Int. J. Electrochem. Sci. 2020, 15, 9325–9334. [Google Scholar] [CrossRef]
- Goyal, R.N.; Oyama, M.; Singh, S.P. Simultaneous Determination of Adenosine and Adenosine-5′-Triphosphate at Nanogold Modified Indium Tin Oxide Electrode by Osteryoung Square-Wave Voltammetry. Electroanalysis 2007, 19, 575–581. [Google Scholar] [CrossRef]
- Lubert, K.-H.; Kalcher, K. History of Electroanalytical Methods. Electroanalysis 2010, 22, 1937–1946. [Google Scholar] [CrossRef]
- Madhurantakam, S.; Karnam, J.B.; Brabazon, D.; Takai, M.; Ahad, I.U.; Balaguru Rayappan, J.B.; Krishnan, U.M. “Nano”: An Emerging Avenue in Electrochemical Detection of Neurotransmitters. ACS Chem. Neurosci. 2020, 11, 4024–4047. [Google Scholar] [CrossRef]
- Clark, L.C.; Kaplan, S.; Matthews, E.C.; Edwards, P.K.; Helmsworth, J.A. Monitor And Control Of Blood Oxygen Tension And Ph During Total Body Perfusion. J. Thorac. Surg. 1958, 36, 488–496. [Google Scholar] [CrossRef]
- Monti, P.; Bacciu, A.; Arrigo, P.; Marceddu, S.; Migheli, Q.; Serra, P.A.; Rocchitta, G. Chronoamperometry as Effective Alternative Technique for Electro-Synthesis of Ortho-Phenylendiamine Permselective Films for Biosensor Applications. J. Appl. Polym. Sci. 2020, 137, 49172. [Google Scholar] [CrossRef]
- Evans, D.H.; Kelly, M.J. Theory for Double Potential Step Chronoamperometry, Chronocoulometry, and Chronoabsorptometry with a Quasi-Reversible Electrode Reaction. Anal. Chem. 1982, 54, 1727–1729. [Google Scholar] [CrossRef]
- Kaur, H.; Sheoran, K.; Siwal, S.S.; Saini, R.V.; Saini, A.K.; Alsanie, W.F.; Thakur, V.K. Role of Silver Nanoparticle-Doped 2-Aminodiphenylamine Polymeric Material in the Detection of Dopamine (DA) with Uric Acid Interference. Materials 2022, 15, 1308. [Google Scholar] [CrossRef]
- Lei, P.; Zhou, Y.; Zhu, R.; Dong, C.; Wu, S.; Shuang, S. Facilely Synthesized Ultrathin Ni6MnO8@C Nanosheets: Excellent Electrochemical Performance and Enhanced Electrocatalytic Epinephrine Sensing. Sens. Actuators B Chem. 2021, 326, 128863. [Google Scholar] [CrossRef]
- Hammond, J.L.; Formisano, N.; Estrela, P.; Carrara, S.; Tkac, J. Electrochemical Biosensors and Nanobiosensors. Essays Biochem. 2016, 60, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Keighley, S.D.; Li, P.; Estrela, P.; Migliorato, P. Optimization of DNA Immobilization on Gold Electrodes for Label-Free Detection by Electrochemical Impedance Spectroscopy. Biosens. Bioelectron. 2008, 23, 1291–1297. [Google Scholar] [CrossRef]
- Ortuño, J.A.; Olmos, J.M.; Torralba, E.; Molina, A. Sensing and Characterization of Neurotransmitter 2-Phenylethylamine Based on Facilitated Ion Transfer at Solvent Polymeric Membranes Using Different Electrochemical Techniques. Sens. Actuators B Chem. 2016, 222, 930–936. [Google Scholar] [CrossRef]
- Meyerhoff, M.E.; Opdycke, W.N. Ion-Selective Electrodes. In Advances in Clinical Chemistry; Spiegel, H.E., Ed.; Elsevier: Amsterdam, The Netherlands, 1986; Volume 25, pp. 1–47. [Google Scholar]
- Bakker, E.; Chumbimuni-Torres, K. Modern Directions for Potentiometric Sensors. J. Braz. Chem. Soc. 2008, 19, 621–629. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, L.-P.; Li, D.-H.; Zhai, J.; Jiang, W.; Xie, X. Potentiometric Determination of the Neurotransmitter Acetylcholine with Ion-Selective Electrodes Containing Oxatub[4]Arenes as the Ionophore. Sens. Actuators B Chem. 2021, 326, 128836. [Google Scholar] [CrossRef]
- Béraud, A.; Sauvage, M.; Bazán, C.M.; Tie, M.; Bencherif, A.; Bouilly, D. Graphene Field-Effect Transistors as Bioanalytical Sensors: Design, Operation and Performance. Analyst 2021, 146, 403–428. [Google Scholar] [CrossRef] [PubMed]
- Bahri, M.; Shi, B.; Djebbi, K.; Elaguech, M.A.; Zhou, D.; Ben Ali, M.; Tlili, C.; Wang, D. Toward Clean and Crackless Polymer-Assisted Transfer of CVD-Grown Graphene and Its Recent Advances in GFET-Based Biosensors. Mater. Today Chem. 2021, 22, 100578. [Google Scholar] [CrossRef]
- Bahri, M.; Shi, B.; Elaguech, M.A.; Djebbi, K.; Zhou, D.; Liang, L.; Tlili, C.; Wang, D. Tungsten Disulfide Nanosheet-Based Field-Effect Transistor Biosensor for DNA Hybridization Detection. ACS Appl. Nano Mater. 2022, 5, 5035–5044. [Google Scholar] [CrossRef]
- Zhao, C.; Cheung, K.M.; Huang, I.-W.; Yang, H.; Nakatsuka, N.; Liu, W.; Cao, Y.; Man, T.; Weiss, P.S.; Monbouquette, H.G.; et al. Implantable Aptamer–Field-Effect Transistor Neuroprobes for in Vivo Neurotransmitter Monitoring. Sci. Adv. 2021, 7, eabj7422. [Google Scholar] [CrossRef]
- Runsewe, D.; Betancourt, T.; Irvin, J.A. Biomedical Application of Electroactive Polymers in Electrochemical Sensors: A Review. Materials 2019, 12, 2629. [Google Scholar] [CrossRef] [Green Version]
- Shah, J.; Wilkins, E. Electrochemical Biosensors for Detection of Biological Warfare Agents. Electroanalysis 2003, 15, 157–167. [Google Scholar] [CrossRef]
- Fabre, B.; Taillebois, L. Poly(Aniline Boronic Acid)-Based Conductimetric Sensor of Dopamine. Chem. Commun. 2003, 2982–2983. [Google Scholar] [CrossRef]
- Vogt, N. Sensing Neurotransmitters. Nat. Methods 2019, 16, 17. [Google Scholar] [CrossRef]
- Gug, I.T.; Tertis, M.; Hosu, O.; Cristea, C. Salivary Biomarkers Detection: Analytical and Immunological Methods Overview. TrAC Trends Anal. Chem. 2019, 113, 301–316. [Google Scholar] [CrossRef]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization Strategies to Develop Enzymatic Biosensors. Biotechnol. Adv. 2012, 30, 489–511. [Google Scholar] [CrossRef]
- Cao, L. Introduction: Immobilized Enzymes: Past, Present and Prospects. In Carrier-Bound Immobilized Enzymes; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; pp. 1–52. ISBN 978-3-527-60766-2. [Google Scholar]
- Guisan, J.M.; Fernandez-Lorente, G.; Rocha-Martin, J.; Moreno-Gamero, D. Enzyme Immobilization Strategies for the Design of Robust and Efficient Biocatalysts. Curr. Opin. Green Sustain. Chem. 2022, 35, 100593. [Google Scholar] [CrossRef]
- de Brito, A.R.; Tavares, I.M.D.C.; de Carvalho, M.S.; de Oliveira, A.J.; Salay, L.C.; Santos, A.S.; dos Anjos, P.N.M.; Oliveira, J.R.; Franco, M. Study of the Interaction of the Lactase Enzyme Immobilized in a Carbon Nanotube Matrix for the Development of the Chemically Modified Carbon Paste Electrode. Surf. Interfaces 2020, 20, 100592. [Google Scholar] [CrossRef]
- Azmi, N.E.; Rashid, A.H.A.; Abdullah, J.; Yusof, N.A.; Sidek, H. Fluorescence Biosensor Based on Encapsulated Quantum Dots/Enzymes/Sol-Gel for Non-Invasive Detection of Uric Acid. J. Lumin. 2018, 202, 309–315. [Google Scholar] [CrossRef]
- An, N.; Zhou, C.H.; Zhuang, X.Y.; Tong, D.S.; Yu, W.H. Immobilization of Enzymes on Clay Minerals for Biocatalysts and Biosensors. Appl. Clay Sci. 2015, 114, 283–296. [Google Scholar] [CrossRef]
- Ammam, M.; Fransaer, J. Microbiofuel Cell Powered by Glucose/O2 Based on Electrodeposition of Enzyme, Conducting Polymer and Redox Mediators. Part II: Influence of the Electropolymerized Monomer on the Output Power Density and Stability. Electrochim. Acta 2014, 121, 83–92. [Google Scholar] [CrossRef]
- Sharma, A.; Thatai, K.S.; Kuthiala, T.; Singh, G.; Arya, S.K. Employment of Polysaccharides in Enzyme Immobilization. React. Funct. Polym. 2021, 167, 105005. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, H.; Liu, P.; Qin, X.; Liu, G. Colorimetric Quantification of Sodium Benzoate in Food by Using D-Amino Acid Oxidase and 2D Metal Organic Framework Nanosheets Mediated Cascade Enzyme Reactions. Talanta 2022, 237, 122906. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Mu, W. Application Prospects and Opportunities of Inorganic Nanomaterials for Enzyme Immobilization in the Food-Processing Industry. Curr. Opin. Food Sci. 2022, 47, 100909. [Google Scholar] [CrossRef]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Enzyme Immobilized Nanomaterials as Electrochemical Biosensors for Detection of Biomolecules. Enzym. Microb. Technol. 2022, 156, 110006. [Google Scholar] [CrossRef]
- Sharifi, M.; Sohrabi, M.J.; Hosseinali, S.H.; Hasan, A.; Kani, P.H.; Talaei, A.J.; Karim, A.Y.; Nanakali, N.M.Q.; Salihi, A.; Aziz, F.M.; et al. Enzyme Immobilization onto the Nanomaterials: Application in Enzyme Stability and Prodrug-Activated Cancer Therapy. Int. J. Biol. Macromol. 2020, 143, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Fredj, Z.; Ali, M.B.; Abbas, M.N.; Dempsey, E. Simultaneous Determination of Ascorbic Acid, Uric Acid and Dopamine Using Silver Nanoparticles and Copper Monoamino-Phthalocyanine Functionalised Acrylate Polymer. Anal. Methods 2020, 12, 3883–3891. [Google Scholar] [CrossRef]
- Sethuraman, V.; Sridhar, T.M.; Sasikumar, R. Development of an Electrochemical Biosensor for Determination of Dopamine by Gold Modified Poly(Thiophene-3-Boronic Acid)-Polyphenol Oxidase Modified Electrode. Mater. Lett. 2021, 302, 130387. [Google Scholar] [CrossRef]
- Roychoudhury, A.; Basu, S.; Jha, S.K. Dopamine Biosensor Based on Surface Functionalized Nanostructured Nickel Oxide Platform. Biosens. Bioelectron. 2016, 84, 72–81. [Google Scholar] [CrossRef]
- Srivastava, A.; Mishra, G.; Singh, J.; Pandey, M.D. A Highly Efficient Nanostructured Au@La2O3 Based Platform for Dopamine Detection. Mater. Lett. 2022, 308, 131231. [Google Scholar] [CrossRef]
- Xie, X.; Wang, D.P.; Guo, C.; Liu, Y.; Rao, Q.; Lou, F.; Li, Q.; Dong, Y.; Li, Q.; Yang, H.B.; et al. Single-Atom Ruthenium Biomimetic Enzyme for Simultaneous Electrochemical Detection of Dopamine and Uric Acid. Anal. Chem. 2021, 93, 4916–4923. [Google Scholar] [CrossRef]
- Fritea, L.; Tertiș, M.; Cosnier, S.; Cristea, C.; Sandulescu, R. A Novel Reduced Graphene Oxide/β-Cyclodextrin/Tyrosinase Biosensor for Dopamine Detection. Int. J. Electrochem. Sci. 2015, 10, 7292–7302. [Google Scholar] [CrossRef]
- Fritea, L.; Le Goff, A.; Putaux, J.-L.; Tertis, M.; Cristea, C.; Săndulescu, R.; Cosnier, S. Design of a Reduced-Graphene-Oxide Composite Electrode from an Electropolymerizable Graphene Aqueous Dispersion Using a Cyclodextrin-Pyrrole Monomer. Application to Dopamine Biosensing. Electrochim. Acta 2015, 178, 108–112. [Google Scholar] [CrossRef]
- Kisner, A.; Stockmann, R.; Jansen, M.; Yegin, U.; Offenhäusser, A.; Kubota, L.T.; Mourzina, Y. Sensing Small Neurotransmitter–Enzyme Interaction with Nanoporous Gated Ion-Sensitive Field Effect Transistors. Biosens. Bioelectron. 2012, 31, 157–163. [Google Scholar] [CrossRef]
- Rahman, S.F.; Min, K.; Park, S.-H.; Park, J.-H.; Yoo, J.C.; Park, D.-H. Highly Sensitive and Selective Dopamine Detection by an Amperometric Biosensor Based on Tyrosinase/MWNT/GCE. Korean J. Chem. Eng. 2016, 33, 3442–3447. [Google Scholar] [CrossRef]
- Palomar, Q.; Gondran, C.; Lellouche, J.-P.; Cosnier, S.; Holzinger, M. Functionalized Tungsten Disulfide Nanotubes for Dopamine and Catechol Detection in a Tyrosinase-Based Amperometric Biosensor Design. J. Mater. Chem. B 2020, 8, 3566–3573. [Google Scholar] [CrossRef]
- Gopal, P.; Narasimha, G.; Reddy, T.M. Development, Validation and Enzyme Kinetic Evaluation of Multi Walled Carbon Nano Tubes Mediated Tyrosinase Based Electrochemical Biosensing Platform for the Voltammetric Monitoring of Epinephrine. Process Biochem. 2020, 92, 476–485. [Google Scholar] [CrossRef]
- Erkmen, C.; Demir, Y.; Kurbanoglu, S.; Uslu, B. Multi-Purpose Electrochemical Tyrosinase Nanobiosensor Based on Poly (3,4 Ethylenedioxythiophene) Nanoparticles Decorated Graphene Quantum Dots: Applications to Hormone Drugs Analyses and Inhibition Studies. Sens. Actuators B Chem. 2021, 343, 130164. [Google Scholar] [CrossRef]
- Sýs, M.; Obluková, M.; Kolivoška, V.; Sokolová, R.; Korecká, L.; Mikysek, T. Catalytic Properties of Variously Immobilized Mushroom Tyrosinase: A Kinetic Study for Future Development of Biomimetic Amperometric Biosensors. J. Electroanal. Chem. 2020, 864, 114066. [Google Scholar] [CrossRef]
- Baluta, S.; Lesiak, A.; Cabaj, J. Simple and Cost-Effective Electrochemical Method for Norepinephrine Determination Based on Carbon Dots and Tyrosinase. Sensors 2020, 20, 4567. [Google Scholar] [CrossRef]
- Dhanjai; Yu, N.; Mugo, S.M. Disposable Capacitive Biosensor for Dopamine Sensing. ChemistrySelect 2020, 5, 12470–12476. [Google Scholar] [CrossRef]
- Florescu, M.; David, M. Tyrosinase-Based Biosensors for Selective Dopamine Detection. Sensors 2017, 17, 1314. [Google Scholar] [CrossRef] [Green Version]
- Roychoudhury, A.; Prateek, A.; Chauhan, N.; Kumar, D.S.; Basu, S.; Jha, S.K. Tyrosinase-Conjugated Prussian Blue-Modified Nickel Oxide Nanoparticles-Based Interface for Selective Detection of Dopamine. ChemistrySelect 2017, 2, 6118–6128. [Google Scholar] [CrossRef]
- Tang, Z.; Jiang, K.; Sun, S.; Qian, S.; Wang, Y.; Lin, H. A Conjugated Carbon-Dot–Tyrosinase Bioprobe for Highly Selective and Sensitive Detection of Dopamine. Analyst 2019, 144, 468–473. [Google Scholar] [CrossRef]
- Battista, E.; Lettera, V.; Villani, M.; Calestani, D.; Gentile, F.; Netti, P.A.; Iannotta, S.; Zappettini, A.; Coppedè, N. Enzymatic Sensing with Laccase-Functionalized Textile Organic Biosensors. Org. Electron. 2017, 40, 51–57. [Google Scholar] [CrossRef]
- Rubio-Govea, R.; Hickey, D.P.; García-Morales, R.; Rodriguez-Delgado, M.; Domínguez-Rovira, M.A.; Minteer, S.D.; Ornelas-Soto, N.; García-García, A. MoS2 Nanostructured Materials for Electrode Modification in the Development of a Laccase Based Amperometric Biosensor for Non-Invasive Dopamine Detection. Microchem. J. 2020, 155, 104792. [Google Scholar] [CrossRef]
- Wu, R.; Yu, S.; Chen, S.; Dang, Y.; Wen, S.-H.; Tang, J.; Zhou, Y.; Zhu, J.-J. A Carbon Dots-Enhanced Laccase-Based Electrochemical Sensor for Highly Sensitive Detection of Dopamine in Human Serum. Anal. Chim. Acta 2022, 1229, 340365. [Google Scholar] [CrossRef] [PubMed]
- Coelho, J.H.; Eisele, A.P.P.; Valezi, C.F.; Mattos, G.J.; Schirmann, J.G.; Dekker, R.F.H.; Barbosa-Dekker, A.M.; Sartori, E.R. Exploring the Exocellular Fungal Biopolymer Botryosphaeran for Laccase-Biosensor Architecture and Application to Determine Dopamine and Spironolactone. Talanta 2019, 204, 475–483. [Google Scholar] [CrossRef]
- Decarli, N.O.; Zapp, E.; de Souza, B.S.; Santana, E.R.; Winiarski, J.P.; Vieira, I.C. Biosensor Based on Laccase-Halloysite Nanotube and Imidazolium Zwitterionic Surfactant for Dopamine Determination. Biochem. Eng. J. 2022, 186, 108565. [Google Scholar] [CrossRef]
- Silva, T.R.; Vieira, I.C. A Biosensor Based on Gold Nanoparticles Stabilized in Poly(Allylamine Hydrochloride) and Decorated with Laccase for Determination of Dopamine. Analyst 2016, 141, 216–224. [Google Scholar] [CrossRef]
- Cesarino, I.; Galesco, H.V.; Moraes, F.C.; Lanza, M.R.V.; Machado, S.A.S. Biosensor Based on Electrocodeposition of Carbon Nanotubes/Polypyrrole/Laccase for Neurotransmitter Detection. Electroanalysis 2013, 25, 394–400. [Google Scholar] [CrossRef]
- Hua, Z.; Qin, Q.; Bai, X.; Wang, C.; Huang, X. β-Cyclodextrin Inclusion Complex as the Immobilization Matrix for Laccase in the Fabrication of a Biosensor for Dopamine Determination. Sens. Actuators B Chem. 2015, 220, 1169–1177. [Google Scholar] [CrossRef]
- Wang, K.; Liu, P.; Ye, Y.; Li, J.; Zhao, W.; Huang, X. Fabrication of a Novel Laccase Biosensor Based on Silica Nanoparticles Modified with Phytic Acid for Sensitive Detection of Dopamine. Sens. Actuators B Chem. 2014, 197, 292–299. [Google Scholar] [CrossRef]
- Wardak, C.; Paczosa-Bator, B.; Malinowski, S. Application of Cold Plasma Corona Discharge in Preparation of Laccase-Based Biosensors for Dopamine Determination. Mater. Sci. Eng. C 2020, 116, 111199. [Google Scholar] [CrossRef]
- Baluta, S.; Zając, D.; Szyszka, A.; Malecha, K.; Cabaj, J. Enzymatic Platforms for Sensitive Neurotransmitter Detection. Sensors 2020, 20, 423. [Google Scholar] [CrossRef] [Green Version]
- Tseng, T.T.-C.; Yao, J.; Chan, W.-C. Selective Enzyme Immobilization on Arrayed Microelectrodes for the Application of Sensing Neurotransmitters. Biochem. Eng. J. 2013, 78, 146–153. [Google Scholar] [CrossRef]
- Ohshiro, K.; Sasaki, Y.; Minami, T. An Extended-Gate-Type Organic Transistor-Based Enzymatic Sensor for Dopamine Detection in Human Urine. Talanta Open 2023, 7, 100190. [Google Scholar] [CrossRef]
- Taly, A.; Corringer, P.-J.; Guedin, D.; Lestage, P.; Changeux, J.-P. Nicotinic Receptors: Allosteric Transitions and Therapeutic Targets in the Nervous System. Nat. Rev. Drug Discov. 2009, 8, 733–750. [Google Scholar] [CrossRef]
- Lozier, B.K.; Haven, T.R.; Astill, M.E.; Hill, H.R. Detection of Acetylcholine Receptor Modulating Antibodies by Flow Cytometry. Am. J. Clin. Pathol. 2015, 143, 186–192; quiz 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luchicchi, A.; Bloem, B.; Viaña, J.N.M.; Mansvelder, H.D.; Role, L.W. Illuminating the Role of Cholinergic Signaling in Circuits of Attention and Emotionally Salient Behaviors. Front. Synaptic Neurosci. 2014, 6, 24. [Google Scholar] [CrossRef]
- Tunç, A.T.; Aynacı Koyuncu, E.; Arslan, F. Development of an Acetylcholinesterase-Choline Oxidase Based Biosensor for Acetylcholine Determination. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1659–1664. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, M.H.; Hussain, K.K.; Gurudatt, N.G.; Shim, Y.-B. Detection of Ca2+-Induced Acetylcholine Released from Leukemic T-Cells Using an Amperometric Microfluidic Sensor. Biosens. Bioelectron. 2017, 98, 364–370. [Google Scholar] [CrossRef]
- Bolat, E.Ö.; Tığ, G.A.; Pekyardımcı, Ş. Fabrication of an Amperometric Acetylcholine Esterase-Choline Oxidase Biosensor Based on MWCNTs-Fe3O4NPs-CS Nanocomposite for Determination of Acetylcholine. J. Electroanal. Chem. 2017, 785, 241–248. [Google Scholar] [CrossRef]
- da Silva, W.; Brett, C.M.A. Novel Biosensor for Acetylcholine Based on Acetylcholinesterase/Poly(Neutral Red)—Deep Eutectic Solvent/Fe2O3 Nanoparticle Modified Electrode. J. Electroanal. Chem. 2020, 872, 114050. [Google Scholar] [CrossRef]
- Fenoy, G.E.; Marmisollé, W.A.; Azzaroni, O.; Knoll, W. Acetylcholine Biosensor Based on the Electrochemical Functionalization of Graphene Field-Effect Transistors. Biosens. Bioelectron. 2020, 148, 111796. [Google Scholar] [CrossRef]
- Moreira, F.T.C.; Sale, M.G.F.; Di Lorenzo, M. Towards Timely Alzheimer Diagnosis: A Self-Powered Amperometric Biosensor for the Neurotransmitter Acetylcholine. Biosens. Bioelectron. 2017, 87, 607–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, L.; Wu, P.; Chen, G.; Cai, C.; Sun, Y.; Yuan, Z. Low Potential Detection of Glutamate Based on the Electrocatalytic Oxidation of NADH at Thionine/Single-Walled Carbon Nanotubes Composite Modified Electrode. Biosens. Bioelectron. 2009, 24, 1751–1756. [Google Scholar] [CrossRef]
- Ammam, M.; Fransaer, J. Highly Sensitive and Selective Glutamate Microbiosensor Based on Cast Polyurethane/AC-Electrophoresis Deposited Multiwalled Carbon Nanotubes and Then Glutamate Oxidase/Electrosynthesized Polypyrrole/Pt Electrode. Biosens. Bioelectron. 2010, 25, 1597–1602. [Google Scholar] [CrossRef] [PubMed]
- Özel, R.E.; Ispas, C.; Ganesana, M.; Leiter, J.C.; Andreescu, S. Glutamate Oxidase Biosensor Based on Mixed Ceria and Titania Nanoparticles for the Detection of Glutamate in Hypoxic Environments. Biosens. Bioelectron. 2014, 52, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Hughes, G.; Pemberton, R.M.; Fielden, P.R.; Hart, J.P. Development of a Novel Reagentless, Screen-Printed Amperometric Biosensor Based on Glutamate Dehydrogenase and NAD+, Integrated with Multi-Walled Carbon Nanotubes for the Determination of Glutamate in Food and Clinical Applications. Sens. Actuators B Chem. 2015, 216, 614–621. [Google Scholar] [CrossRef]
- Yu, H.; Ma, Z.; Wu, Z. Immobilization of Ni–Pd/Core–Shell Nanoparticles through Thermal Polymerization of Acrylamide on Glassy Carbon Electrode for Highly Stable and Sensitive Glutamate Detection. Anal. Chim. Acta 2015, 896, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Batra, B.; Pundir, C.S. An Amperometric Glutamate Biosensor Based on Immobilization of Glutamate Oxidase onto Carboxylated Multiwalled Carbon Nanotubes/Gold Nanoparticles/Chitosan Composite Film Modified Au Electrode. Biosens. Bioelectron. 2013, 47, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Salazar, P.; Martín, M.; O’Neill, R.D.; González-Mora, J.L. Glutamate Microbiosensors Based on Prussian Blue Modified Carbon Fiber Electrodes for Neuroscience Applications: In-Vitro Characterization. Sens. Actuators B Chem. 2016, 235, 117–125. [Google Scholar] [CrossRef]
- Yang, L.; Bai, R.; Xie, B.; Zhuang, N.; Lv, Z.; Chen, M.; Dong, W.; Zhou, J.; Jiang, M. A Biosensor Based on Oriented Immobilization of an Engineered L-Glutamate Oxidase on a Screen-Printed Microchip for Detection of l-Glutamate in Fermentation Processes. Food Chem. 2023, 405, 134792. [Google Scholar] [CrossRef]
- Chen, J.; Yu, Q.; Fu, W.; Chen, X.; Zhang, Q.; Dong, S.; Chen, H.; Zhang, S. A Highly Sensitive Amperometric Glutamate Oxidase Microbiosensor Based on a Reduced Graphene Oxide/Prussian Blue Nanocube/Gold Nanoparticle Composite Film-Modified Pt Electrode. Sensors 2020, 20, 2924. [Google Scholar] [CrossRef]
- Batra, B.; Yadav, M.; Pundir, C.S. L-Glutamate Biosensor Based on l-Glutamate Oxidase Immobilized onto ZnO Nanorods/Polypyrrole Modified Pencil Graphite Electrode. Biochem. Eng. J. 2016, 105, 428–436. [Google Scholar] [CrossRef]
- Batra, B.; Kumari, S.; Pundir, C.S. Construction of Glutamate Biosensor Based on Covalent Immobilization of Glutmate Oxidase on Polypyrrole Nanoparticles/Polyaniline Modified Gold Electrode. Enzym. Microb. Technol. 2014, 57, 69–77. [Google Scholar] [CrossRef]
- Tolosa, V.M.; Wassum, K.M.; Maidment, N.T.; Monbouquette, H.G. Electrochemically Deposited Iridium Oxide Reference Electrode Integrated with an Electroenzymatic Glutamate Sensor on a Multi-Electrode Array Microprobe. Biosens. Bioelectron. 2013, 42, 256–260. [Google Scholar] [CrossRef]
- Shadlaghani, A.; Farzaneh, M.; Kinser, D.; Reid, R.C. Direct Electrochemical Detection of Glutamate, Acetylcholine, Choline, and Adenosine Using Non-Enzymatic Electrodes. Sensors 2019, 19, 447. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Mullens, C.; Gorski, W. Amperometric Glutamate Biosensor Based on Chitosan Enzyme Film. Electrochim. Acta 2006, 51, 4528–4532. [Google Scholar] [CrossRef]
- Kucherenko, I.S.; Didukh, D.Y.; Soldatkin, O.O.; Soldatkin, A.P. Amperometric Biosensor System for Simultaneous Determination of Adenosine-5′-Triphosphate and Glucose. Anal. Chem. 2014, 86, 5455–5462. [Google Scholar] [CrossRef]
- Algov, I.; Feiertag, A.; Shikler, R.; Alfonta, L. Sensitive Enzymatic Determination of Neurotransmitters in Artificial Sweat. Biosens. Bioelectron. 2022, 210, 114264. [Google Scholar] [CrossRef] [PubMed]
- Marinesco, S. Micro- and Nano-Electrodes for Neurotransmitter Monitoring. Curr. Opin. Electrochem. 2021, 29, 100746. [Google Scholar] [CrossRef]
- Becerra-Hernández, A.; Galindo-de-la-Rosa, J.; Martínez-Pimentel, Y.; Ledesma-García, J.; Álvarez-Contreras, L.; Guerra-Balcázar, M.; Aguilar-Elguezabal, A.; Álvarez, A.; Chávez-Ramírez, A.U.; Vallejo-Becerra, V. Novel Biomaterial Based on Monoamine Oxidase-A and Multi-Walled Carbon Nanotubes for Serotonin Detection. Biochem. Eng. J. 2019, 149, 107240. [Google Scholar] [CrossRef]
- Miyazaki, C.M.; Pereira, T.P.; Mascagni, D.B.T.; de Moraes, M.L.; Ferreira, M. Monoamine Oxidase B Layer-by-Layer Film Fabrication and Characterization toward Dopamine Detection. Mater. Sci. Eng. C 2016, 58, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Liu, B.; Gong, D.; Peng, B.; Han, B.; Zhang, N. Direct Electrochemical Enhanced Detection of Dopamine Based on Peroxidase-like Activity of Fe3O4@Au Composite Nanoparticles. Microchem. J. 2021, 164, 105943. [Google Scholar] [CrossRef]
- Lete, C.; Lupu, S.; Lakard, B.; Hihn, J.-Y.; del Campo, F.J. Multi-Analyte Determination of Dopamine and Catechol at Single-Walled Carbon Nanotubes—Conducting Polymer—Tyrosinase Based Electrochemical Biosensors. J. Electroanal. Chem. 2015, 744, 53–61. [Google Scholar] [CrossRef]
- Doughty, P.T.; Hossain, I.; Gong, C.; Ponder, K.A.; Pati, S.; Arumugam, P.U.; Murray, T.A. Novel Microwire-Based Biosensor Probe for Simultaneous Real-Time Measurement of Glutamate and GABA Dynamics in Vitro and in Vivo. Sci. Rep. 2020, 10, 12777. [Google Scholar] [CrossRef]
- Tian, F.; Gourine, A.V.; Huckstepp, R.T.R.; Dale, N. A Microelectrode Biosensor for Real Time Monitoring of L-Glutamate Release. Anal. Chim. Acta 2009, 645, 86–91. [Google Scholar] [CrossRef]
- Alizadeh, N.; Ghasemi, S.; Salimi, A.; Sham, T.-K.; Hallaj, R. CuO Nanorods as a Laccase Mimicking Enzyme for Highly Sensitive Colorimetric and Electrochemical Dual Biosensor: Application in Living Cell Epinephrine Analysis. Colloids Surf. B Biointerfaces 2020, 195, 111228. [Google Scholar] [CrossRef]
- Njagi, J.; Chernov, M.M.; Leiter, J.C.; Andreescu, S. Amperometric Detection of Dopamine in Vivo with an Enzyme Based Carbon Fiber Microbiosensor. Anal. Chem. 2010, 82, 989–996. [Google Scholar] [CrossRef]
- Ganesana, M.; Trikantzopoulos, E.; Maniar, Y.; Lee, S.T.; Venton, B.J. Development of a Novel Micro Biosensor for in Vivo Monitoring of Glutamate Release in the Brain. Biosens. Bioelectron. 2019, 130, 103–109. [Google Scholar] [CrossRef]
- Bermingham, K.P.; Doran, M.M.; Bolger, F.B.; Lowry, J.P. Design Optimisation and Characterisation of an Amperometric Glutamate Oxidase-Based Composite Biosensor for Neurotransmitter l-Glutamic Acid. Anal. Chim. Acta 2022, 1224, 340205. [Google Scholar] [CrossRef]
- Chu, S.S.; Nguyen, H.A.; Lin, D.; Bhatti, M.; Jones-Tinsley, C.E.; Do, A.H.; Frostig, R.D.; Nenadic, Z.; Xu, X.; Lim, M.M.; et al. Development of Highly Sensitive, Flexible Dual L-Glutamate and GABA Microsensors for in Vivo Brain Sensing. Biosens. Bioelectron. 2023, 222, 114941. [Google Scholar] [CrossRef]
- Xu, C.; Wu, F.; Yu, P.; Mao, L. In Vivo Electrochemical Sensors for Neurochemicals: Recent Update. ACS Sens. 2019, 4, 3102–3118. [Google Scholar] [CrossRef]
- Mustafa, F.; Andreescu, S. Paper-Based Enzyme Biosensor for One-Step Detection of Hypoxanthine in Fresh and Degraded Fish. ACS Sens. 2020, 5, 4092–4100. [Google Scholar] [CrossRef] [PubMed]
- Kembaren, R.; Fokkink, R.; Westphal, A.H.; Kamperman, M.; Kleijn, J.M.; Borst, J.W. Balancing Enzyme Encapsulation Efficiency and Stability in Complex Coacervate Core Micelles. Langmuir 2020, 36, 8494–8502. [Google Scholar] [CrossRef]
- Wang, X.; Lan, P.C.; Ma, S. Metal-Organic Frameworks for Enzyme Immobilization: Beyond Host Matrix Materials. ACS Cent. Sci. 2020, 6, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- Mehta, J.; Bhardwaj, N.; Bhardwaj, S.K.; Kim, K.-H.; Deep, A. Recent Advances in Enzyme Immobilization Techniques: Metal-Organic Frameworks as Novel Substrates. Coord. Chem. Rev. 2016, 322, 30–40. [Google Scholar] [CrossRef]
- Krishnan, S.K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H.S. A Review on Graphene-Based Nanocomposites for Electrochemical and Fluorescent Biosensors. RSC Adv. 2019, 9, 8778–8881. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. A Review on Electrochemical Sensors and Biosensors Used in Assessing Antioxidant Activity. Antioxidants 2022, 11, 584. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shen, H.; Yang, X.; Kang, S.; Cai, L.; Tian, T.; Su, R.; Yang, C.; Zhu, Z. Recent Progress in Microfluidic Biosensors with Different Driving Forces. TrAC Trends Anal. Chem. 2023, 158, 116894. [Google Scholar] [CrossRef]
Neurotransmitter | Concentration Range (Blood) | Associated Diseases |
---|---|---|
Dopamine | 10–480 pM | Parkinson’s disease, epilepsy |
Acetylcholine | 7.6–9.7 nM | Alzheimer’s disease, myasthenia gravis |
Serotonin | 0.6–1.6 μM | Depression, anxiety disorders, migraines, irritable bowel syndrome (IBS) |
Epinephrine | 20–460 pM | Mood disorders, cardiovascular disorders |
Norepinephrine | 0.45–2.49 nM | Post-traumatic stress disorder (PTSD), attention deficit hyperactivity disorder (ADHD) |
Glutamate | 150–300 μM | Schizophrenia |
Electrochemical Sensor | Sensitivity | Selectivity | Response Time | Detection Limit | Dynamic Range | Stability | Cost |
---|---|---|---|---|---|---|---|
Potentiometric Sensor | High | Moderate | Fast | Low | Wide | Good | Low |
Amperometric Sensor | High | Low | Fast | Very Low | Narrow | Good | Moderate |
Conductometric Sensor | Moderate | Moderate | Moderate | Moderate | Moderate | Good | Low |
Voltammetric Sensor | High | High | Moderate | Very Low | Moderate | Good | High |
Impedimetric Sensor | Moderate | High | Slow | Very Low | Wide | Excellent | High |
Biosensor Structure | Enzyme | Analyte | Technique | Linear Range (µM) | Detection Limit (µM) | Ref. |
---|---|---|---|---|---|---|
Au-disk microelectrode | Tyrosinase | Dopamine | Amperometry | 20–300 | 0.24 | [141] |
Polyphenilenediamine–Platinum disc electrodes | Adenosine deaminase | Adenosine | Amperometry | 15−100 | 7.2 | [145] |
Pyrene-azide/GCE | Copper efflux oxidase | Dopamine Epinephrine | DPV | 10 × 10−3–0.1 | 10 × 10−3 10 × 10−3 | [146] |
MWCNT–GCE | Monoamine oxidase | Serotonin | DPV | 0.56–2.26 | 0.2 | [148] |
Prussian–ITO | Monoamine oxidase | Dopamine | Amperometry | 140–1000 | 86 | [149] |
Fe3O4@AuNPs−GCE | Peroxidase | Dopamine | Voltammetry CV | 10–100 | 58 | [150] |
SWCNT-PEDOT−Au microelectrode arrays | Tyrosinase | Dopamine | CV | 0.1–0.5 | 2.4 | [151] |
Platinum microelectrode array | Glucose oxidase | Glutamate γ-aminobutyric acid | Amperometry | 20–1200 50–2200 | 20 50 | [152] |
Poly[2,6-bis(3,4-ethylenedioxythiophene)-4-methyl-4-octyl-dithienosilole/Pt electrode | Laccase | Serotonin Dopamine | CV | 0.1–200 | 48 × 10−3 73 × 10−3 | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fredj, Z.; Singh, B.; Bahri, M.; Qin, P.; Sawan, M. Enzymatic Electrochemical Biosensors for Neurotransmitters Detection: Recent Achievements and Trends. Chemosensors 2023, 11, 388. https://doi.org/10.3390/chemosensors11070388
Fredj Z, Singh B, Bahri M, Qin P, Sawan M. Enzymatic Electrochemical Biosensors for Neurotransmitters Detection: Recent Achievements and Trends. Chemosensors. 2023; 11(7):388. https://doi.org/10.3390/chemosensors11070388
Chicago/Turabian StyleFredj, Zina, Baljit Singh, Mohamed Bahri, Peiwu Qin, and Mohamad Sawan. 2023. "Enzymatic Electrochemical Biosensors for Neurotransmitters Detection: Recent Achievements and Trends" Chemosensors 11, no. 7: 388. https://doi.org/10.3390/chemosensors11070388
APA StyleFredj, Z., Singh, B., Bahri, M., Qin, P., & Sawan, M. (2023). Enzymatic Electrochemical Biosensors for Neurotransmitters Detection: Recent Achievements and Trends. Chemosensors, 11(7), 388. https://doi.org/10.3390/chemosensors11070388