Humidity Sensing Using Polymers: A Critical Review of Current Technologies and Emerging Trends
Abstract
:1. Introduction
2. The Working Principle and Structure of Polymer Humidity Sensors
2.1. Capacitive Humidity Sensors
2.2. Resistive/Impedence Humidity Sensors
2.3. Frequency-Based Humidity Sensors
2.3.1. QCM Humidity Sensors
2.3.2. SAW Humidity Sensors
2.4. Fiber Optic Humidity Sensors
2.5. Voltage Humidity Sensors
2.5.1. Voltage Humidity Sensors Based on Ion Diffusion
2.5.2. Voltage Humidity Sensors Based on Redox Reactions
3. Research Progress in Polymer Humidity Sensors
- (1)
- Hydrophilic polymers experience significant chain/segment dissolution/migration/relaxation at high humidity levels, greatly restricting their application range.
- (2)
- When polymers are used as resistive/impedance humidity sensors, their conductivity is too low at low humidity levels, making detection difficult.
- (3)
- Individual polymer humidity sensors often suffer from low sensitivity or long response/recovery times, which is unfavorable for applications of flexible devices that require rapid and sensitive human health monitoring.
3.1. Polymer-Polymer Humidity Sensors
3.2. Nano- and Porous- Structured Polymer Humidity Sensors
3.3. Polymer-Metal Oxide Humidity Sensors
3.4. Polymer-Two-Dimensional Material Humidity Sensor
4. Application of Polymer Humidity Sensors
4.1. Application in Human Healthcare Detection
4.2. Application of Humidity Sensors in Noncontact Human-Machine Interaction Methods
4.3. Appliacation of Humidity Sensor in Technology of Moist-Electric Generation
5. Conclusions and Outlook
- (1)
- Although composite materials can provide excellent humidity sensitivity performance, the research history of these materials is relatively short, and the stability of the complex structural characteristics during long-term operation needs further investigation;
- (2)
- Currently, humidity sensors face high demands for their sensitivity and response speed when dealing with new applications such as contactless switches. Furthermore, there is a lack of research on the relevant circuit design and signal processing in this area;
- (3)
- Electrochemical and ionic diffusion-based humidity sensors, which derive power from environmental moisture, currently encounter limitations in terms of power generation and operational duration, necessitating further advancements for practical deployment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, D.; Li, P.; Yang, Z.; Mi, Q.; Yu, L. Electrospinning of Flexible Poly(Vinyl Alcohol)/MXene Nanofiber-Based Humidity Sensor Self-Powered by Monolayer Molybdenum Diselenide Piezoelectric Nanogenerator. Nano-Micro Lett. 2021, 13, 57. [Google Scholar] [CrossRef]
- Luo, Y.; Abidian, M.R.; Ahn, J.-H.; Akinwande, D.; Andrews, A.M.; Antonietti, M.; Bao, Z.; Berggren, M.; Berkey, C.A.; Bettinger, C.J.; et al. Technology Roadmap for Flexible Sensors. ACS Nano 2023, 17, 5211–5295. [Google Scholar] [CrossRef] [PubMed]
- Delipinar, T.; Shafique, A.; Gohar, M.S.; Yapici, M.K. Fabrication and Materials Integration of Flexible Humidity Sensors for Emerging Applications. ACS Omega 2021, 6, 8744–8753. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Chen, Y.; Abbel, R.; Visagie, I.; Parker, K. Flexible Humidity Sensors for Wireless Monitoring Based on Electrospun Sulfonated Polyether Ether Ketone (SPEEK) Nanofibres. Sens. Actuators B Chem. 2020, 324, 128704. [Google Scholar] [CrossRef]
- Ragazzini, I.; Gualandi, I.; D’Altri, G.; Di Matteo, V.; Yeasmin, L.; Cassani, M.C.; Scavetta, E.; Bernardi, E.; Ballarin, B. Polyaniline/Poly (2-Acrylamido-2-Methyl-1-Propanesulfonic Acid) Modified Cellulose as Promising Material for Sensors Design. Carbohydr. Polym. 2023, 316, 121079. [Google Scholar] [CrossRef]
- Yang, T.; Xu, C.; Liu, C.; Ye, Y.; Sun, Z.; Wang, B.; Luo, Z. Conductive Polymer Hydrogels Crosslinked by Electrostatic Interaction with PEDOT:PSS Dopant for Bioelectronics Application. Chem. Eng. J. 2022, 429, 132430. [Google Scholar] [CrossRef]
- Zampetti, E.; Pantalei, S.; Pecora, A.; Valletta, A.; Maiolo, L.; Minotti, A.; Macagnano, A.; Fortunato, G.; Bearzotti, A. Design and Optimization of an Ultra Thin Flexible Capacitive Humidity Sensor. Sens. Actuators B Chem. 2009, 143, 302–307. [Google Scholar] [CrossRef]
- Molina-Lopez, F.; Briand, D.; de Rooij, N.F. All Additive Inkjet Printed Humidity Sensors on Plastic Substrate. Sens. Actuators B Chem. 2012, 166–167, 212–222. [Google Scholar] [CrossRef]
- Duan, Z.; Jiang, Y.; Yan, M.; Wang, S.; Yuan, Z.; Zhao, Q.; Sun, P.; Xie, G.; Du, X.; Tai, H. Facile, Flexible, Cost-Saving, and Environment-Friendly Paper-Based Humidity Sensor for Multifunctional Applications. ACS Appl. Mater. Interfaces 2019, 11, 21840–21849. [Google Scholar] [CrossRef]
- Yang, M.; Huang, M.; Li, Y.; Feng, Z.; Huang, Y.; Chen, H.; Xu, Z.; Liu, H.; Wang, Y. Printing Assembly of Flexible Devices with Oxidation Stable MXene for High Performance Humidity Sensing Applications. Sens. Actuators B Chem. 2022, 364, 131867. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, D.; Zong, X.; Dong, G.; Zhang, Y. High-Performance QCM Humidity Sensor Based on Graphene Oxide/Tin Oxide/Polyaniline Ternary Nanocomposite Prepared by in-Situ Oxidative Polymerization Method. Sens. Actuators B Chem. 2018, 262, 531–541. [Google Scholar] [CrossRef]
- Le, X.; Liu, Y.; Peng, L.; Pang, J.; Xu, Z.; Gao, C.; Xie, J. Surface Acoustic Wave Humidity Sensors Based on Uniform and Thickness Controllable Graphene Oxide Thin Films Formed by Surface Tension. Microsyst. Nanoeng. 2019, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Li, C.; Li, M.; Li, H.; Xu, S.; Qian, L.; Yang, B. Surface Acoustic Wave Humidity Sensor Based on Three-Dimensional Architecture Graphene/PVA/SiO2 and Its Application for Respiration Monitoring. Sens. Actuators B Chem. 2020, 308, 127693. [Google Scholar] [CrossRef]
- Xia, B.; Liu, B.; Wang, N.; Liao, C.; Long, G.; Zhao, C.; Liao, Z.; Lyu, D. Polyelectrolyte/Graphene Oxide Nano-Film Integrated Fiber-Optic Sensors for High-Sensitive and Rapid-Response Humidity Measurement. ACS Appl. Mater. Interfaces 2022, 14, 41379–41388. [Google Scholar] [CrossRef]
- Xu, T.; Ding, X.; Huang, Y.; Shao, C.; Song, L.; Gao, X.; Zhang, Z.; Qu, L. An Efficient Polymer Moist-Electric Generator. Energy Environ. Sci. 2019, 12, 972–978. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Liang, X.; Wang, H.; Lu, H.; Zhu, M.; Wang, H.; Zhang, M.; Qiu, X.; Song, Y.; et al. Humidity-Sensitive Chemoelectric Flexible Sensors Based on Metal-Air Redox Reaction for Health Management. Nat. Commun. 2022, 13, 5416. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Zulfiqar, M.H.; Khan, M.A.; Zubair, M.; Mehmood, M.Q.; Massoud, Y. Fast Response Facile Fabricated IDE-Based Ultra-Sensitive Humidity Sensor for Medical Applications. ACS Omega 2023, 8, 16842–16850. [Google Scholar] [CrossRef]
- Agmon, N. The Grotthuss Mechanism. Chem. Phys. Lett. 1995, 244, 456–462. [Google Scholar] [CrossRef]
- Yuan, Z.; Tai, H.; Ye, Z.; Liu, C.; Xie, G.; Du, X.; Jiang, Y. Novel Highly Sensitive QCM Humidity Sensor with Low Hysteresis Based on Graphene Oxide (GO)/Poly(Ethyleneimine) Layered Film. Sens. Actuators B Chem. 2016, 234, 145–154. [Google Scholar] [CrossRef]
- Traversa, E. Ceramic Sensors for Humidity Detection: The State-of-the-Art and Future Developments. Sens. Actuators B Chem. 1995, 23, 135–156. [Google Scholar] [CrossRef]
- Rittersma, Z.M. Recent Achievements in Miniaturised Humidity Sensors—a Review of Transduction Techniques. Sens. Actuators Phys. 2002, 96, 196–210. [Google Scholar] [CrossRef]
- Zhao, F.; Cheng, H.; Zhang, Z.; Jiang, L.; Qu, L. Direct Power Generation from a Graphene Oxide Film under Moisture. Adv. Mater. 2015, 27, 4351–4357. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Duan, Z.; Fan, Z.; Yao, P.; Yuan, Z.; Jiang, Y.; Cao, Y.; Tai, H. Power Generation Humidity Sensor Based on NaCl/Halloysite Nanotubes for Respiratory Patterns Monitoring. Sens. Actuators B Chem. 2023, 380, 133396. [Google Scholar] [CrossRef]
- Guo, Y.; Xi, H.; Gu, Z.; Li, M.; Li, X.; Gao, D. A Self-Powered PVA-Based Flexible Humidity Sensor with Humidity-Related Voltage Output for Multifunctional Applications. Colloids Surf. Physicochem. Eng. Asp. 2023, 658, 130700. [Google Scholar] [CrossRef]
- Angadi, V.J.; Chethan, B.; Pattar, V.; Shigihalli, N.B.; Patil, S.A.; Ubaidullah, M.; Sehgal, S.S.; Prakash, C.; Manjuantha, S.O.; Manjunatha, K. Graphene-Cobalt Chromate Ceramics Composite for Humidity Sensor Applications. J. Alloys Compd. 2023, 947, 169438. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Duan, Z.; Liu, B.; Zhao, Q.; Yuan, Z.; Li, S.; Liang, J.; Jiang, Y.; Tai, H. High Performance Humidity Sensor Based on 3D Mesoporous Co3O4 Hollow Polyhedron for Multifunctional Applications. Appl. Surf. Sci. 2022, 585, 152698. [Google Scholar] [CrossRef]
- Guo, P.; Tian, B.; Liang, J.; Yang, X.; Tang, G.; Li, Q.; Liu, Q.; Zheng, K.; Chen, X.; Wu, W. All-Printed, Fast Response Flexible Humidity Sensor Based on Hexagonal-WO3 Nanowires for Multifunctional Applications. Adv. Mater. 2023, 35, 2304420. [Google Scholar] [CrossRef]
- Lei, D.; Zhang, Q.; Liu, N.; Su, T.; Wang, L.; Ren, Z.; Zhang, Z.; Su, J.; Gao, Y. Self-Powered Graphene Oxide Humidity Sensor Based on Potentiometric Humidity Transduction Mechanism. Adv. Funct. Mater. 2022, 32, 2107330. [Google Scholar] [CrossRef]
- Janica, I.; Montes-García, V.; Urban, F.; Hashemi, P.; Nia, A.S.; Feng, X.; Samorì, P.; Ciesielski, A. Covalently Functionalized MXenes for Highly Sensitive Humidity Sensors. Small Methods 2023, 7, 2201651. [Google Scholar] [CrossRef]
- Zeng, S.; Pan, Q.; Huang, Z.; Gu, C.; Wang, T.; Xu, J.; Yan, Z.; Zhao, F.; Li, P.; Tu, Y.; et al. Ultrafast Response of Self-Powered Humidity Sensor of Flexible Graphene Oxide Film. Mater. Des. 2023, 226, 111683. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Z.; Li, Y.; Yang, M. Single-Sided and Integrated Polyaniline/Poly(Vinylidene Fluoride) Flexible Membrane with Micro/Nanostructures as Breathable, Nontoxic and Fast Response Wearable Humidity Sensor. J. Colloid Interface Sci. 2022, 607, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Heredia-Rivera, U.; Kasi, V.; Krishnakumar, A.; Kadian, S.; Barui, A.K.; He, Z.; Wang, H.; Stanciu, L.; Rahimi, R. Cold Atmospheric Plasma-Assisted Direct Deposition of Polypyrrole-Ag Nanocomposites for Flexible Electronic Sensors. ACS Appl. Mater. Interfaces 2023, 15, 17078–17090. [Google Scholar] [CrossRef]
- Shen, L.; Feng, W.; Yu, D.; Wang, W. High Sensitive Humidity Sensor Based on PEDOT:PSS/CMC-Na Coated Polyester Fabric with Directional Moisture Transport Performance. Colloids Surf. Physicochem. Eng. Asp. 2024, 682, 132880. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, H.; Yang, M.; Li, Y. Facile Fabrication of Poly (Diallyldimethyl Ammonium Chloride)/Ti3C2Tx/Poly (Vinylidene Fluoride) 3D Hollow Fiber Membrane Flexible Humidity Sensor and Its Application in the Monitoring of Health-Related Physiological Activity. Sens. Actuators B Chem. 2023, 374, 132773. [Google Scholar] [CrossRef]
- Wang, N.; Tong, J.; Wang, J.; Wang, Q.; Chen, S.; Sheng, B. Polyimide-Sputtered and Polymerized Films with Ultrahigh Moisture Sensitivity for Respiratory Monitoring and Contactless Sensing. ACS Appl. Mater. Interfaces 2022, 14, 11842–11853. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, K.; Long, Y.; Liu, S.; Chi, Z.; Xu, J.; Zhang, Y. Design and Synthesis of Vertical Gradient of Expansion Structure Based on Polyimide Humidity Sensing Layer with Ultra-Fast Response, High Sensitivity, and Large Deformation Driven by Humidity. Chem. Eng. J. 2023, 468, 143805. [Google Scholar] [CrossRef]
- Mu, Y.; Jin, P.; Zheng, L.; Wang, C.; Hou, Y.; Liu, W.; Si, L.; Liu, Z. An Enhanced MEMS-Based Polyimide Capacitive-Type Relative-Humidity Sensor with Halloysite Nanotube as a Modifier. Microchem. J. 2023, 191, 108934. [Google Scholar] [CrossRef]
- Roman, C.; Bodea, O.; Prodan, N.; Levi, A.; Cordos, E.; Manoviciu, I. A Capacitive-Type Humidity Sensor Using Crosslinked Poly(Methyl Methacrylate-Co-(2 Hydroxypropyl)-Methacrylate). Sens. Actuators B Chem. 1995, 25, 710–713. [Google Scholar] [CrossRef]
- Meanna Pérez, J.M.; Freyre, C. A Poly(Ethyleneterephthalate)-Based Humidity Sensor. Sens. Actuators B Chem. 1997, 42, 27–30. [Google Scholar] [CrossRef]
- Xu, D.; Liu, B.; Wang, N.; Zhou, J.; Tang, L.; Zhang, D.; Sheng, B. Ultrasensitive and Flexible Humidity Sensors Fabricated by Ion Beam Sputtering and Deposition from Polydimethylsiloxane. Vacuum 2023, 213, 112125. [Google Scholar] [CrossRef]
- Liu, B.-H.; Xie, G.-Z.; Li, C.-Z.; Wang, S.; Yuan, Z.; Duan, Z.-H.; Jiang, Y.-D.; Tai, H.-L. A Chitosan/Amido-Graphene Oxide-Based Self-Powered Humidity Sensor Enabled by Triboelectric Effect. Rare Met. 2021, 40, 1995–2003. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, A.; Yadav, A.; Gupta, G.; Gupta, G.; Shivagan, D.D.; Bapna, K. Chitosan-Based Highly Sensitive Viable Humidity Sensor for Human Health Monitoring. ACS Omega 2023, 8, 39511–39522. [Google Scholar] [CrossRef] [PubMed]
- Nasution, T.I.; Nainggolan, I.; Dalimunthe, D.; Balyan, M.; Cuana, R.; Khanifah, S. Humidity Detection Using Chitosan Film Based Sensor. IOP Conf. Ser. Mater. Sci. Eng. 2018, 309, 012080. [Google Scholar] [CrossRef]
- Huang, L.; Tang, Y.; Liu, W.; Hu, Q.; Wei, X. Cellulose Paper-Based Humidity Power Generator with High Open Circuit Voltage Based on Zinc-Air Battery Structure. Carbohydr. Polym. 2024, 326, 121649. [Google Scholar] [CrossRef]
- Zhao, Q.; Jiang, Y.; Duan, Z.; Yuan, Z.; Zha, J.; Wu, Z.; Huang, Q.; Zhou, Z.; Li, H.; He, F.; et al. A Nb2CTx/Sodium Alginate-Based Composite Film with Neuron-like Network for Self-Powered Humidity Sensing. Chem. Eng. J. 2022, 438, 135588. [Google Scholar] [CrossRef]
- Rianjanu, A.; Julian, T.; Hidayat, S.N.; Yulianto, N.; Majid, N.; Syamsu, I.; Wasisto, H.S.; Triyana, K. Quartz Crystal Microbalance Humidity Sensors Integrated with Hydrophilic Polyethyleneimine-Grafted Polyacrylonitrile Nanofibers. Sens. Actuators B Chem. 2020, 319, 128286. [Google Scholar] [CrossRef]
- Tang, M.; Liu, X.; Zhang, D.; Zhang, H.; Xi, G. Ultra-Sensitive Humidity QCM Sensor Based on Sodium Alginate/Polyacrylonitrile Composite Film for Contactless Morse Code Communication. Sens. Actuators B Chem. 2024, 407, 135429. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Liu, X.; Yao, Y.; Tang, M.; Zhang, H.; Xi, G. Ultralow-Hysteresis Quartz Crystal Microbalance Humidity Sensor Based on Electrospinned Cellulose Acetate/Konjac Glucomannan Network-like Film. Sens. Actuators B Chem. 2024, 410, 135643. [Google Scholar] [CrossRef]
- Yan, W.; Zhang, D.; Liu, X.; Chen, X.; Yang, C.; Kang, Z. Guar Gum/Ethyl Cellulose-Polyvinyl Pyrrolidone Composite-Based Quartz Crystal Microbalance Humidity Sensor for Human Respiration Monitoring. ACS Appl. Mater. Interfaces 2022, 14, 31343–31353. [Google Scholar] [CrossRef]
- Li, Y.; Yang, M.; Ling, M.; Zhu, Y. Surface Acoustic Wave Humidity Sensors Based on Poly(p-Diethynylbenzene) and Sodium Polysulfonesulfonate. Sens. Actuators B Chem. 2007, 122, 560–563. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D.; Wang, D.; Li, T.; Song, X.; Kang, Z. A Humidity Sensing and Respiratory Monitoring System Constructed from Quartz Crystal Microbalance Sensors Based on a Chitosan/Polypyrrole Composite Film. J. Mater. Chem. A 2021, 9, 14524–14533. [Google Scholar] [CrossRef]
- Sakai, Y.; Sadaoka, Y.; Matsuguchi, M.; Rao, V.L.; Kamigaki, M. A Humidity Sensor Using Graft Copolymer with Polyelectrolyte Branches. Polymer 1989, 30, 1068–1071. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Yang, M.; He, W. Improving Humidity Sensing Properties of Copolymer-Based Polyelectrolytes by Modifying the Chemical Structure and Content of the Comonomers. Sens. Actuators B Chem. 2019, 301, 127061. [Google Scholar] [CrossRef]
- Liu, L.; Xu, X.; Zhu, M.; Cui, X.; Feng, J.; Rad, Z.F.; Wang, H.; Song, P. Bioinspired Strong, Tough, and Biodegradable Poly(Vinyl Alcohol) and Its Applications as Substrates for Humidity Sensors. Adv. Mater. Technol. 2023, 8, 2201414. [Google Scholar] [CrossRef]
- Guan, X.; Yu, Y.; Hou, Z.; Wu, K.; Zhao, H.; Liu, S.; Fei, T.; Zhang, T. A Flexible Humidity Sensor Based on Self-Supported Polymer Film. Sens. Actuators B Chem. 2022, 358, 131438. [Google Scholar] [CrossRef]
- Zhao, H.; Lin, X.; Qi, R.; Dai, J.; Liu, S.; Fei, T.; Zhang, T. A Composite Structure of In Situ Cross-Linked Poly(Ionic Liquid)s and Paper for Humidity-Monitoring Applications. IEEE Sens. J. 2019, 19, 833–837. [Google Scholar] [CrossRef]
- He, H.; Yao, Y.; Liu, T. Flexible Humidity Sensor Based on Crosslinked Polyethyleneimine/Tannic Acid and Porous Carbonaceous Interdigitated Electrode. Sens. Actuators B Chem. 2023, 393, 134194. [Google Scholar] [CrossRef]
- Chen, H.; Han, K.; Li, Y. Laser-Direct-Writing Assisted Preparation of Flexible Humidity Sensors Based on Semi-Interpenetrating Polymer Network for Applications in Non-Contact Human-Machine Interaction. Sens. Actuators B Chem. 2023, 394, 134486. [Google Scholar] [CrossRef]
- Lin, W.-D.; Chang, H.-M.; Wu, R.-J. Applied Novel Sensing Material Graphene/Polypyrrole for Humidity Sensor. Sens. Actuators B Chem. 2013, 181, 326–331. [Google Scholar] [CrossRef]
- Li, Y.; Hong, L.; Yang, M. Crosslinked and Quaternized Poly(4-Vinylpyridine)/Polypyrrole Composite as a Potential Candidate for the Detection of Low Humidity. Talanta 2008, 75, 412–417. [Google Scholar] [CrossRef]
- Li, Y.; Fan, K.; Ban, H.; Yang, M. Bilayer-Structured Composite Sensor Based on Polyaniline and Polyelectrolyte for Sensitive Detection of Low Humidity. Synth. Met. 2015, 199, 51–57. [Google Scholar] [CrossRef]
- Mahadeva, S.K.; Yun, S.; Kim, J. Flexible Humidity and Temperature Sensor Based on Cellulose–Polypyrrole Nanocomposite. Sens. Actuators Phys. 2011, 165, 194–199. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Zhou, J.; Lu, A. Flexible and Transparent Cellulose-Based Ionic Film as a Humidity Sensor. ACS Appl. Mater. Interfaces 2020, 12, 7631–7638. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Feng, Y.; Sun, D.; Ren, W.; Shao, C.; Sun, R. Highly Conductive and Mechanically Robust Cellulose Nanocomposite Hydrogels with Antifreezing and Antidehydration Performances for Flexible Humidity Sensors. ACS Appl. Mater. Interfaces 2022, 14, 10886–10897. [Google Scholar] [CrossRef]
- Zhu, L.; Li, X.; Kasuga, T.; Uetani, K.; Nogi, M.; Koga, H. All-Cellulose-Derived Humidity Sensor Prepared via Direct Laser Writing of Conductive and Moisture-Stable Electrodes on TEMPO-Oxidized Cellulose Paper. J. Mater. Chem. C 2022, 10, 3712–3719. [Google Scholar] [CrossRef]
- Su, P.-G.; Hsu, C.-C. Flexible Humidity Sensor Based on Au Nanoparticles/Organosilica-Containing Polyelectrolyte Composite. Chemosensors 2023, 11, 291. [Google Scholar] [CrossRef]
- He, J.; Zheng, X.; Zheng, Z.; Kong, D.; Ding, K.; Chen, N.; Zhang, H.; Yang, W. Pair Directed Silver Nano-Lines by Single-Particle Assembly in Nanofibers for Non-Contact Humidity Sensors. Nano Energy 2022, 92, 106748. [Google Scholar] [CrossRef]
- Tsai, M.-S.; Su, P.-G.; Lu, C.-J. Fabrication of a Highly Sensitive Flexible Humidity Sensor Based on Pt/Polythiophene/Reduced Graphene Oxide Ternary Nanocomposite Films Using a Simple One-Pot Method. Sens. Actuators B Chem. 2020, 324, 128728. [Google Scholar] [CrossRef]
- Ma, Z.; Yu, Y.; Wu, K.; Song, Y.; Liu, S.; Yang, X.; Fei, T.; Zhang, T. Au Loaded Mesoporous SiO2/Gelatin Hydrogel: Detecting Low Humidity and NH3. Chem. Eng. J. 2023, 471, 144788. [Google Scholar] [CrossRef]
- Qi, R.; Lin, X.; Dai, J.; Zhao, H.; Liu, S.; Fei, T.; Zhang, T. Humidity Sensors Based on MCM-41/Polypyrrole Hybrid Film via in-Situ Polymerization. Sens. Actuators B Chem. 2018, 277, 584–590. [Google Scholar] [CrossRef]
- Qi, R.; Zhang, T.; Guan, X.; Dai, J.; Liu, S.; Zhao, H.; Fei, T. Capacitive Humidity Sensors Based on Mesoporous Silica and Poly(3,4-Ethylenedioxythiophene) Composites. J. Colloid Interface Sci. 2020, 565, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Parangusan, H. Capacitive Type Humidity Sensor Based on PANI Decorated Cu–ZnS Porous Microspheres. Talanta 2020, 219, 121361. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Yue, W.; Li, Y.; Yin, F.; Gao, S.; Zhang, C.; Kan, H.; Yao, Z.; Jiang, C.; Wang, C. Ultrafast-Response/Recovery Capacitive Humidity Sensor Based on Arc-Shaped Hollow Structure with Nanocone Arrays for Human Physiological Signals Monitoring. Sens. Actuators B Chem. 2021, 334, 129637. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, G.; Zhao, Y.; Li, M.; Zhang, N.; Wen, J.; Zhou, N.; Li, S.; Mao, H.; Huang, C. Wafer-Level, High-Performance, Flexible Sensors Based on Organic Nanoforests for Human–Machine Interactions. ACS Appl. Mater. Interfaces 2023, 15, 30793–30803. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Liu, Y.; Shi, M.; Zhou, N.; Dai, X.; Mao, H.; Chen, D. Performance Enhanced Humidity Sensor by In-Situ Integration of Nanoforests. IEEE Electron Device Lett. 2021, 42, 585–588. [Google Scholar] [CrossRef]
- Lin, Q.; Li, Y.; Yang, M. Highly Sensitive and Ultrafast Response Surface Acoustic Wave Humidity Sensor Based on Electrospun Polyaniline/Poly(Vinyl Butyral) Nanofibers. Anal. Chim. Acta 2012, 748, 73–80. [Google Scholar] [CrossRef]
- Yuan, T.; Qi, X.; Liu, Z.; Yang, J.; Guan, C.; Long, Q.; Cao, J.; Luo, M.; Yang, X.; Yuan, L. Humidity Sensor Based on Micro Optical Fiber Array Fabricated by Electrospinning. Opt. Commun. 2018, 427, 517–521. [Google Scholar] [CrossRef]
- Wen, H.-Y.; Liu, Y.-C.; Chiang, C.-C. The Use of Doped Conductive Bionic Muscle Nanofibers in a Tennis Racket–Shaped Optical Fiber Humidity Sensor. Sens. Actuators B Chem. 2020, 320, 128340. [Google Scholar] [CrossRef]
- Zu, Y.; Duan, Z.; Yuan, Z.; Jiang, Y.; Tai, H. Electrospun Nanofiber-Based Humidity Sensors: Materials, Devices, and Emerging Applications. J. Mater. Chem. A 2024, 12, 27157–27179. [Google Scholar] [CrossRef]
- Squillaci, M.A.; Cipriani, A.; Melucci, M.; Zambianchi, M.; Caminati, G.; Samorì, P. Self-Assembly of Functionalized Oligothiophene into Hygroscopic Fibers: Fabrication of Highly Sensitive and Fast Humidity Sensors. Adv. Electron. Mater. 2018, 4, 1700382. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, C.; Sun, Y.; Zhou, Q. Layer-by-Layer Self-Assembly of Tricobalt Tetroxide-Polymer Nanocomposite toward High-Performance Humidity-Sensing. J. Alloys Compd. 2017, 711, 652–658. [Google Scholar] [CrossRef]
- Liu, W.; Qu, H.; Hu, J.; Pang, W.; Zhang, H.; Duan, X. A Highly Sensitive Humidity Sensor Based on Ultrahigh-Frequency Microelectromechanical Resonator Coated with Nano-Assembled Polyelectrolyte Thin Films. Micromachines 2017, 8, 116. [Google Scholar] [CrossRef]
- Nohria, R.; Khillan, R.K.; Su, Y.; Dikshit, R.; Lvov, Y.; Varahramyan, K. Humidity Sensor Based on Ultrathin Polyaniline Film Deposited Using Layer-by-Layer Nano-Assembly. Sens. Actuators B Chem. 2006, 114, 218–222. [Google Scholar] [CrossRef]
- Yuan, Y.; Peng, B.; Chi, H.; Li, C.; Liu, R.; Liu, X. Layer-by-Layer Inkjet Printing SPS:PEDOT NP/RGO Composite Film for Flexible Humidity Sensors. RSC Adv. 2016, 6, 113298–113306. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, Y.; Liu, R.; Liu, J.; Li, Z.; Liu, X. Humidity Sensor Fabricated by Inkjet-Printing Photosensitive Conductive Inks PEDOT:PVMA on a Paper Substrate. RSC Adv. 2016, 6, 47498–47508. [Google Scholar] [CrossRef]
- Li, N.; Jiang, Y.; Xiao, Y.; Meng, B.; Xing, C.; Zhang, H.; Peng, Z. A Fully Inkjet-Printed Transparent Humidity Sensor Based on a Ti3C2/Ag Hybrid for Touchless Sensing of Finger Motion. Nanoscale 2019, 11, 21522–21531. [Google Scholar] [CrossRef]
- Hertl, W.; Hair, M.L. Hydrogen Bonding between Adsorbed Gases and Surface Hydroxyl Groups on Silica. J. Phys. Chem. 1968, 72, 4676–4682. [Google Scholar] [CrossRef]
- Henderson, M.A. The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited. Surf. Sci. Rep. 2002, 46, 1–308. [Google Scholar] [CrossRef]
- Dai, J.; Zhao, H.; Lin, X.; Liu, S.; Liu, Y.; Liu, X.; Fei, T.; Zhang, T. Ultrafast Response Polyelectrolyte Humidity Sensor for Respiration Monitoring. ACS Appl. Mater. Interfaces 2019, 11, 6483–6490. [Google Scholar] [CrossRef]
- Gupta, L.K.; Kumar, K.; Yadav, B.C.; Yadav, T.P.; Dzhardimalieva, G.I.; Uflyand, I.E. Shripal Comparative Study on Humidity Sensing Abilities of Synthesized Mono and Poly Rhodium Acryl Amide Tin Oxide (RhAAm/SnO2) Nanocomposites. Sens. Actuators Phys. 2021, 330, 112839. [Google Scholar] [CrossRef]
- Feng, D.; Zheng, H.; Sun, H.; Li, J.; Xi, J.; Deng, L.; Guo, Y.; Jiang, B.; Zhao, J. SnO2/Polyvinyl Alcohol Nanofibers Wrapped Tilted Fiber Grating for High-Sensitive Humidity Sensing and Fast Human Breath Monitoring. Sens. Actuators B Chem. 2023, 388, 133807. [Google Scholar] [CrossRef]
- Wang, S.; Yan, H.; Zheng, H.; He, Y.; Guo, X.; Li, S.; Yang, C. Fast Response Humidity Sensor Based on Chitosan/Graphene Oxide/Tin Dioxide Composite. Sens. Actuators B Chem. 2023, 392, 134070. [Google Scholar] [CrossRef]
- Shukla, S.K.; Shukla, S.K.; Govender, P.P.; Agorku, E.S. A Resistive Type Humidity Sensor Based on Crystalline Tin Oxide Nanoparticles Encapsulated in Polyaniline Matrix. Microchim. Acta 2016, 183, 573–580. [Google Scholar] [CrossRef]
- Su, P.-G.; Huang, L.-N. Humidity Sensors Based on TiO2 Nanoparticles/Polypyrrole Composite Thin Films. Sens. Actuators B Chem. 2007, 123, 501–507. [Google Scholar] [CrossRef]
- Shukla, S.K. Synthesis and Characterization of Polypyrrole Grafted Cellulose for Humidity Sensing. Int. J. Biol. Macromol. 2013, 62, 531–536. [Google Scholar] [CrossRef]
- Chethan, B.; Prakash, H.G.R.; Ravikiran, Y.T.; Vijayakumari, S.C.; Thomas, S. Polypyyrole Based Core-Shell Structured Composite Based Humidity Sensor Operable at Room Temperature. Sens. Actuators B Chem. 2019, 296, 126639. [Google Scholar] [CrossRef]
- Sun, A.; Huang, L.; Li, Y. Study on Humidity Sensing Property Based on TiO2 Porous Film and Polystyrene Sulfonic Sodium. Sens. Actuators B Chem. 2009, 139, 543–547. [Google Scholar] [CrossRef]
- Tong, X.; Wang, H.; Ding, H.; Li, J.; Zhao, H.; Lin, Z.; Xi, H.; Zhang, X. Flexible Humidity Sensors Based on Multidimensional Titanium Dioxide/Cellulose Nanocrystals Composite Film. Nanomaterials 2022, 12, 1970. [Google Scholar] [CrossRef]
- Irawati, N.; Abdullah, T.N.R.; Rahman, H.A.; Ahmad, H.; Harun, S.W. PMMA Microfiber Loop Resonator for Humidity Sensor. Sens. Actuators Phys. 2017, 260, 112–116. [Google Scholar] [CrossRef]
- Sun, A.; Huang, H.; Chu, C.; Li, Y. Effect of the Pore Size of TiO2 Porous Film on Humidity Sensitive Properties of TiO2/NaPSS Composite Films. Sens. Actuators B Chem. 2011, 160, 1335–1339. [Google Scholar] [CrossRef]
- Han, K.; Li, Y. Flexible Parallel-Type Capacitive Humidity Sensors Based on the Composite of Polyimide Aerogel and Graphene Oxide with Capability of Detecting Water Content Both in Air and Liquid. Sens. Actuators B Chem. 2024, 401, 135050. [Google Scholar] [CrossRef]
- Guo, L.; Jiang, H.-B.; Shao, R.-Q.; Zhang, Y.-L.; Xie, S.-Y.; Wang, J.-N.; Li, X.-B.; Jiang, F.; Chen, Q.-D.; Zhang, T.; et al. Two-Beam-Laser Interference Mediated Reduction, Patterning and Nanostructuring of Graphene Oxide for the Production of a Flexible Humidity Sensing Device. Carbon 2012, 50, 1667–1673. [Google Scholar] [CrossRef]
- Ravikiran, Y.T.; Chethan, B.; Prasad, V.; Raj Prakash, H.G.; Prashantkumar, M.; Tiwari, S.K.; Thomas, S. Polypyrrole/Reduced Graphene Oxide Composite as a Low-Cost Novel Sensing Material for Fast-Response Humidity Sensor. Mater. Chem. Phys. 2023, 303, 127800. [Google Scholar] [CrossRef]
- Jin, G.; Sun, M.; Gao, Y.; Zhou, X.; Wei, C.; Lyu, L. A CNFs/MWCNTs Aerogel Film-Based Humidity Sensor with Directionally Aligned Porous Structure for Substantially Enhancing Both Sensitivity and Response Speed. Chem. Eng. J. 2023, 473, 145304. [Google Scholar] [CrossRef]
- Wu, K.; Guan, X.; Hou, Z.; Liu, L.; Zhao, H.; Liu, S.; Fei, T.; Zhang, T. Humidity Sensors Based on Metal Organic Frameworks Derived Polyelectrolyte Films. J. Colloid Interface Sci. 2021, 602, 646–653. [Google Scholar] [CrossRef]
- Khan, S.A.; Saqib, M.; Khan, M.; Rehman, M.M.; Rahman, S.A.; Kim, W.Y. Wide-Range, Fast-Responsive Humidity Sensor Based on In2Se3/PEDOT:PSS Nanocomposite. ACS Appl. Electron. Mater. 2023, 5, 4473–4484. [Google Scholar] [CrossRef]
- Huang, L.; Yang, Y.; Ti, P.; Su, G.; Yuan, Q. Graphene Oxide Quantum Dots Attached on Wood-Derived Nanocellulose to Fabricate a Highly Sensitive Humidity Sensor. Carbohydr. Polym. 2022, 288, 119312. [Google Scholar] [CrossRef]
- Duan, Z.; Jiang, Y.; Tai, H. Recent Advances in Humidity Sensors for Human Body Related Humidity Detection. J. Mater. Chem. C 2021, 9, 14963–14980. [Google Scholar] [CrossRef]
- Su, L.; Vélez, P.; Casacuberta, P.; Muñoz-Enano, J.; Martín, F. Microwave Humidity Sensor for Early Detection of Sweat and Urine Leakage. Electronics 2023, 12, 2276. [Google Scholar] [CrossRef]
- Jeong, W.; Song, J.; Bae, J.; Nandanapalli, K.R.; Lee, S. Breathable Nanomesh Humidity Sensor for Real-Time Skin Humidity Monitoring. ACS Appl. Mater. Interfaces 2019, 11, 44758–44763. [Google Scholar] [CrossRef]
- Park, S.-J.; Kim, M.-H.; Ha, T.-J. All-Printed Wearable Humidity Sensor with Hydrophilic Polyvinylpyrrolidone Film for Mobile Respiration Monitoring. Sens. Actuators B Chem. 2023, 394, 134395. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, L.; Yang, Y.; Li, L.; Lin, B.; Fu, L.; Xu, C. Flexible, Sensitive and Rapid Humidity-Responsive Sensor Based on Rubber/Aldehyde-Modified Sodium Carboxymethyl Starch for Human Respiratory Detection. Carbohydr. Polym. 2023, 306, 120625. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, J.; Lou, J.; Yao, H.; Zhao, C. Fast Response Humidity Sensor Based on Hyperbranched Zwitterionic Polymer for Respiratory Monitoring and Non-Contact Human Machine Interface. Chem. Eng. J. 2023, 471, 144582. [Google Scholar] [CrossRef]
- Feron, S.; Cordero, R.R.; Damiani, A.; Jackson, R.B. Climate Change Extremes and Photovoltaic Power Output. Nat. Sustain. 2021, 4, 270–276. [Google Scholar] [CrossRef]
- Veers, P.; Sethuraman, L.; Keller, J. Wind-Power Generator Technology Research Aims to Meet Global-Wind Power Ambitions. Joule 2020, 4, 1861–1863. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.-H. Emerging Trends in Global Freshwater Availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Cooley, S.W.; Ryan, J.C.; Smith, L.C. Human Alteration of Global Surface Water Storage Variability. Nature 2021, 591, 78–81. [Google Scholar] [CrossRef]
- Liu, X.; Gao, H.; Ward, J.E.; Liu, X.; Yin, B.; Fu, T.; Chen, J.; Lovley, D.R.; Yao, J. Power Generation from Ambient Humidity Using Protein Nanowires. Nature 2020, 578, 550–554. [Google Scholar] [CrossRef]
- Li, P.; Su, N.; Wang, Z.; Qiu, J. A Ti3C2Tx MXene-Based Energy-Harvesting Soft Actuator with Self-Powered Humidity Sensing and Real-Time Motion Tracking Capability. ACS Nano 2021, 15, 16811–16818. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, S.; Wang, Z.; Jiang, J. Asymmetric Self-Powered Cellulose-Based Aerogel for Moisture-Electricity Generation and Humidity Sensing. Chem. Eng. J. 2024, 486, 150203. [Google Scholar] [CrossRef]
- Zhang, M.; Duan, Z.; Zhang, B.; Yuan, Z.; Zhao, Q.; Jiang, Y.; Tai, H. Electrochemical Humidity Sensor Enabled Self-Powered Wireless Humidity Detection System. Nano Energy 2023, 115, 108745. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, B.; Zhang, M.; Yuan, Z.; Jiang, Y.; Tai, H. High-Performance Electrochemical Power Generation Humidity Sensor Based on NaCl/Sodium Alginate Humidity Sensing Electrolyte and Cu/Zn Electrodes for Visual Humidity Indication and Respiratory Patterns Detection. Sens. Actuators B Chem. 2024, 409, 135585. [Google Scholar] [CrossRef]
- Facile Primary Battery-Based Humidity Sensor for Multifunctional Application. Sens. Actuators B Chem. 2022, 370, 132369. [CrossRef]
- Zu, Y.; Hu, J.; Yang, M.; Duan, Z.; Zhang, M.; Yuan, Z.; Jiang, Y.; Tai, H. Electrochemical Power Generation Humidity Sensor Based on WS2 Nanoflakes. Sens. Actuators B Chem. 2024, 405, 135325. [Google Scholar] [CrossRef]
- Duan, Z.; Yuan, Z.; Jiang, Y.; Zhao, Q.; Huang, Q.; Zhang, Y.; Liu, B.; Tai, H. Power Generation Humidity Sensor Based on Primary Battery Structure. Chem. Eng. J. 2022, 446, 136910. [Google Scholar] [CrossRef]
Sensing Materials | Sensor Type | Range (% RH) | Sensitivity /Response | Response/ Recovery Times (s) | Hysteresis (%) | Reference |
---|---|---|---|---|---|---|
PAN/PEI | QCM | 30–75 | 164 Hz/% RH | 13/7 | - | [47] |
SA-PAN | QCM | 0–97 | 63.33 Hz/% RH | 14.5/2.5 | 1.6 | [48] |
GG/EC-PVP | QCM | 0–97 | 55.72 Hz/% RH | 26/2 | 2.8 | [50] |
CA/KGM | QCM | 0–97 | - | 12.3/0.1 | 0.64 | [49] |
PPy/CS | QCM | 0–97 | - | 13/2 | 1.68 | |
NaSPF/PDEB | SAW | 20–85 | ~0.4 kHz/% RH | - | - | [51] |
QC-PVP/PPy | Impedance | 33–97 | - | 33/110 | 5 | [61] |
QC-PVP/PANI | Impedance | 1–98 | 10,000 | 24/35 | 3 | [62] |
PEI/TA | Impedance | 35–90 | 29,900 | 28/12 | 2 | [58] |
Cellulose/PPy | Capacitance | 27.8–92.4 | 0.0852 pF/% RH | <416 | - | [63] |
Sensing Materials | Sensor Type | Range (% RH) | Sensitivity /Response | Response/ Recovery Times (s) | Hsteresis (%) | Reference |
---|---|---|---|---|---|---|
MCM-41/PPy | Capacitance | 11–95 | 119 pF/% RH | 915/100 | - | [71] |
MCM-41/PEDOT | Capacitance | 11–95 | 10,000 | 165/115 | 6 | [72] |
Cu-ZnS /PANI | Capacitance | 30–90 | 12 pF/% RH | 42/24 | 1.2 | [73] |
HNTs/PI | Capacitance | 10–90 | 0.87 pF/% RH | 12/8 | 2.18 | [38] |
P(VDF-TrFE) | Capacitance | 50–90 | - | 3.693/3.43 | 9.1 | [74] |
PI-Nanoforest | Capacitance | 10–90 | - | 8/5 | - | [76] |
PANI/PVB-Nanofiber | SAW | 20–90 | 75 kHz/% RH | 1/2 | - | [77] |
PMMA-nanofiber | Optical fiber | 35–85 | 0.28 | 16/126 | - | [78] |
PVA/PEDOT:PSS-nanofiber | Optical fiber | 20–80 | −0.990 nm/% RH | - | - | [79] |
Sensing Materials | Sensor Type | Range (% RH) | Sensitivity /Response | Response/ Recovery Times (s) | Hsteresis (%) | Reference |
---|---|---|---|---|---|---|
SnO2/PANI | Impedance | 5–95 | 0.22 kΩ/% RH | 26/30 | - | [94] |
SnO2/PVA | Optical fiber | 35–75 | 0.43 dB/% RH | 0.067/0.087 | - | [92] |
Ta2O5/PPy | Impedance | 11–97 | 0.044 kΩ/% RH | 6/7 | 2 | [97] |
TiO2/NaPSS | Impedance | 11–95 | 100,000 | 2/20 | - | [98] |
Co3O4/PSS | Impedance | 11–98 | ~1.5 MΩ/% RH | 37/23 | - | [82] |
TiO2/CNC | Resistance | 11–97 | ~190 | 34/18 | - | [99] |
PMMA/ZnO2 | Optical fiber | 20–89 | 0.1746 dBm/% RH | - | - | [100] |
Sensing Materials | Sensor Type | Range (% RH) | Sensitivity /Response | Response/ Recovery Times (s) | Hsteresis (%) | Reference |
---|---|---|---|---|---|---|
PI/GO | Capacitance | 11–98 | 1000 | 39/37 | - | [102] |
rGO/PPy | Resistance | 11–97 | 0.042 Ω/% RH | 2/4 | 4 | [104] |
CNFs/CNT | Resistance | 0–75 | 71.5% | 18/47 | - | [105] |
PVA/Mxene | Resistance | 11–97 | 40 | 0.9/6.3 | - | [2] |
SA/Mxene | Capacitance | 11–97 | 131.4% | 9.38/12.94 | - | [11] |
UIO-66-S3-NH-AA | Impedance | 33–95 | 1000 | 3.1/1.5 | - | [106] |
PEDOT:PSS/In2Se3 | Capacitance | 5–95 | 0.177 μF/ % RH | 1.2/1.9 | - | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, J.; Tan, R.; Feng, M.; Shen, W.; Lv, D.; Song, W. Humidity Sensing Using Polymers: A Critical Review of Current Technologies and Emerging Trends. Chemosensors 2024, 12, 230. https://doi.org/10.3390/chemosensors12110230
Qian J, Tan R, Feng M, Shen W, Lv D, Song W. Humidity Sensing Using Polymers: A Critical Review of Current Technologies and Emerging Trends. Chemosensors. 2024; 12(11):230. https://doi.org/10.3390/chemosensors12110230
Chicago/Turabian StyleQian, Jintian, Ruiqin Tan, Mingxia Feng, Wenfeng Shen, Dawu Lv, and Weijie Song. 2024. "Humidity Sensing Using Polymers: A Critical Review of Current Technologies and Emerging Trends" Chemosensors 12, no. 11: 230. https://doi.org/10.3390/chemosensors12110230
APA StyleQian, J., Tan, R., Feng, M., Shen, W., Lv, D., & Song, W. (2024). Humidity Sensing Using Polymers: A Critical Review of Current Technologies and Emerging Trends. Chemosensors, 12(11), 230. https://doi.org/10.3390/chemosensors12110230