SPR-Enhanced Au@Fe3O4 Nanozyme for the Detection of Hydroquinone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Characterizations
2.2. Preparation of Gold NPs
2.3. Preparation of Au@Fe3O4 Nanozymes
2.4. Materials Characterization
3. Results
3.1. Material Characterization and Analysis
3.2. Au@Fe3O4 Enzyme Mimetic Activity of Nanozymes
3.3. Colorimetric Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; Zhu, M.Y.; He, Q.; Zhao, M.G.; Cui, H.Z. Photoenhanced Oxidase-Peroxidase-like NiCo2O4@MnO2 Nanozymes for Colorimetric Detection of Hydroquinone. ACS Sustain. Chem. Eng. 2022, 10, 5651–5658. [Google Scholar] [CrossRef]
- Yao, Y.Z.; Liu, Y.C.; Yang, Z.S. A novel electrochemical sensor based on a glassy carbon electrode modified with Cu-MWCNT nanocomposites for determination of hydroquinone. Anal. Methods UK 2016, 8, 2568–2575. [Google Scholar] [CrossRef]
- Zhao, X.; Lyu, H.Y.; Yao, X.X.; Xu, C.; Liu, Q.Y.; Liu, Z.X.; Zhang, X.X.; Zhang, X. Hydroquinone colorimetric sensing based on platinum deposited on CdS nanorods as peroxidase mimics. Microchim. Acta 2020, 187, 587. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Wei, K.C.; Wang, Q.X.; Kim, M.J.; Sun, S.H.; Fung, V.; Xia, X.H. Nickel-Platinum Nanoparticles as Peroxidase Mimics with a Record High Catalytic Efficiency. J. Am. Chem. Soc. 2021, 143, 2660–2664. [Google Scholar] [CrossRef]
- Masud, M.K.; Kim, J.; Billah, M.M.; Wood, K.; Shiddiky, M.J.A.; Nguyen, N.T.; Parsapur, R.K.; Kaneti, Y.V.; Alshehri, A.A.; Alghamidi, Y.G.; et al. Nanoarchitectured peroxidase-mimetic nanozymes: Mesoporous nanocrystalline alpha-or gamma-iron oxide? J. Mater. Chem. B 2019, 7, 5412–5422. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liu, J.W. Light-activated nanozymes: Catalytic mechanisms and applications. Nanoscale 2020, 12, 2914–2923. [Google Scholar] [CrossRef]
- Wang, Z.R.; Zhang, R.F.; Yan, X.Y.; Fan, K.L. Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Mater. Today 2020, 41, 81–119. [Google Scholar] [CrossRef]
- Kuo, C.H.; Li, W.K.; Pahalagedara, L.; El-Sawy, A.M.; Kriz, D.; Genz, N.; Guild, C.; Ressler, T.; Suib, S.L.; He, J. Understanding the Role of Gold Nanoparticles in Enhancing the Catalytic Activity of Manganese Oxides in Water Oxidation Reactions. Angew. Chem. Int. Ed. 2015, 54, 2345–2350. [Google Scholar] [CrossRef]
- Chen, Y.; He, Z.L.; Ding, S.Q.; Wang, M.; Liu, H.L.; Hou, M.X.; Chen, X.; Gao, J.; Wang, L.X.; Wong, C.P. Facilely preparing lignin-derived graphene-ferroferric oxide nanocomposites by flash Joule heating method. Res. Chem. Intermediat. 2023, 49, 589–601. [Google Scholar] [CrossRef]
- Sun, H.Y.; Jiao, X.L.; Han, Y.Y.; Jiang, Z.; Chen, D.R. Synthesis of Fe3O4-Au Nanocomposites with Enhanced Peroxidase-Like Activity. Eur. J. Inorg. Chem. 2013, 2013, 109–114. [Google Scholar] [CrossRef]
- Yang, D.; Wang, L.X.; Jia, T.T.; Lian, T.; Yang, K.D.; Li, X.H.; Wang, X.; Xue, C.H. Au/Fe3O4-based nanozymes with peroxidase-like activity integrated in immunochromatographic strips for highly-sensitive biomarker detection. Anal. Methods-UK 2023, 15, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Ivanchenko, M.; Nooshnab, V.; Myers, A.F.; Large, N.; Evangelista, A.J.; Jing, H. Enhanced dual plasmonic photocatalysis through plasmonic coupling in eccentric noble metal-nonstoichiometric copper chalcogenide hetero-nanostructures. Nano Res. 2022, 15, 1579–1586. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B.; Manickam, P.; Kaushik, A.; Bhansali, S.; Nair, M.; Pala, N. Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors. ACS Sens. 2017, 2, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.W.; Ni, D.L.; Rosenkrans, Z.T.; Huang, P.; Yan, X.Y.; Cai, W.B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704. [Google Scholar] [CrossRef]
- Hafez, M.E.; Ma, H.; Ma, W.; Long, Y.T. Unveiling the Intrinsic Catalytic Activities of Single-Gold-Nanoparticle-Based Enzyme Mimetics. Angew. Chem. Int. Ed. 2019, 58, 6327–6332. [Google Scholar] [CrossRef]
- Wang, L.; Luo, J.; Fan, Q.; Suzuki, M.; Suzuki, I.S.; Engelhard, M.H.; Lin, Y.; Kim, N.; Wang, J.Q.; Zhong, C.J. Monodispersed core-shell Fe3O4@Au nanoparticles. J. Phys. Chem. B 2005, 109, 21593–21601. [Google Scholar] [CrossRef]
- Xing, Y.; Jin, Y.Y.; Si, J.C.; Peng, M.L.; Wang, X.F.; Chen, C.; Cui, Y.L. Controllable synthesis and characterization of Fe3O4/Au composite nanoparticles. J. Magn. Magn. Mater. 2015, 380, 150–156. [Google Scholar] [CrossRef]
- Yang, Y.T.; Jiang, K.D.; Guo, J.; Li, J.; Peng, X.L.; Hong, B.; Wang, X.Q.; Ge, H.L. Facile fabrication of Au/Fe3O4 nanocomposites as excellent nanocatalyst for ultrafast recyclable reduction of 4-nitropheol. Chem. Eng. J. 2020, 381, 122596. [Google Scholar] [CrossRef]
- Muzzi, B.; Albino, M.; Gabbani, A.; Omelyanchik, A.; Kozenkova, E.; Petrecca, M.; Innocenti, C.; Balica, E.; Lavacchi, A.; Scavone, F.; et al. Star-Shaped Magnetic-Plasmonic Au@Fe3O4 Nano-Heterostructures for Photothermal Therapy. ACS Appl. Mater. Inter. 2022, 14, 29087–29098. [Google Scholar] [CrossRef]
- Lin, F.H.; Peng, H.H.; Yang, Y.H.; Doong, R.A. Size and morphological effect of Au-Fe3O4 heterostructures on magnetic resonance imaging. J. Nanopart. Res. 2013, 15, 2139. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Berg, A.; Levanon, H.; Fessenden, R.W.; Meisel, D. On the interactions of free radicals with gold nanoparticles. J. Am. Chem. Soc. 2003, 125, 7959–7963. [Google Scholar] [CrossRef] [PubMed]
- Chaibakhsh, N.; Moradi-Shoeili, Z. Enzyme mimetic activities of spinel substituted nanoferrites (MFe2O4): A review of synthesis, mechanism and potential applications. Mater. Sci. Eng. C-Mater. 2019, 99, 1424–1447. [Google Scholar] [CrossRef] [PubMed]
- Borthakur, P.; Boruah, P.K.; Das, M.R.; Artemkina, S.B.; Poltarak, P.A.; Fedorov, V.E. Metal free MoS2 2D sheets as a peroxidase enzyme and visible-light-induced photocatalyst towards detection and reduction of Cr(vi) ions. New J. Chem. 2018, 42, 16919–16929. [Google Scholar] [CrossRef]
- Borthakur, P.; Das, M.R.; Szunerits, S.; Boukherroub, R. CuS Decorated Functionalized Reduced Graphene Oxide: A Dual Responsive Nanozyme for Selective Detection and Photoreduction of Cr(VI) in an Aqueous Medium. ACS Sustain. Chem. Eng. 2019, 7, 16131–16143. [Google Scholar] [CrossRef]
- Swaidan, A.; Borthakur, P.; Boruah, P.K.; Das, M.R.; Barras, A.; Hamieh, S.; Toufaily, J.; Hamieh, T.; Szunerits, S.; Boukherroub, R. A facile preparation of CuS-BSA nanocomposite as enzyme mimics: Application for selective and sensitive sensing of Cr(VI) ions. Sens. Actuat. B-Chem. 2019, 294, 253–262. [Google Scholar] [CrossRef]
- Mu, M.; Wen, S.S.; Hu, S.Z.; Zhao, B.; Song, W. Putting surface-enhanced Raman spectroscopy to work for nanozyme research: Methods, materials and applications. Trac-Trend Anal. Chem. 2022, 152, 116603. [Google Scholar] [CrossRef]
- Zhang, L.P.; Xing, Y.P.; Liu, L.H.; Zhou, X.H.; Shi, H.C. Fenton reaction-triggered colorimetric detection of phenols in water samples using unmodified gold nanoparticles. Sens. Actuat. B-Chem. 2016, 225, 593–599. [Google Scholar] [CrossRef]
- Wu, T.; Ma, Z.; Li, P.; Lu, Q.; Liu, M.; Li, H.; Zhang, Y.; Yao, S. Bifunctional colorimetric biosensors via regulation of the dual nanoenzyme activity of carbonized FeCo-ZIF. Sens. Actuators B Chem. 2019, 290, 357–363. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Z.; Lian, Q.; Liu, H.; Chen, L.; Zhou, L.; Jiang, Y.; Gao, J. Preparation of Flower-like NiMnO3 as Oxidase Mimetics for Colorimetric Detection of Hydroquinone. ACS Sustain. Chem. Eng. 2021, 9, 12766–12778. [Google Scholar] [CrossRef]
- Zhuang, Z.; Zhang, C.; Yu, Z.; Liu, W.; Zhong, Y.; Zhang, J.; Xu, Z. Turn-on colorimetric detection of hydroquinone based on Au/CuO nanocomposite nanozyme. Microchim. Acta 2022, 189, 293. [Google Scholar] [CrossRef]
- Li, S.J.; Xing, Y.; Wang, G.F. A graphene-based electrochemical sensor for sensitive and selective determination of hydroquinone. Microchim. Acta 2012, 176, 163–168. [Google Scholar] [CrossRef]
- Ahmad, K.; Kumar, P.; Mobin, S.M. A highly sensitive and selective hydroquinone sensor based on a newly designed N-rGO/SrZrO3 composite. Nanoscale Adv. 2020, 2, 502–511. [Google Scholar] [CrossRef]
- Pérez-Ràfols, C.; Guo, K.; Alba, M.; Toh, R.J.; Serrano, N.; Voelcker, N.H.; Prieto-Simón, B. Carbon-stabilized porous silicon as novel voltammetric sensor platforms. Electrochim. Acta 2021, 377, 138077. [Google Scholar] [CrossRef]
- Huang, H.; Xu, M.; Gao, Y.; Wang, G.; Su, X. Water-soluble fluorescent conjugated polymer-enzyme hybrid system for the determination of both hydroquinone and hydrogen peroxide. Talanta 2011, 86, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, B.; Yan, C.; Lv, W.; Ma, Q.; Zheng, B.; Du, J.; Xiao, D. A rapid and simple strategy for discrimination and detection of catechol and hydroquinone by fluorescent silicon nanoparticles. Microchem. J. 2020, 158, 105263. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Guo, S.; Jia, P.; Shui, Y.; Yao, S.; Huang, C.; Zhang, M.; Wang, L. Highly selective and sensitive fluorescence detection of hydroquinone using novel silicon quantum dots. Sens. Actuators B Chem. 2018, 275, 415–421. [Google Scholar] [CrossRef]
- Shumskaya, A.; Korolkov, I.; Rogachev, A.; Ignatovich, Z.; Kozlovskiy, A.; Zdorovets, M.; Anisovich, M.; Bashouti, M.; Shalabny, A.; Busool, R.; et al. Synthesis of Ni@Au core-shell magnetic nanotubes for bioapplication and SERS detection. Colloid Surf. A 2021, 626, 127077. [Google Scholar] [CrossRef]
- Huang, Y.; Gu, Y.Q.; Liu, X.Y.; Deng, T.T.; Dai, S.; Qu, J.F.; Yang, G.H.; Qu, L.L. Reusable ring-like Fe3O4/Au nanozymes with enhanced peroxidase-like activities for colorimetric-SERS dual-mode sensing of biomolecules in human blood. Biosens Bioelectron 2022, 209, 114253. [Google Scholar] [CrossRef]
Methods | Linear Ranges (μM) | LOD (μM) | Reference |
---|---|---|---|
colorimetry | 1–30 | 0.8 | [27] |
colorimetry | 2.7–19 | 1.6 | [28] |
colorimetry | 1–85 | 0.68 | [29] |
colorimetry | 5–200 | 3 | [30] |
electrochemistry | 1–10 | 0.8 | [31] |
electrochemistry | 25–2500 | 0.61 | [32] |
electrochemistry | 4.6–35.2 | 1.4 | [33] |
fluorescence | 1–200 | 0.5 | [34] |
fluorescence | 2.5–27 | 0.68 | [35] |
fluorescence | 6–100 | 2.63 | [36] |
colorimetry | 0–66 | 1.24 | this work (dark) |
0–30 | 0.29 | this work (light) |
Sample | Added (μM) | Detected (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Tap Water | 8 | 7.5 ± 0.13 | 93.8 | 1.7 |
18 | 18.3 ± 0.10 | 101.7 | 0.6 | |
29 | 28.6 ± 0.23 | 102.1 | 0.8 | |
Sea Water | 8 | 7.7 ± 0.11 | 96.3 | 1.4 |
18 | 17.9 ± 0.19 | 99.5 | 1.1 | |
29 | 29.9 ± 0.22 | 103.1 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Wang, X.; Hu, W.; Liao, Y.; He, Y.; Dong, B.; Zhao, M.; Ma, Y. SPR-Enhanced Au@Fe3O4 Nanozyme for the Detection of Hydroquinone. Chemosensors 2023, 11, 392. https://doi.org/10.3390/chemosensors11070392
Zhang B, Wang X, Hu W, Liao Y, He Y, Dong B, Zhao M, Ma Y. SPR-Enhanced Au@Fe3O4 Nanozyme for the Detection of Hydroquinone. Chemosensors. 2023; 11(7):392. https://doi.org/10.3390/chemosensors11070392
Chicago/Turabian StyleZhang, Bin, Xiaoming Wang, Wei Hu, Yiquan Liao, Yichang He, Bohua Dong, Minggang Zhao, and Ye Ma. 2023. "SPR-Enhanced Au@Fe3O4 Nanozyme for the Detection of Hydroquinone" Chemosensors 11, no. 7: 392. https://doi.org/10.3390/chemosensors11070392
APA StyleZhang, B., Wang, X., Hu, W., Liao, Y., He, Y., Dong, B., Zhao, M., & Ma, Y. (2023). SPR-Enhanced Au@Fe3O4 Nanozyme for the Detection of Hydroquinone. Chemosensors, 11(7), 392. https://doi.org/10.3390/chemosensors11070392