Design of a Portable and Reliable Fluorimeter with High Sensitivity for Molecule Trace Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental
2.2. Hardware
2.3. Software
3. Results and Discussion
3.1. Integration Time
3.2. Experimental Emission Spectra
3.3. Analytical Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent chemosensors: The past, present and future. Chem. Soc. Rev. 2017, 46, 7105–7123. [Google Scholar] [CrossRef] [Green Version]
- Jia, T.-T.; Li, Y.; Niu, H. Recent Progress in Fluorescent Probes for Diabetes Visualization and Drug Therapy. Chemosensors 2022, 10, 280. [Google Scholar] [CrossRef]
- Mayer, C.; Schalkhammer, T.G.M. Fluorescence Techniques. In Analytical Biotechnology. Methods and Tools in Biosciences and Medicine; Schalkhammer, T.G.M., Ed.; Birkhäuser: Basel, Switzerland, 2002; pp. 44–54. [Google Scholar] [CrossRef]
- Bao, Y. Editorial: Organic Fluorescent Materials as Chemical Sensors. Chemosensors 2021, 9, 308. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Ma, W.; Lu, R.; Zhou, W.; Gao, H. Recent Developments in Rhodamine-Based Chemosensors: A Review of the Years 2018–2022. Chemosensors 2022, 10, 399. [Google Scholar] [CrossRef]
- Li, H.; Sheng, Y.; Li, W.; Yuan, L. Recent Advances in Molecular Fluorescent Probes for CYP450 Sensing and Imaging. Chemosensors 2022, 10, 304. [Google Scholar] [CrossRef]
- Radha, R.; Vitor, R.F.; Al-Sayah, M.H. A Fluorescence-Based Chemical Sensor for Detection of Melamine in Aqueous Solutions. Chemosensors 2022, 10, 13. [Google Scholar] [CrossRef]
- Bates, H.; Zavafer, A.; Szabó, M.; Ralph, P.J. A guide to Open-JIP, a low-cost open-source chlorophyll fluorometer. Photosynth. Res. 2019, 142, 361–368. [Google Scholar] [CrossRef]
- Nghia, N.N.; Huy, B.T.; Lee, Y.-I. Highly sensitive and selective optosensing of quercetin based on novel complexation with yttrium ions. Analyst 2020, 145, 3376. [Google Scholar] [CrossRef]
- Shin, Y.-H.; Gutierrez-Wing, M.T.; Choi, J.-W. Recent Progress in Portable Fluorescence Sensors. J. Electrochem. Soc. 2021, 168, 017502. [Google Scholar] [CrossRef]
- Xin, Y.; He, G.; Wang, Q.; Fang, Y. A portable fluorescence detector for fast ultra trace detection of explosive vapors. Rev. Sci. Instrum. 2011, 82, 103102. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.-H.; Barnett, J.Z.; Gutierrez-Wing, M.T.; Rusch, K.A.; Choi, J.-W. A portable fluorescent sensing system using multiple LEDs. In Proceedings of the Microfluidics, BioMEMS, and Medical Microsystems XV, San Francisco, CA, USA, 28 February 2017; Volume 100610M. [Google Scholar] [CrossRef]
- Brandl, M.; Posnicek, T.; Preuer, R.; Weigelhofer, G. A Portable Sensor System for Measurement of Fluorescence Indices of Water Samples. IEEE Sens. J. 2020, 20, 9132–9139. [Google Scholar] [CrossRef]
- Wang, H.; Qi, Y.; Mountziaris, T.J.; Salthouse, C.D. A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements. Rev. Sci. Instum. 2014, 85, 055003. [Google Scholar] [CrossRef]
- Yu, Z.; Meng, R.; Deng, S.; Jia, L. An open-source handheld spectrometer for colorimetric and fluorescence analyses. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 287, 122072. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Li, J.; Zhang, Y.; Ding, K.; Geng, X.; Guan, Y. Portable instruments for on-site analysis of environmental samples. TrAC Trends Anal. Chem. 2022, 154, 116653. [Google Scholar] [CrossRef]
- Dang, F.; Geng, X.; Li, J.; Wang, J.; Guan, Y. A miniaturized and high sensitive dual channel fluorimeter based on compact collinear optical arrangement. Talanta 2020, 211, 120698. [Google Scholar] [CrossRef]
- Prakash, J.; Mishra, A.K. Fabrication, optimization and application of a dip-probe fluorescence spectrometer based on white-light excitation fluorescence. Meas. Sci. Technol. 2013, 24, 105502. [Google Scholar] [CrossRef]
- Sotirov, S.; Demirci, S.; Marudova, M.; Sahiner, N. Trimesic Acid-Based Co(II) MOFs as Colorimetric Sensor for Detection of Ammonia Gas. IEEE Sens. J. 2022, 22, 3903–3910. [Google Scholar] [CrossRef]
- Abid, H.A.; Ong, J.W.; Lin, E.S.; Song, Z.; Liew, O.W.; Ng, T.W. Low-cost Imaging of Fluorescent DNA in Agarose Gel Electrophoresis using Raspberry Pi cameras. J. Fluoresc. 2022, 32, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Choi, H.-K. Arduino-based wireless spectrometer: A practical application. J. Anal. Sci. Technol. 2022, 13, 44. [Google Scholar] [CrossRef]
- Di Nonno, S.; Ulber, R. Portuino—A Novel Portable Low-Cost Arduino-Based Photo- and Fluorimeter. Sensors 2022, 22, 7916. [Google Scholar] [CrossRef]
- Kitzhaber, Z.B.; English, C.M.; Sanim, K.R.I.; Kalaitzakis, M.; Kosaraju, B.; Hodgson, M.E.; Vitzilaios, N.; Richardson, T.L.; Myrick, M.L. Fluorometer Control and Readout Using an Arduino Nano 33 BLE Sense Board. App. Spectrosc. 2023, 77, 220–224. [Google Scholar] [CrossRef]
- Leeuw, T.; Boss, E.S.; Wright, D.L. In situ Measurements of Phytoplankton Fluorescence Using Low Cost Electronics. Sensors 2013, 13, 7872–7883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katzmeier, F.; Aufinger, L.; Dupin, A.; Quintero, J.; Lenz, M.; Bauer, L.; Klumpe, S.; Sherpa, D.; Dürr, B.; Honemann, M.; et al. A low-cost fluorescence reader for in vitro transcription and nucleic acid detection with Cas13a. PLoS ONE 2019, 14, e0220091. [Google Scholar] [CrossRef]
- Ge, X.; Kostov, Y.; Henderson, R.; Selock, N.; Rao, G. Low-Cost Fluorescent Sensor for pCO2 Measurements. Chemosensors 2014, 2, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Bao, M. Analysis and Design Principles of MEMS Devices; Elsevier Science: Ansterdam, The Nederlands, 2005. [Google Scholar] [CrossRef]
- Crocombe, R.A. MEMS Technology Moves Process Sepectroscopy into a New Dimension. Available online: https://www.spectroscopyeurope.com/system/files/pdf/NIR_16_3.pdf (accessed on 13 June 2023).
- Thomas, F.; Petzold, R.; Becker, C.; Werban, U. Application of Low-Cost MEMS Spectrometers for Forest Topsoil Properties Prediction. Sensors 2021, 21, 3927. [Google Scholar] [CrossRef]
- Hammatsu Mini-Spectrometer C12880MA DataSheet. Available online: https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/c12880ma_kacc1226e.pdf (accessed on 10 April 2023).
- C12880MA Breakout Board v2 by GetLab. Available online: https://groupgets-files.s3.amazonaws.com/hamamatsu/uspectrometer/C12880MA%20Breakout%20Board%20v2%20-%20Datasheet%20-%201.2.pdf (accessed on 10 April 2023).
- Sony Laser SLD3134VF DataSheet. Available online: https://www.lasercomponents.com/de/?embedded=1&file=fileadmin/user_upload/home/Datasheets/diverse-laser-diodes/lcs/sld3134vr-31.pdf&no_cache=1 (accessed on 10 April 2023).
- Arduino 1 DataSheet. Available online: https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf (accessed on 10 April 2023).
- Arduino Mega 2560 DataSheet. Available online: https://docs.arduino.cc/static/e9136489bd183f7ac5fb78c4ecd600af/A000067-datasheet.pdf (accessed on 10 April 2023).
- Microchip SAMD21 Datasheet. Available online: https://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_DataSheet_DS40001882F.pdf (accessed on 10 April 2023).
- Parallax Data Acquisition Microcontroller Tool. Available online: https://www.parallax.com/package/plx-daq/ (accessed on 12 April 2023).
- González-Arjona, D.; Roldán González, E.; López-Pérez, G.; Domínguez Pérez, M.M. Versatile Instrumental Assemblage for the Study of Commercial Electrochemical Cells. Chem. Educator 2012, 17, 100–104. [Google Scholar] [CrossRef]
- González-Arjona, D.; Roldán González, E.; López-Pérez, G.; Domínguez Pérez, M.M. An Improved Galvanostat for the Characterization of Commercial Electrochemical Cells. J. Lab. Chem. Educ. 2013, 1, 11–18. [Google Scholar] [CrossRef]
- González-Arjona, D.; Roldán González, E.; López-Pérez, G.; Domínguez Pérez, M.M.; Calero-Castillo, M. Coulometer from a Digitally Controlled Galvanostat with Photometric Endpoint Detection. Sensors 2022, 22, 7541. [Google Scholar] [CrossRef]
- Kristoffersen, A.S.; Erga, S.R.; Hamre, B.; Frette, Ø. Testing Fluorescence Lifetime Standards using Two-Photon Excitation and Time-Domain Instrumentation: Fluorescein, Quinine Sulfate and Green Fluorescent Protein. J. Fluoresc. 2018, 28, 1065–1073. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Xiao, X.; Zhao, X.S.; Hu, L.; Xue, X.F.; Ye, J.S. Study on Fluorescence Spectra of Thiamine and Riboflavin. MATEC Web Conf. 2016, 63, 03013. [Google Scholar] [CrossRef]
- Stobiecka, M.; Hepel, M. Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles. Phys. Chem. Chem. Phys. 2011, 13, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Sciuto, E.L.; Santangelo, M.F.; Villaggio, G.; Sinatra, F.; Bongiorno, C.; Nicotra, G.; Libertino, S. Photo-physical characterization of fluorophore Ru(bpy)32+ for optical biosensing applications. Sens. Bio-Sens. Res. 2015, 6, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.; Miller, J. Statistics and Chemometrics for Analytical Chemistry, 6th ed.; Prentice Hall: London, UK, 2010; ISBN 978-0-273-73042-2. [Google Scholar]
- Lawson-Wood, K.; Evans, K. Determination of Quinine in Tonic Water Using Fluorescence Spectroscopy. Application Note: Fluorescence Spectroscopy. Available online: https://resources.perkinelmer.com/lab-solutions/resources/docs/app_quinine_in_tonic_water_014133_01.pdf (accessed on 8 May 2023).
- Geddes, C.D. Optical halide sensing using fluorescence quenching: Theory, simulations and applications—A review. Meas. Sci. Technol. 2001, 12, R53–R88. [Google Scholar] [CrossRef] [Green Version]
Compound | CAS Number | MW | Solvent | Stock Solution (µM) | Concentration Range (µM) | ||
---|---|---|---|---|---|---|---|
Fluorescein Sodium Salt | 2321-07-5 | 332.32 | 0.05 M NaOH | 150 | 10–0.005 | 405 | 513 |
Quinine Sulphate | 6119-70-6 | 782.96 | 0.05 M H2SO4 | 143 | 15–0.008 | 365 | 462 |
Riboflavin | 83-88-5 | 376.36 | 0.02 M AcOH | 53 | 25–0.002 | 405 | 530 |
Rhodamine B | 81-88-9 | 479.02 | Water | 104 | 10–0.003 | 405 | 577 |
Ru(bpy)3 | 50525-27-4 | 748.62 | Water | 94 | 10–0.002 | 365 | 608 |
Name | Microprocessor Type | Processor Bits | CLK Frequency (MHz) | Flash Memory (kB) | SRAM Memory (kB) | AD Converter (Bits) | Onboard Voltage (V) | Max. Current (mA) |
---|---|---|---|---|---|---|---|---|
UNO | ATmega328P | 8 | 16 | 32 | 2 | 10 | 5 | 50 |
Mega2560 | ATmega2560 | 8 | 16 | 256 | 8 | 10 | 5 | 150 |
WeMos | SAMD21G18 | 32 | 48 | 256 | 32 | 10/12 | 3.3 | 50 |
Analyte | Linear Range (nM) | LOD (nM) | LOQ (nM) | Linearity (%) | R2 |
---|---|---|---|---|---|
Fluorescein | 1.9–11,000 | 1.2 | 1.9 | 98.9 | 0.9987 |
Quinine | 1.5–14,000 | 1.1 | 1.5 | 99.4 | 0.9996 |
Rhodamine B | 2.4–2500 | 1.3 | 2.4 | 98.5 | 0.9989 |
Riboflavin | 2.1–27,000 | 1.3 | 2.1 | 98.9 | 0.9991 |
Ru(bpy)3 | 12.8–9800 | 2.1 | 12.8 | 97.9 | 0.9987 |
Features | AVANTES AvaSpec-ULS2048CL-EVO | Ocean QE-Pro Fluoresce Bundle | This Work |
---|---|---|---|
Wavelength (nm) | 200–1160 | Configuration-dependent | 340–850 |
Spectral Resolution (nm) | 1–20 | Configuration-dependent | 15 nm |
Integration time | 9 µs–59 s | 8 ms–60 min | 25 µs–2 min |
Excitation Source | Avalight—HPLED modules * | 365 nm * | 365 nm (LED) 405 nm (Laser diode) |
Fiber Optic | FCR-FLTIP-IND * | Optional * | Optional * |
Software | AvaSoft-Basic | Proprietary | External (Excel®®) |
Power supply | For each module | External | Included |
Detector Type | CMOS | Not available | MEMS |
Sample | Optical Fiber | Optical Fiber Cuvette (sample holder) * | Cuvette Optical Fiber * |
Dimensions (mm) | 177 × 127 × 44.5 | 182 × 110 × 47 | 120 × 80 × 60 |
Weight (Kg) | 1.135 + other modules * | 1.150 + power supply 0.45 * | 0.40 |
Platform | Proprietary | Proprietary | Open Source |
Communication | USB 3.0 | USB 2.0 | USB 2.0 |
Cost (EUR) | Not available | Accessories: 1200 Spectrometer not included | Complete: 500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Pérez, G.; González-Arjona, D.; Roldán González, E.; Román-Hidalgo, C. Design of a Portable and Reliable Fluorimeter with High Sensitivity for Molecule Trace Analysis. Chemosensors 2023, 11, 389. https://doi.org/10.3390/chemosensors11070389
López-Pérez G, González-Arjona D, Roldán González E, Román-Hidalgo C. Design of a Portable and Reliable Fluorimeter with High Sensitivity for Molecule Trace Analysis. Chemosensors. 2023; 11(7):389. https://doi.org/10.3390/chemosensors11070389
Chicago/Turabian StyleLópez-Pérez, Germán, Domingo González-Arjona, Emilio Roldán González, and Cristina Román-Hidalgo. 2023. "Design of a Portable and Reliable Fluorimeter with High Sensitivity for Molecule Trace Analysis" Chemosensors 11, no. 7: 389. https://doi.org/10.3390/chemosensors11070389
APA StyleLópez-Pérez, G., González-Arjona, D., Roldán González, E., & Román-Hidalgo, C. (2023). Design of a Portable and Reliable Fluorimeter with High Sensitivity for Molecule Trace Analysis. Chemosensors, 11(7), 389. https://doi.org/10.3390/chemosensors11070389