Nanomaterial-Based Electrochemical Sensors for the Detection of Pharmaceutical Drugs
Abstract
:1. Introduction
1.1. Electrochemical Methods
1.2. Electrochemical Sensors
2. Novel Materials for Sensors
2.1. Significance of Nanomaterials in Electrochemical Sensing
2.2. Advanced Materials for Electrodes
2.3. Sensing Systems That Are Integrated into Both Paper and Textiles
2.4. Self-Propelled Micro- and Nanomachines
2.5. Self-Powered Biofuel Cells
2.6. Regulatory Standards and Current Challenges
3. Nanomaterials for Electrochemical Sensing
3.1. Carbon-Based Nanomaterials
3.1.1. Carbon Nanotubes
3.1.2. Graphene and Graphene Oxide
3.2. Noble Metal Nanomaterials
3.3. Metal–Carbon Nanocomposites
3.4. TiO2-Supported Nanomaterials
3.5. Conductive Polymers
4. Drug Detection Using Electrochemical Sensors and Biosensors
4.1. Anti-Inflammatory Drugs
4.1.1. Naproxen
4.1.2. Ibuprofen
4.1.3. Aspirin
4.1.4. Diclofenac and Celecoxib
4.2. Antidepressants
4.2.1. Fluoxetine
4.2.2. Paroxetine
4.2.3. Sertraline
4.2.4. Venlafaxine
4.2.5. TCAs
4.3. Antibacterial Medications
4.3.1. Penicillin
4.3.2. Tetracycline
4.3.3. Kanamycin
4.3.4. Chloramphenicol
4.4. Antifungal Drugs
4.4.1. Natamycin
4.4.2. Fluconazole
4.4.3. Ketoconazole
4.4.4. Tolnaftate
4.4.5. Clioquinol
4.5. Antiviral Medicines
4.5.1. Acyclovir
4.5.2. Ganciclovir (GCV)
4.5.3. Zanamivir (ZAV)
4.5.4. Valacyclovir (VCV) and Acetaminophen
4.6. Anticancer Medication
4.6.1. Taxol
4.6.2. Doxorubicin
4.6.3. Imatinib and Flutamide
5. Limitations
5.1. Signal Interference
- Interference from complex biological fluids
- ii.
- Nanomaterial instability
- iii.
- Mitigation strategies
5.2. Durability Under Clinical Conditions
5.3. Challenges in Scaling for Widespread Use
6. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Ahmed, M.U.; Hossain, M.M.; Safavieh, M.; Wong, Y.L.; Rahman, I.A.A.; Zourob, M.; Tamiya, E. Toward the development of smart and low-cost point-of-care biosensors based on screen printed electrodes. Crit. Rev. Biotechnol. 2016, 36, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491. [Google Scholar] [CrossRef] [PubMed]
- Malode, S.J.; Pandiaraj, S.; Alodhayb, A.; Shetti, N.P. Carbon Nanomaterials for Biomedical Applications: Progress and Outlook. ACS Appl. Bio Mater. 2024, 7, 752–777. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.; Barbosa, A.I.; Rebelo, R.; Kwon, I.K.; Reis, R.L.; Correlo, V.M. Skin-integrated wearable systems and implantable biosensors: A comprehensive review. Biosensors 2020, 10, 79. [Google Scholar] [CrossRef]
- Joseph, J.I.; Eisler, G.; Diaz, D.; Khalf, A.; Loeum, C.; Torjman, M.C. Glucose sensing in the subcutaneous tissue: Attempting to correlate the immune response with continuous glucose monitoring accuracy. Diabetes Technol. Ther. 2018, 20, 321–324. [Google Scholar] [CrossRef]
- Ruiz-Valdepeñas Montiel, V.; Sempionatto, J.R.; Campuzano, S.; Pingarrón, J.M.; Esteban Fernández de Ávila, B.; Wang, J. Direct electrochemical biosensing in gastrointestinal fluids. Anal. Bioanal. Chem. 2019, 411, 4597–4604. [Google Scholar] [CrossRef]
- Yu, Y.; Nyein, H.Y.Y.; Gao, W.; Javey, A. Flexible electrochemical bioelectronics: The rise of in situ bioanalysis. Adv. Mater. 2020, 32, e1902083. [Google Scholar] [CrossRef]
- Kassal, P.; Steinberg, M.D.; Steinberg, I.M. Wireless chemical sensors and biosensors: A review. Sens. Actuators B 2018, 266, 228–245. [Google Scholar] [CrossRef]
- da Silva Neves, M.M.P.; González-García, M.B.; Hernández-Santos, D.; Fanjul-Bolado, P. Future trends in the market for electrochemical biosensing. Curr. Opin. Electrochem. 2018, 10, 107–111. [Google Scholar] [CrossRef]
- Kannan, P.K.; Late, D.J.; Morgan, H.; Rout, C.S. Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 2015, 7, 13293–13312. [Google Scholar] [CrossRef]
- Manasa, G.; Mascarenhas, R.J.; Shetti, N.P.; Malode, S.J.; Mishra, A.; Basu, S.; Aminabhavi, T.M. Skin Patchable Sensor Surveillance for Continuous Glucose Monitoring. ACS Appl. Bio Mater. 2022, 5, 945–970. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.B.C.; Mohd-Naim, N.F.; Tamiya, E.; Ahmed, M.U. Trends in paper-based electrochemical biosensors: From design to application. Anal. Sci. 2018, 34, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Economou, A.; Kokkinos, C.; Prodromidis, M. Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing. Lab Chip 2018, 18, 1812–1830. [Google Scholar] [CrossRef]
- Chałupniak, A.; Morales-Narváez, E.; Merkoçi, A. Micro and nanomotors in diagnostics. Adv. Drug Deliv. Rev. 2015, 95, 104–116. [Google Scholar] [CrossRef]
- Evtugyn, G.; Hianik, T. Electrochemical DNA sensors and aptasensors based on electropolymerized materials and polyelectrolyte complexes. TrAC Trends Anal. Chem. 2016, 79, 168–178. [Google Scholar] [CrossRef]
- Cole, M.A.; Seabrook, G.R. On the horizon—The value and promise of the global pipeline of Alzheimer’s disease therapeutics. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2020, 6, e12009. [Google Scholar] [CrossRef]
- National Center for Health Statistics. With Chartbook on Long-Term Trends in Health; Health Communications; Department of Health And Human Services: Washington, DC, USA, 2017. [Google Scholar]
- Hall, A.J.; Logan, J.E.; Toblin, R.L.; Kaplan, J.A.; Kraner, J.C.; Bixler, D.; Crosby, A.E.; Paulozzi, L.J. Patterns of abuse among unintentional Pharmaceutical overdose fatalities. JAMA 2008, 300, 2613–2620. [Google Scholar] [CrossRef]
- Kalambate, P.K.; Dhanjai; Sinha, A.; Li, Y.; Shen, Y.; Huang, Y. An electrochemical sensor for ifosfamide, acetaminophen, domperidone, and sumatriptan based on self-assembled MXene/MWCNT/chitosan nanocomposite thin film. Mikrochim. Acta 2020, 187, 402. [Google Scholar] [CrossRef] [PubMed]
- Kalambate, P.K.; Gadhari, N.S.; Li, X.; Rao, Z.; Navale, S.T.; Shen, Y.; Patil, V.R.; Huang, Y. Recent advances in MXene–based electrochemical sensors and biosensors. TrAC Trends Anal. Chem. 2019, 120, 115643. [Google Scholar] [CrossRef]
- Malode, S.J.; Bilagi, S.; Shetti, N.P. Synthesis of biowaste-derived nanostructured material for the nanomolar detection of glucose: Biological sample analysis. J. Pharm. Biomed. Anal. Open 2024, 3, 100026. [Google Scholar] [CrossRef]
- Prabhu, K.; Malode, S.J.; Shetti, N.P.; Pandiaraj, S.; Alodhayb, A.; Muthuramamoorthy, M. Electro-sensing layer constructed of a WO3/CuO nanocomposite, for the electrochemical determination of 2-phenylphenol fungicide. Environ. Res. 2023, 236, 116710. [Google Scholar] [CrossRef] [PubMed]
- García-Guzmán, J.J.; Pérez-Ràfols, C.; Cuartero, M.; Crespo, G.A. Microneedle based electrochemical (Bio)Sensing: Towards decentralized and continuous health status monitoring. TrAC Trends Anal. Chem. 2021, 135, 116148. [Google Scholar] [CrossRef]
- Malode, S.J.; Joshi, M.; Shetti, N.P.; Alshehri, M.A. Biowaste-derived carbon nanomaterial-based sensor for the electrochemical analysis of mefenamic acid in the presence of CTAB. Mater. Today Commun. 2024, 39, 108723. [Google Scholar] [CrossRef]
- Ilager, D.; Malode, S.J.; Kulkarni, R.M.; Shetti, N.P. Electrochemical sensor based on Ca-doped ZnO nanostructured carbon matrix for algicide dichlone. J. Hazard. Mater. Adv. 2022, 7, 100132. [Google Scholar] [CrossRef]
- Prabhu, K.; Malode, S.J.; Shetti, N.P.; Pandiaraj, S.; Alodhayb, A.; Muthuramamoorthy, M. Determination of fungicide at Ru-doped TiO2/reduced graphene oxide decorated electrochemical sensor. Microchem. J. 2023, 197, 109722. [Google Scholar] [CrossRef]
- Chung, T.H.; Dhar, B.R. Paper-based platforms for microbial electrochemical cell-based biosensors: A review. Biosens. Bioelectron. 2021, 192, 113485. [Google Scholar] [CrossRef]
- Sreenivasulu, M.; Malode, S.J.; Alqarni, S.A.; Shetti, N.P. Graphitic carbon nitride (g–C3N4)-based electrochemical sensors for the determination of antiviral drug acyclovir. Mater. Chem. Phys. 2024, 312, 128650. [Google Scholar] [CrossRef]
- Goud, K.Y.; Reddy, K.K.; Khorshed, A.; Kumar, V.S.; Mishra, R.K.; Oraby, M.; Ibrahim, A.H.; Kim, H.; Gobi, K.V. Electrochemical diagnostics of infectious viral diseases: Trends and challenges. Biosens. Bioelectron. 2021, 180, 113112. [Google Scholar] [CrossRef]
- Wang, T.; Wang, H.; Kou, Z.; Liang, W.; Luo, X.; Verpoort, F.; Zeng, Y.J.; Zhang, H. Xenes as an emerging 2D monoelemental family: Fundamental electrochemistry and energy applications. Adv. Funct. Mater. 2020, 30, 2002885. [Google Scholar] [CrossRef]
- Prabhu, K.; Malode, S.J.; Shetti, N.P.; Pandiaraj, S.; Alodhayb, A.N. Electro-sensing of biocide and its applications based on the Ru-doped TiO2 and reduced GO nanocomposite fabricated electrode. Mater. Chem. Phys. 2024, 317, 129152. [Google Scholar] [CrossRef]
- González-Hernández, J.; Alvarado-Gámez, A.L.; Arroyo-Mora, L.E.; Barquero-Quirós, M. Electrochemical determination of novel psychoactive substances by differential pulse voltammetry using a microcell for boron-doped diamond electrode and screen-printed electrodes based on carbon and platinum. J. Electroanal. Chem. 2021, 882, 114994. [Google Scholar] [CrossRef]
- Vernekar, P.R.; Shetti, N.P.; Shanbhag, M.M.; Malode, S.J.; Malladi, R.S.; Reddy, K.R. Novel layered structured bentonite clay-based electrodes for electrochemical sensor applications. Microchem. J. 2020, 159, 105441. [Google Scholar] [CrossRef]
- Motoc, S.; Manea, F.; Baciu, A.; Vasilie, S.; Pop, A. Highly sensitive and simultaneous electrochemical determinations of non-steroidal anti-inflammatory drugs in water using nanostructured carbon-based paste electrodes. Sci. Total Environ. 2022, 846, 157412. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Chen, Q.; Zhao, Y.; Ge, C.; Lin, S.; Liao, J. Cost-effective, wireless, and portable smartphone-based electrochemical system for on-site monitoring and spatial mapping of the nitrite contamination in water. Sens. Actuators B 2020, 319, 128221. [Google Scholar] [CrossRef]
- Jain, R.; Dwivedi, A.; Mishra, R. Stripping voltammetric behaviour of toxic drug nitrofurantoin. J. Hazard. Mater. 2009, 169, 667–672. [Google Scholar] [CrossRef]
- Malode, S.J.; Prabhu, K.; Pandiaraj, S.; Alodhayb, A.N.; Shetti, N.P. Development of a 1D-WO3 and CuO nanocomposite modified electrode for enhanced detection of 2,4-dichlorophenol. Surf. Interfaces 2024, 54, 105219. [Google Scholar] [CrossRef]
- Duraisamy, M.; Elancheziyan, M.; Eswaran, M.; Ganesan, S.; Ansari, A.A.; Rajamanickam, G.; Lee, S.L.; Tsai, P.-C.; Chen, Y.-H.; Ponnusamy, V.K. Novel ruthenium-doped vanadium carbide/polymeric nanohybrid sensor for acetaminophen drug detection in human blood. Int. J. Biol. Macromol. 2023, 244, 125329. [Google Scholar] [CrossRef]
- Sebastian, N.; Yu, W.-C.; Balram, D.; Hong, G.-T.; Alharthi, S.S.; Al-Saidi, H.M. Ultrasensitive detection and photocatalytic degradation of polyketide drug tetracycline in environment and food samples using dual-functional Ag doped zinc ferrite embedded functionalized carbon nanofibers. Chemosphere 2023, 348, 140692. [Google Scholar] [CrossRef]
- Prabhu, K.; Malode, S.J.; Veerapur, R.S.; Shetti, N.P. Clay-based carbon sensor for electro-oxidation of nimesulide. Mater. Chem. Phys. 2021, 272, 124992. [Google Scholar] [CrossRef]
- Goyal, R.N.; Gupta, V.K.; Oyama, M.; Bachheti, N. Differential pulse voltammetric determination of atenolol in pharmaceutical formulations and urine using nanogold modified indium tin oxide electrode. Electrochem. Commun. 2005, 8, 65–70. [Google Scholar] [CrossRef]
- Kalambate, P.K.; Noiphung, J.; Rodthongkum, N.; Larpant, N.; Thirabowonkitphithan, P.; Rojanarata, T.; Hasan, M.; Huang, Y.; Laiwattanapaisal, W. Nanomaterials-based electrochemical sensors and biosensors for the detection of non-steroidal anti-inflammatory drugs. TrAC Trends Anal. Chem. 2021, 143, 116403. [Google Scholar] [CrossRef]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Malode, S.J.; Keerthi, P.K.; Shetti, N.P.; Kulkarni, R.M. Electroanalysis of carbendazim using MWCNT/Ca-ZnO modified electrode. Electroanalysis 2020, 32, 1590–1599. [Google Scholar] [CrossRef]
- Shetti, N.P.; Shanbhag, M.M.; Malode, S.J.; Srivastava, R.K.; Reddy, K.R. Amberlite XAD-4 modified electrodes for highly sensitive electrochemical determination of nimesulide in human urine. Microchem. J. 2020, 153, 104389. [Google Scholar] [CrossRef]
- Malode, S.J.; Navada, N.; Shanbhag, M.M.; Shetti, N.P.; Alodhayb, A.N.; Alzahrani, K.E.; Albrithen, H.; Assaifan, A.K. Fe-doped WO3-Modified sensor for the improved electrochemical detection of curcumin. Microchem. J. 2024, 111655. [Google Scholar] [CrossRef]
- Malode, S.J.; Ullagaddimath, P.V.; Shanbhag, M.S.; Alodhayb, A.N.; Alzahrani, K.E.; Albrithen, H.; Assaifan, A.K.; Shetti, N.P. Nickel-doped tungsten fabricated electrode for electrochemical sensing of amoxicillin. Inorg. Chem. Commun. 2024, 169, 112970. [Google Scholar] [CrossRef]
- Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.I.; Fiore, V.; et al. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids. Sensors 2016, 16, 780. [Google Scholar] [CrossRef] [PubMed]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Majder-Łopatka, M.; Węsierski, T.; Dmochowska, A.; Salamonowicz, Z.; Polanczyk, A. The influence of hydrogen on the indications of the electrochemical carbon monoxide sensors. Sustainability 2019, 12, 14. [Google Scholar] [CrossRef]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar]
- McGrath, M.J.; Scanaill, C.N. Sensing and sensor fundamentals. In Sensor Technologies: Healthcare, Wellness, and Environmental Applications; Springer: Berlin/Heidelberg, Germany, 2013; pp. 15–50. [Google Scholar]
- Aragay, G.; Merkoçi, A. Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta 2012, 84, 49–61. [Google Scholar] [CrossRef]
- Pumera, M.; Escarpa, A. Nanomaterials as electrochemical detectors in microfluidics and CE: Fundamentals, designs, and applications. Electrophoresis 2009, 30, 3315–3323. [Google Scholar] [CrossRef]
- Yang, C.; Denno, M.E.; Pyakurel, P.; Venton, B.J. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Anal. Chim. Acta 2015, 887, 17–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhu, S.; Luque, R.; Han, S.; Hu, L.; Xu, G. Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem. Soc. Rev. 2016, 45, 715–752. [Google Scholar] [CrossRef]
- Eksin, E.; Zor, E.; Erdem, A.; Bingol, H. Electrochemical monitoring of biointeraction by graphene-based material modified pencil graphite electrode. Biosens. Bioelectron. 2017, 92, 207–214. [Google Scholar] [CrossRef]
- Hasoň, S.; Daňhel, A.; Schwarzová-Pecková, K.; Fojta, M. Carbon electrodes in electrochemical analysis of biomolecules and bioactive substances: Roles of surface structures and chemical groups. In Nanotechnology and Biosensors; Elsevier: Amsterdam, The Netherlands, 2018; pp. 51–111. [Google Scholar]
- Heydari-Bafrooei, E.; Ensafi, A.A. Typically used carbon-based nanomaterials in the fabrication of biosensors. In Electrochemical Biosensors; Elsevier: Amsterdam, The Netherlands, 2019; pp. 77–98. [Google Scholar]
- Torrinha, Á.; Amorim, C.G.; Montenegro, M.C.B.S.M.; Araújo, A.N. Biosensing based on pencil graphite electrodes. Talanta 2018, 190, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Baluchová, S.; Daňhel, A.; Dejmková, H.; Ostatná, V.; Fojta, M.; Schwarzová-Pecková, K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules—A review. Anal. Chim. Acta 2019, 1077, 30–66. [Google Scholar] [CrossRef]
- Svítková, J.; Ignat, T.; Švorc, Ľ.; Labuda, J.; Barek, J. Chemical modification of boron-doped diamond electrodes for applications to biosensors and biosensing. Crit. Rev. Anal. Chem. 2016, 46, 248–256. [Google Scholar] [CrossRef]
- Sharma, V.K.; Jelen, F.; Trnkova, L. Functionalized solid electrodes for electrochemical biosensing of purine nucleobases and their analogues: A review. Sensors 2015, 15, 1564–1600. [Google Scholar] [CrossRef]
- Liu, D.; Luo, Q.; Deng, F.; Li, Z.; Li, B.; Shen, Z. Ultrasensitive electrochemical biosensor based on the oligonucleotide self-assembled monolayer-mediated immunosensing interface. Anal. Chim. Acta 2017, 971, 26–32. [Google Scholar] [CrossRef]
- Levrie, K.; Jans, K.; Vos, R.; Ardakanian, N.; Verellen, N.; Van Hoof, C.; Lagae, L.; Stakenborg, T. Multiplexed site-specific electrode functionalization for multitarget biosensors. Bioelectrochemistry 2016, 112, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Integrated affinity biosensing platforms on screen-printed electrodes electrografted with diazonium salts. Sensors 2018, 18, 675. [Google Scholar] [CrossRef]
- Rashid, J.I.A.; Yusof, N.A. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. Sens. Bio Sens. Res. 2017, 16, 19–31. [Google Scholar] [CrossRef]
- Švorc, Ĺ.; Jambrec, D.; Vojs, M.; Barwe, S.; Clausmeyer, J.; Michniak, P.; Marton, M.; Schuhmann, W. Doping level of boron-doped diamond electrodes controls the grafting density of functional groups for DNA assays. ACS Appl. Mater. Interfaces 2015, 7, 18949–18956. [Google Scholar] [CrossRef] [PubMed]
- Mahshid, S.S.; Vallée-Bélisle, A.; Kelley, S.O. Biomolecular steric hindrance effects are enhanced on nanostructured microelectrodes. Anal. Chem. 2017, 89, 9751–9757. [Google Scholar] [CrossRef]
- Mishra, R.K.; Nunes, G.S.; Souto, L.; Marty, J.L. Screen printed technology-an application towards biosensor development. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 487–498. [Google Scholar]
- Couto, R.A.S.; Lima, J.L.F.C.; Quinaz, M.B. Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta 2016, 146, 801–814. [Google Scholar] [CrossRef]
- Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Screen-printed electrodes: Promising paper and wearable transducers for (Bio)sensing. Biosensors 2020, 10, 76. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, K.; Vestergaard, M.C.; Tamiya, E. Printable electrochemical biosensors: A focus on screen-printed electrodes and their application. Sensors 2016, 16, 1761. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.; Burns, A.; Lenigk, R.; Gettings, R.; Ashe, J.; Porter, A.; McCaul, M.; Barrett, R.; Diamond, D.; White, P.; et al. A wearable patch for continuous monitoring of sweat electrolytes during exertion. Lab Chip 2018, 18, 2632–2641. [Google Scholar] [CrossRef]
- Xia, Y.; Si, J.; Li, Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosens. Bioelectron. 2016, 77, 774–789. [Google Scholar] [CrossRef]
- Punjiya, M.; Moon, C.H.; Matharu, Z.; Nejad, H.R.; Sonkusale, S. A threedimensional electrochemical paper-based analytical device for low-cost diagnostics. Analyst 2018, 143, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Nery, E.W.; Kubota, L.T. Sensing approaches on paper-based devices: A review. Anal. Bioanal. Chem. 2013, 405, 7573–7595. [Google Scholar] [CrossRef]
- Ratajczak, K.; Stobiecka, M. High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydr. Polym. 2020, 229, 115463. [Google Scholar] [CrossRef]
- Mettakoonpitak, J.; Boehle, K.; Nantaphol, S.; Teengam, P.; Adkins, J.A.; Srisa-art, M.; Henry, C.S. Electrochemistry on paper-based analytical devices: A review. Electroanalysis 2016, 28, 1420–1436. [Google Scholar] [CrossRef]
- Brunauer, A.; Ates, H.C.; Dincer, C.; Früh, S.M. Integrated paper-based sensing devices for diagnostic applications. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 397–450. [Google Scholar]
- Sjöberg, P.; Määttänen, A.; Vanamo, U.; Novell, M.; Ihalainen, P.; Andrade, F.J.; Bobacka, J.; Peltonen, J. Paper-based potentiometric ion sensors constructed on ink-jet printed gold electrodes. Sens. Actuators B 2016, 224, 325–332. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, W.; Qin, J.; Lin, B. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by Wax printing. Anal. Chem. 2010, 82, 329–335. [Google Scholar] [CrossRef]
- Lu, J.; Ge, S.; Ge, L.; Yan, M.; Yu, J. Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim. Acta 2012, 80, 334–341. [Google Scholar] [CrossRef]
- Windmiller, J.R.; Wang, J. Wearable electrochemical sensors and biosensors: A review. Electroanalysis 2013, 25, 29–46. [Google Scholar] [CrossRef]
- Kim, J.; De Araujo, W.R.; Samek, I.A.; Bandodkar, A.J.; Jia, W.; Brunetti, B.; Paixão, T.R.L.C.; Wang, J. Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem. Commun. 2015, 51, 41–45. [Google Scholar] [CrossRef]
- Wang, J.; Gao, W. Nano/Microscale motors: Biomedical opportunities and challenges. ACS Nano 2012, 6, 5745–5751. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Torkamani, A.; Butte, A.J.; Glicksberg, B.S.; Schuller, B.; Rodriguez, B.; Ting, D.S.W.; Bates, D.; Schaden, E.; Peng, H.; et al. The promise of digital healthcare technologies. Front. Public Health 2023, 11, 1196596. [Google Scholar] [CrossRef] [PubMed]
- Baylis, J.R.; Yeon, J.H.; Thomson, M.H.; Kazerooni, A.; Wang, X.; John, A.E.S.S.; Lim, E.B.; Chien, D.; Lee, A.; Zhang, J.Q.; et al. Self-propelled particles that transport cargo through flowing blood and halt hemorrhage. Sci. Adv. 2015, 1, e1500379. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Peng, F.; Sui, X.; Men, Y.; White, P.B.; Van Hest, J.C.M.; Wilson, D.A. Selfpropelled supramolecular nanomotors with temperature-responsive speed regulation. Nat. Chem. 2017, 9, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Beltrán-Gastélum, M.; Karshalev, E.; De Ávila, B.E.-F.; Zhou, J.; Ran, D.; Angsantikul, P.; Fang, R.H.; Wang, J.; Zhang, L. Biomimetic micromotor enables active delivery of antigens for oral vaccination. Nano Lett. 2019, 19, 1914–1921. [Google Scholar] [CrossRef]
- Gibbs, J.G.; Zhao, Y.P. Design and characterization of rotational multicomponent catalytic nanomotors. Small 2009, 5, 2304–2308. [Google Scholar] [CrossRef]
- Wu, Y.; Si, T.; Lin, X.; He, Q. Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors. Chem. Commun. 2015, 51, 511–514. [Google Scholar] [CrossRef]
- Orozco, J.; Cortés, A.; Cheng, G.; Sattayasamitsathit, S.; Gao, W.; Feng, X.; Shen, Y.; Wang, J. Molecularly imprinted polymer-based catalytic micromotors for selective protein transport. J. Am. Chem. Soc. 2013, 135, 5336–5339. [Google Scholar] [CrossRef]
- Gao, W.; Sattayasamitsathit, S.; Orozco, J.; Wang, J. Highly efficient catalytic microengines: Template electrosynthesis of polyaniline/platinum microtubes. J. Am. Chem. Soc. 2011, 133, 11862–11864. [Google Scholar] [CrossRef]
- Gibbs, J.G.; Fragnito, N.A.; Zhao, Y. Asymmetric Pt/Au coated catalytic micromotors fabricated by dynamic shadowing growth. Appl. Phys. Lett. 2010, 97, 253107. [Google Scholar] [CrossRef]
- Lee, T.C.; Alarcón-Correa, M.; Miksch, C.; Hahn, K.; Gibbs, J.G.; Fischer, P. Selfpropelling nanomotors in the presence of strong Brownian forces. Nano Lett. 2014, 14, 2407–2412. [Google Scholar] [CrossRef]
- Safdar, M.; Khan, S.U.; Jänis, J. Progress toward catalytic micro- and nanomotors for biomedical and environmental applications. Adv. Mater. 2018, 30, e1703660. [Google Scholar] [CrossRef] [PubMed]
- Guix, M.; Mayorga-Martinez, C.C.; Merkoçi, A. Nano/micromotors in (bio)chemical science applications. Chem. Rev. 2014, 114, 6285–6322. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Luan, J.; Wang, M.; Chen, Y.; Wilson, D.A.; Peng, F.; Tu, Y. Fabrication of self-propelled micro- and nanomotors based on Janus structures. Chemistry 2019, 25, 8663–8680. [Google Scholar] [CrossRef]
- Tejeda-Rodríguez, J.A.; Núñez, A.; Soto, F.; García-Gradilla, V.; Cadena-Nava, R.; Wang, J.; Vazquez-Duhalt, R. Virus-based nanomotors for cargo delivery. ChemNanoMat 2019, 5, 194–200. [Google Scholar] [CrossRef]
- Kashyap, D.; Venkateswaran, P.S.; Dwivedi, P.K.; Kim, Y.H.; Kim, G.M.; Sharma, A.; Goel, S. Recent developments in enzymatic biofuel cell: Towards implantable integrated micro-devices. Int. J. Nanoparticles 2015, 8, 61–81. [Google Scholar] [CrossRef]
- Gonzalez-Solino, C.; Di Lorenzo, M.D. Enzymatic fuel cells: Towards self-powered implantable and wearable diagnostics. Biosensors 2018, 8, 11. [Google Scholar] [CrossRef]
- Garcia, S.O.; Ulyanova, Y.V.; Figueroa-Teran, R.; Bhatt, K.H.; Singhal, S.; Atanassov, P. Wearable sensor system powered by a biofuel cell for detection of lactate levels in sweat. ECS J. Solid State Sci. Technol. 2016, 5, M3075–M3081. [Google Scholar] [CrossRef]
- Göbel, G.; Beltran, M.L.; Mundhenk, J.; Heinlein, T.; Schneider, J.; Lisdat, F. Operation of a carbon nanotube-based glucose/oxygen biofuel cell in human body liquids—Performance factors and characteristics. Electrochim. Acta 2016, 218, 278–284. [Google Scholar] [CrossRef]
- Majdecka, D.; Draminska, S.; Janusek, D.; Krysinski, P.; Bilewicz, R. A self-powered biosensing device with an integrated hybrid biofuel cell for intermittent monitoring of analytes. Biosens. Bioelectron. 2018, 102, 383–388. [Google Scholar] [CrossRef]
- Gai, P.; Song, R.; Zhu, C.; Ji, Y.; Wang, W.; Zhang, J.R.; Zhu, J.J. Ultrasensitive selfpowered cytosensors based on exogenous redox-free enzyme biofuel cells as point-ofcare tools for early cancer diagnosis. Chem. Commun. 2015, 51, 16763–16766. [Google Scholar] [CrossRef]
- Wang, X.; Falk, M.; Ortiz, R.; Matsumura, H.; Bobacka, J.; Ludwig, R.; Bergelin, M.; Gorton, L.; Shleev, S. Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes. Biosens. Bioelectron. 2012, 31, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Di Trocchio, L.; Carucci, C.; Sindhu, K.R.; Morel, C.; Lachaud, J.L.; Bichon, S.; Gounel, S.; Mano, N.; Boiziau, C.; Dejous, C.; et al. Wireless in vivo biofuel cell monitoring. IEEE J. Electromagn. RF Microw. Med. Biol. 2020, 5, 25–34. [Google Scholar] [CrossRef]
- Qian, L.; Durairaj, S.; Prins, S.; Chen, A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens. Bioelectron. 2021, 175, 112836. [Google Scholar] [CrossRef] [PubMed]
- Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Reddy, C.V.; Reddy, K.R. Novel biosensor for efficient electrochemical detection of Methdilazine using carbon nanotubes-modified electrodes. Mater. Res. Express 2019, 6, 116308. [Google Scholar] [CrossRef]
- Prabhu, K.; Malode, S.J.; Shetti, N.P.; Kulkarni, R.M. Analysis of herbicide and its applications through a sensitive electrochemical technique based on MWCNTs/ZnO/CPE fabricated sensor. Chemosphere 2022, 287, 132086. [Google Scholar] [CrossRef]
- Patil, V.B.; Malode, S.J.; Tuwar, S.M.; Alshehri, M.A.; Shetti, N.P. Development of a glycine-MWCNT nanohybrid via electropolymerization for enhanced electrochemical detection of diclofenac. J. Mol. Struct. 2024, 1319, 139535. [Google Scholar] [CrossRef]
- Malode, S.J.; Prabhu, K.K.K.; Shetti, N.P. Electrocatalytic behavior of a heterostructured nanocomposite sensor for aminotriazole. New J. Chem. 2020, 44, 19376–19384. [Google Scholar] [CrossRef]
- Manasa, G.; Mascarenhas, R.J.; Shetti, N.P.; Malode, S.J.; Aminabhavi, T.M. Biomarkers for early diagnosis of ovarian carcinoma. ACS Biomater. Sci. Eng. 2022, 8, 2726–2746. [Google Scholar] [CrossRef]
- Malode, S.J.; Shetti, N.P. New generation biomarkers for the detection of prostate cancer. Biosens. Bioelectron. 2022, 12, 100250. [Google Scholar] [CrossRef]
- Prabhu, K.; Malode, S.J.; Shetti, N.P. Carbon-based electrochemical sensor for the detection and degradation of persistent toxic carbendazim in soil and water sample. Electrocatalysis 2022, 14, 88–97. [Google Scholar] [CrossRef]
- Manasa, G.; Bhakta, A.K.; Bafna, J.; Mascarenhas, R.J.; Malode, S.J.; Shetti, N.P. An amperometric sensor composed of carbon hybrid-structure for the degradation of aminotriazole herbicide. Environ. Res. 2022, 212, 113541. [Google Scholar] [CrossRef] [PubMed]
- Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kulkarni, R.M. Fabrication of MWCNTs and Ru doped TiO2 nanoparticles composite carbon sensor for biomedical application. ECS J. Solid State Sci. Technol. 2018, 7, Q3070–Q3078. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Ghosh, D.; Pati, S.K. Trapping and sensing of hazardous insecticides by chemically modified single walled carbon nanotubes. Phys. Chem. Chem. Phys. 2017, 19, 24059–24066. [Google Scholar] [CrossRef] [PubMed]
- Duclaux, L. Review of the doping of carbon nanotubes (multiwalled and single-walled). Carbon 2002, 40, 1751–1764. [Google Scholar] [CrossRef]
- Donarelli, M.; Ottaviano, L. 2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and Phosphorene. Sensors 2018, 18, 3638–3683. [Google Scholar] [CrossRef]
- Lu, C.; Huang, P.J.J.; Liu, B.; Ying, Y.; Liu, J. Comparison of Graphene Oxide and Reduced Graphene Oxide for DNA Adsorption and Sensing. Langmuir 2016, 32, 10776–10783. [Google Scholar] [CrossRef]
- Killedar, L.S.; Shanbhag, M.M.; Manasa, G.; Malode, S.J.; Veerapur, R.S.; Shetti, N.P.; Mascarenhas, R.J.; Kakarla, R.R. An electrochemical sensor based on graphene oxide/cholesterol nanohybrids for the sensitive analysis of cetirizine. J. Environ. Chem. Eng. 2022, 10, 108894. [Google Scholar] [CrossRef]
- Killedar, L.S.; Shanbhag, M.M.; Shetti, N.P.; Malode, S.J.; Veerapur, R.S.; Reddy, K.R. Novel graphene-nanoclay hybrid electrodes for electrochemical determination of theophylline. Microchem. J. 2021, 165, 106115. [Google Scholar] [CrossRef]
- Shanbhag, M.M.; Shetti, N.P.; Malode, S.J.; Veerapur, R.S.; Reddy, K.R. Cholesterol intercalated 2D graphene oxide sheets fabricated sensor for voltammetric analysis of theophylline. FlatChem 2021, 28, 100255. [Google Scholar] [CrossRef]
- Ilager, D.; Malode, S.J.; Shetti, N.P. Development of 2D graphene oxide sheets-based voltammetric sensor for electrochemical sensing of fungicide, carbendazim. Chemosphere 2022, 303, 134919. [Google Scholar] [CrossRef]
- Malode, S.J.; Prabhu, K.; Pollet, B.G.; Kalanur, S.S.; Shetti, N.P. Preparation and performance of WO3/rGO modified carbon sensor for enhanced electrochemical detection of triclosan. Electrochim. Acta 2022, 429, 141010. [Google Scholar] [CrossRef]
- Manasa, G.; Mascarenhas, R.J.; Malode, S.J.; Shetti, N.P. Graphene-based electrochemical immunosensors for early detection of oncomarker carcinoembryonic antigen. Biosens. Bioelectron. 2022, 11, 100189. [Google Scholar] [CrossRef]
- Kong, X.K.; Le Chen, C.L.; Chen, Q.W. Doped graphene for metal-free catalysis. Chem. Soc. Rev. 2014, 43, 2841–2857. [Google Scholar] [CrossRef] [PubMed]
- Ravat, V.; Nongwe, I.; Coville, N.J. N-doped ordered mesoporous carbon supported PdCo nanoparticles for the catalytic oxidation of benzyl alcohol. Micropor. Mesopor. Mater. 2016, 225, 224–231. [Google Scholar] [CrossRef]
- Verma, H.N.; Singh, P.; Chavan, R.M. Gold nanoparticle: Synthesis and characterization. Vet. World 2014, 7, 72–77. [Google Scholar] [CrossRef]
- Dumestre, F.; Chaudret, B.; Amiens, C.; Renaud, P.; Fejes, P. Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)2]2. Science 2004, 303, 821–823. [Google Scholar] [CrossRef]
- White, R.J.; Luque, R.; Budarin, V.L.; Clark, J.H.; Macquarrie, D.J. Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev. 2009, 38, 481–494. [Google Scholar] [CrossRef]
- Nguyen, N.S.; Das, G.; Yoon, H.H. Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea. Biosens. Bioelectron. 2016, 77, 372–377. [Google Scholar] [CrossRef]
- Bai, J.; Zhou, B. Titanium dioxide nanomaterials for sensor applications. Chem. Rev. 2014, 114, 10131–10176. [Google Scholar] [CrossRef]
- Malode, S.J.; Shetti, N.P.; Reddy, K.R. Highly sensitive electrochemical assay for selective detection of aminotriazole based on TiO2/poly (CTAB) modified sensor. Environ. Technol. Innov. 2021, 21, 101222. [Google Scholar] [CrossRef]
- Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Reddy, K.R. Novel heterostructured Ru-doped TiO2/CNTs hybrids with enhanced electrochemical sensing performance for cetirizine. Mater. Res. Express 2019, 6, 115085. [Google Scholar] [CrossRef]
- Killedar, L.; Ilager, D.; Malode, S.J.; Shetti, N.P. Fast and facile electrochemical detection and determination of fungicide carbendazim at titanium dioxide designed carbon-based sensor. Mater. Chem. Phys. 2022, 285, 126131. [Google Scholar] [CrossRef]
- Malode, S.J.; Shabhag, M.S.; Kumari, R.; Dkhar, D.S.; Chandra, P.; Shetti, N.P. Biomass-derived carbon nanomaterials for sensor applications. J. Pharm. Biomed. Anal. 2023, 222, 115102. [Google Scholar] [CrossRef] [PubMed]
- Uzun, L.; Turner, A.P.F. Molecularly-imprinted polymer sensors: Realising their potential. Biosens. Bioelectron. 2016, 76, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Alqarni, S.A.; Hussein, M.A.; Ganash, A.A.; Khan, A. Composite Material–Based Conducting Polymers for Electrochemical Sensor Applications: A Mini Review. BioNanoScience 2020, 10, 351–364. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef]
- Vane, J.R.; Botting, R.M. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am. J. Med. 1998, 104, 2S–8S, Discussion 21S. [Google Scholar] [CrossRef]
- He, Y.; Wang, X.; Huang, W.; Chen, R.; Zhang, W.; Li, H.; Lin, H. Hydrophobic networked PbO2 electrode for electrochemical oxidation of paracetamol drug and degradation mechanism kinetics. Chemosphere 2018, 193, 89–99. [Google Scholar] [CrossRef]
- Shokri, T.; Sadeghi, M.; Hadidi, S.; Mohammadi, S. Efficient fluorescence probe for detection of naproxen in pharmaceutical formulations and water samples using MPA-capped CdTe/ZnS core-shell nanocrystal-neutral red: Experimental and computational studies. J. Photochem. Photobiol. A Chem. 2024, 452, 115545. [Google Scholar] [CrossRef]
- Tarahomi, S.; Rounaghi, G.H.; Daneshvar, L. A novel disposable sensor based on gold digital versatile disc chip modified with graphene oxide decorated with Ag nanoparticles/β-cyclodextrin for voltammetric measurement of naproxen. Sens. Actuators B 2019, 286, 445–450. [Google Scholar] [CrossRef]
- Baj-Rossi, C.; Jost, T.R.; Cavallini, A.; Grassi, F.; De Micheli, G.; Carrara, S. Continuous monitoring of Naproxen by a cytochrome P450-based electrochemical sensor. Biosens. Bioelectron. 2014, 53, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Alagumalai, K.; Babulal, S.M.; Chen, S.; Shanmugam, R.; Yesuraj, J. Electrochemical evaluation of naproxen through Au@f-CNT/GO nanocomposite in environmental water and biological samples. J. Ind. Eng. Chem. 2021, 104, 32–42. [Google Scholar] [CrossRef]
- Díaz, E.; Stożek, S.; Patiño, Y.; Ordóñez, S. Electrochemical degradation of naproxen from water by anodic oxidation with multiwall carbon nanotubes glassy carbon electrode. Water Sci. Technol. 2019, 79, 480–488. [Google Scholar] [CrossRef]
- Kanagasabapathy, M.; Sekar, R. Chronopotentiometric/chronoamperometric transient analysis of naproxen via electrochemically synthesized nano spinel ZnFe2O4 films. J. Electroanal. Chem. 2019, 832, 59–68. [Google Scholar] [CrossRef]
- Hung, C.M.; Huang, C.P.; Chen, S.K.; Chen, C.W.; Dong, C.D. Electrochemical analysis of naproxen in water using poly(l-serine)-modified glassy carbon electrode. Chemosphere 2020, 254, 126686. [Google Scholar] [CrossRef]
- Afzali, M.; Jahromi, Z.; Nekooie, R. Sensitive voltammetric method for the determination of naproxen at the surface of carbon nanofiber/gold/polyaniline nanocomposite modified carbon ionic liquid electrode. Microchem. J. 2019, 145, 373–379. [Google Scholar] [CrossRef]
- Roushani, M.; Shahdost-Fard, F. Fabrication of an ultrasensitive ibuprofen nanoaptasensor based on covalent attachment of aptamer to electrochemically deposited gold-nanoparticles on glassy carbon electrode. Talanta 2015, 144, 510–516. [Google Scholar] [CrossRef]
- Nair, A.S.; Sooraj, M.P. Molecular imprinted polymer-wrapped AgNPs-decorated acid-functionalized graphene oxide as a potent electrochemical sensor for ibuprofen. J. Mater. Sci. 2020, 55, 3700–3711. [Google Scholar] [CrossRef]
- Mutharani, B.; Rajakumaran, R.; Chen, S.; Ranganathan, P.; Chen, T.; Al Farraj, D.A.; Ali, M.A.; Al-Hemaid, F.M.A. Facile synthesis of 3D stone-like copper tellurate (Cu3TeO6) as a new platform for anti-inflammatory drug ibuprofen sensor in human blood serum and urine samples. Microchem. J. 2020, 159, 105378. [Google Scholar] [CrossRef]
- Parlak, C.; Alver, Ö. Adsorption of ibuprofen on silicon decorated fullerenes and single walled carbon nanotubes: A comparative DFT study. J. Mol. Struct. 2019, 1184, 110–113. [Google Scholar] [CrossRef]
- Kruanetr, S.; Pollard, P.; Fernandez, C.; Prabhu, R. Electrochemical oxidation of acetyl salicylic acid and its voltametric sensing in real samples at a sensitive edge plane pyrolytic graphite electrode modified with graphene. Int. J. Electrochem. Sci. 2014, 9, 5699–5711. [Google Scholar] [CrossRef]
- Ghadimi, H.; Tehrani, M.A.; Basirun, W.J.; Aziz, N.J.A.; Mohamed, N.J.; Ghani, S.A. Electrochemical determination of aspirin and caffeine at MWCNTs-poly-4-vinylpyridine composite modified electrode, J. Taiwan Inst. Chem. Eng. 2016, 65, 101–109. [Google Scholar]
- Diouf, A.; Aghoutane, Y.; Burhan, H.; Sen, F.; Bouchikhi, B.; El Bari, N. Tramadol sensing in non-invasive biological fluids using a voltammetric electronic tongue and an electrochemical sensor based on biomimetic recognition. Int. J. Pharm. 2021, 593, 120114. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Bian, X.; Xia, Y.; Zhou, W.; Wang, L.; Fan, S.; Xiong, P.; Zhan, T.; Dai, Q.; Chen, J. Effect of indium doping on the PbO2 electrode for the enhanced electrochemical oxidation of aspirin: An electrode comparative study. Sep. Purif. Technol. 2020, 237, 116321. [Google Scholar] [CrossRef]
- Dandekar, A.A.; Kale, M.; Garimella, H.T.; Banga, A.K. Effect of compromised skin barrier on delivery of diclofenac sodium from brand and generic formulations via microneedles and iontophoresis. Int. J. Pharm. 2022, 628, 122271. [Google Scholar] [CrossRef]
- Sataraddi, S.R.; Patil, S.M.; Bagoji, A.M.; Pattar, V.P.; Nandibewoor, S.T. Electrooxidation of Indomethacin at multiwalled carbon nanotubes-modified GCE and its determination in pharmaceutical dosage form and human biological fluids. Anal. Chem. 2014, 2014, 9. [Google Scholar] [CrossRef]
- Arkan, E.; Karimi, Z.; Shamsipur, M.; Saber, R. Electrochemical determination of celecoxib on a graphene based carbon ionic liquid electrode modified with gold nanoparticles and its application to pharmaceutical analysis. Anal. Sci. 2013, 29, 855–860. [Google Scholar] [CrossRef]
- Shalauddin, M.; Akhter, S.; Basirun, W.J.; Akhtaruzzaman, M.; Mohammed, M.A.; Rahman, N.M.M.A.; Salleh, N.M. Bio-synthesized copper nanoparticle decorated multiwall carbon nanotube-nanocellulose nanocomposite: An electrochemical sensor for the simultaneous detection of acetaminophen and diclofenac sodium. Surf. Interfaces 2022, 34, 102385. [Google Scholar] [CrossRef]
- Honakeri, N.C.; Malode, S.J.; Kulkarni, R.M.; Shetti, N.P. Electrochemical behavior of diclofenac sodium at coreshell nanostructure modified electrode and its analysis in human urine and pharmaceutical samples. Sens. Int. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Alizadeh, T.; Azizi, S. Graphene/graphite paste electrode incorporated with molecularly imprinted polymer nanoparticles as a novel sensor for differential pulse voltammetry determination of fluoxetine. Biosens. Bioelectron. 2016, 81, 198–206. [Google Scholar] [CrossRef]
- Ardelean, M.; Pode, R.; Schoonman, J.; Pop, A.; Manea, F. Fast simultaneous electrochemical detection of tetracycline and fluoxetine in water, W.I.T. Trans. Ecol. Environ. 2017, 216, 213–220. [Google Scholar]
- Ramos, D.L.O.; Freitas, J.M.; Munoz, R.A.A.; Richter, E.M. Simple and rapid voltammetric method for the detection of the synthetic adulterant fluoxetine in weight loss products. J. Electroanal. Chem. 2021, 882, 115028. [Google Scholar] [CrossRef]
- Fasipe, O. Neuropharmacological classification of antidepressant agents based on their mechanisms of action. Arch. Med. Health Sci. D 2018, 6, 81–94. [Google Scholar] [CrossRef]
- Oghli, A.H.; Soleymanpour, A. Polyoxometalate/reduced graphene oxide modified pencil graphite sensor for the electrochemical trace determination of paroxetine in biological and pharmaceutical media. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110407. [Google Scholar] [CrossRef] [PubMed]
- Khosrokhavar, R.; Motaharian, A.; Hosseini, M.R.M.; Mohammadsadegh, S. Screen-printed carbon electrode (SPCE) modified by molecularly imprinted polymer (MIP) nanoparticles and graphene nanosheets for determination of sertraline antidepressant drug. Microchem. J. 2020, 159, 105348. [Google Scholar] [CrossRef]
- Shoja, Y.; Rafati, A.A.; Ghodsi, J. Electropolymerization of Ni–LD metallopolymers on gold nanoparticles enriched multi-walled carbon nanotubes as nano-structure electrocatalyst for efficient voltammetric sertraline detection in human serum. Electrochim. Acta 2016, 203, 281–291. [Google Scholar] [CrossRef]
- Craske, M.G.; Stein, M.B.; Eley, T.C.; Milad, M.R.; Holmes, A.; Rapee, R.M.; Wittchen, H.-U. Anxiety disorders. Nat. Rev. Dis. Primers 2017, 3, 17024. [Google Scholar] [CrossRef]
- Sharafeldin, M.; Bishop, G.W.; Bhakta, S.; El-Sawy, A.; Suib, S.L.; Rusling, J.F. Fe3O4 nanoparticles on graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker proteins. Biosens. Bioelectron. 2017, 91, 359–366. [Google Scholar] [CrossRef]
- Khalilzadeh, M.A.; Tajik, S.; Beitollahi, H.; Venditti, R.A. Green Synthesis of Magnetic Nanocomposite with Iron Oxide Deposited on Cellulose Nanocrystals with Copper (Fe3O4 @CNC/Cu): Investigation of Catalytic Activity for the Development of a Venlafaxine Electrochemical Sensor. Ind. Eng. Chem. Res. 2020, 59, 4219–4228. [Google Scholar] [CrossRef]
- Kerr, G.W.; McGuffie, A.C.; Wilkie, S. Tricyclic antidepressant overdose: A review. Emerg. Med. J. 2001, 18, 236–241. [Google Scholar] [CrossRef]
- Jankowska-Śliwińska, J.; Dawgul, M.; Pijanowska, D.G. DNA-based Electrochemical Biosensor for Imipramine Detection. Procedia Eng. 2015, 120, 574–577. [Google Scholar] [CrossRef]
- Yamuna, A.; Sundaresan, P.; Chen, S.M. Sonochemical preparation of bismuth oxide nanotiles decorated exfoliated graphite for the electrochemical detection of imipramine. Ultrason. Sonochem. 2020, 64, 105014. [Google Scholar] [CrossRef]
- Knihnicki, P.; Wieczorek, M.; Moos, A.; Kościelniak, P.; Wietecha-Posłuszny, R.; Woźniakiewicz, M. Electrochemical sensor for determination of desipramine in biological material. Sens. Actuators B 2013, 189, 37–42. [Google Scholar] [CrossRef]
- Cincotto, F.H.; Golinelli, D.L.C.; Machado, S.A.S.; Moraes, F.C. Electrochemical sensor based on reduced graphene oxide modified with palladium nanoparticles for determination of desipramine in urine samples. Sens. Actuators B 2017, 239, 488–493. [Google Scholar] [CrossRef]
- Sanghavi, B.J.; Srivastava, A.K. Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. Analyst 2013, 138, 1395–1404. [Google Scholar] [CrossRef]
- Li, Z.; Liu, C.; Sarpong, V.; Gu, Z. Multisegment nanowire/nanoparticle hybrid arrays as electrochemical biosensors for simultaneous detection of antibiotics. Biosens. Bioelectron. 2019, 126, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, X.; Li, P.; Huang, Y.; Wang, J.; Zhang, J. Highly sensitive Fe3O4 nanobeads/graphene-based molecularly imprinted electrochemical sensor for 17β-estradiol in water. Anal. Chim. Acta 2015, 884, 106–113. [Google Scholar] [CrossRef]
- Feier, B.; Ionel, I.; Cristea, C.; Săndulescu, R. Electrochemical behaviour of several penicillins at high potential. New J. Chem. 2017, 41, 12947–12955. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, W.; Pei, M.; Ding, F. GR-Fe3O4 NPs and PEDOT-AuNPs composite based electrochemical aptasensor for the sensitive detection of penicillin. Anal. Methods 2016, 8, 4391–4397. [Google Scholar] [CrossRef]
- Wong, A.; Santos, A.M.; Cincotto, F.H.; Moraes, F.C.; Fatibello-Filho, O.; Sotomayor, M.D.P.T. A new electrochemical platform based on low cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices. Talanta 2020, 206, 120252. [Google Scholar] [CrossRef]
- Kirchmann, E.; Earley, R.L.; Welch, L.E. The Electrochemical Detection of Penicillins in Milk. J. Liq. Chromatogr. 1994, 17, 1755–1772. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, P.; Xu, J.; Le Li, L.; Yang, L.; Liu, X.; Liu, S.; Zhou, Y. Electrochemical aptasensor based on a novel flower-like TiO2 nanocomposite for the detection of tetracycline. Sens. Actuators B 2018, 258, 906–912. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, S.; Hu, Y.; Li, Z.; Luo, F.; He, Z. Electrochemical Immunosensor Based on the Chitosan-Magnetic Nanoparticles for Detection of Tetracycline. Food Anal. Methods 2016, 9, 2972–2978. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, H.; Quan, X.; Chen, S. Electrochemical Determination of Tetracycline Using Molecularly Imprinted Polymer Modified Carbon Nanotube-Gold Nanoparticles Electrode. Electroanalysis 2011, 23, 1863–1869. [Google Scholar] [CrossRef]
- Qin, X.; Yin, Y.; Yu, H.; Guo, W.; Pei, M. A novel signal amplification strategy of an electrochemical aptasensor for kanamycin, based on thionine functionalized graphene and hierarchical nanoporous PtCu. Biosens. Bioelectron. 2016, 77, 752–758. [Google Scholar] [CrossRef]
- Yao, Y.; Jiang, C.; Ping, J. Flexible freestanding graphene paper-based potentiometric enzymatic aptasensor for ultrasensitive wireless detection of kanamycin. Biosens. Bioelectron. 2019, 123, 178–184. [Google Scholar] [CrossRef]
- Yi, W.; Li, Z.; Dong, C.; Li, H.W.; Li, J. Electrochemical detection of chloramphenicol using palladium nanoparticles decorated reduced graphene oxide. Microchem. J. 2019, 148, 774–783. [Google Scholar] [CrossRef]
- Chen, H.Y.; Wang, J.; Meng, L.; Yang, T.; Jiao, K. Thin-layered MoS2/polyaniline nanocomposite for highly sensitive electrochemical detection of chloramphenicol. Chin. Chem. Lett. 2016, 27, 231–234. [Google Scholar] [CrossRef]
- Rajaji, U.; Manavalan, S.; Chen, S.M.; Govindasamy, M.; Chen, T.W.; Maiyalagan, T. Microwave-assisted synthesis of europium(III) oxide decorated reduced graphene oxide nanocomposite for detection of chloramphenicol in food samples. Compos. B Eng. 2019, 161, 29–36. [Google Scholar] [CrossRef]
- Aki, C.; Yilmaz, S.; Dilgin, Y.; Yagmur, S.; Suren, E. Electrochemical study of natamycin–analytical application to pharmaceutical dosage forms by differential pulse voltammetry. Pharmazie 2005, 60, 747–750. [Google Scholar]
- Ye, Z.; Yang, L.; Wen, J.; Ye, B. Sensitive determination of natamycin based on a new voltammetric sensor: A single-walled carbon nanotube composite poly(l-serine) film modified electrode. Anal. Methods 2015, 7, 2855–2861. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X.; Heng, Y.; Wang, F. Facile fabrication of 3D graphene–multi walled carbon nanotubes network and its use as a platform for natamycin detection. J. Electroanal. Chem. 2018, 816, 54–61. [Google Scholar] [CrossRef]
- Yousefi, A.; Babaei, A.; Delavar, M. Application of modified screen-printed carbon electrode with MWCNTs-Pt-doped CdS nanocomposite as a sensitive sensor for determination of natamycin in yoghurt drink and cheese. J. Electroanal. Chem. 2018, 822, 1–9. [Google Scholar] [CrossRef]
- Zad, Z.R.; Davarani, S.S.H.; Taheri, A.; Bide, Y. A yolk shell Fe3O4 @PA-Ni@Pd/Chitosan nanocomposite -modified carbon ionic liquid electrode as a new sensor for the sensitive determination of fluconazole in pharmaceutical preparations and biological fluids. J. Mol. Liq. 2018, 253, 233–240. [Google Scholar] [CrossRef]
- Nagatani, N.; Yamanaka, K.; Saito, M.; Koketsu, R.; Sasaki, T.; Ikuta, K.; Miyahara, T.; Tamiya, E. Semi-real time electrochemical monitoring for influenza virus RNA by reverse transcription loop-mediated isothermal amplification using a USB powered portable potentiostat. Analyst 2011, 136, 5143–5150. [Google Scholar] [CrossRef]
- Mielech-Łukasiewicz, K.; Rogińska, K. Voltammetric determination of antifungal agents in pharmaceuticals and cosmetics using boron-doped diamond electrodes. Anal. Methods 2014, 6, 7912–7922. [Google Scholar] [CrossRef]
- Khairy, M.; Khorshed, A.A. Inspection of electrochemical behavior of tolnaftate a topical antifungal agent and its active hydrolysis products by disposable screen-printed carbon electrode. J. Electroanal. Chem. 2020, 871, 114274. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Priya, T.S.; Wang, T.J. Surface Engineering Three-Dimensional Flowerlike Cerium Vanadate Nanostructures Used as Electrocatalysts: Real Time Monitoring of Clioquinol in Biological Samples. ACS Sustain. Chem. Eng. 2019, 7, 16121–16130. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Chen, S.M. Rational Design for the Synthesis of Europium Vanadate-Encapsulated Graphene Oxide Nanocomposite: An Excellent and Efficient Catalyst for the Electrochemical Detection of Clioquinol. ACS Sustain. Chem. Eng. 2019, 7, 4136–4146. [Google Scholar] [CrossRef]
- Wang, P.; Gan, T.; Zhang, J.; Luo, J.; Zhang, S. Polyvinylpyrrolidone-enhanced electrochemical oxidation and detection of acyclovir. J. Mol. Liq. 2013, 177, 129–132. [Google Scholar] [CrossRef]
- Dilgin, D.G.; Karakaya, S. Differential pulse voltametric determination of acyclovir in pharmaceutical preparations using a pencil graphite electrode. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 63, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Naik, R.R.; Kuchinad, G.T.; Reddy, K.R.; Shukla, S.S.; Aminabhavi, T.M. Hetero-nanostructured iron oxide and bentonite clay composite assembly for the determination of an antiviral drug acyclovir. Microchem. J. 2020, 155, 104727. [Google Scholar] [CrossRef]
- Uslu, B.; Doǧan, B.; Özkan, S.A. Electrochemical studies of ganciclovir at glassy carbon electrodes and its direct determination in serum and pharmaceutics by square wave and differential pulse voltammetry. Anal. Chim. Acta 2005, 537, 307–313. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhi, J.; Zhang, X.; Xu, M. Electrochemical studies of ganciclovir at boron-doped nanocrystalline diamond electrodes. Diam. Relat. Mater. 2011, 20, 18–22. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Karimian, N. Fabrication of a highly selective and sensitive voltammetric ganciclovir sensor based on electropolymerized molecularly imprinted polymer and gold nanoparticles on multiwall carbon nanotubes/glassy carbon electrode. Sens. Actuators B 2015, 215, 471–479. [Google Scholar] [CrossRef]
- Skrzypek, S. Electrochemical Studies of the Neuraminidase Inhibitor Zanamivir and its Voltammetric Determination in Spiked Urine. Electroanalysis 2010, 22, 2339–2346. [Google Scholar] [CrossRef]
- Wahyuni, W.T.; Ivandini, T.A.; Jiwanti, P.K.; Saepudin, E.; Gunlazuardi, J.; Einaga, Y. Electrochemical Behavior of Zanamivir at Gold-Modified Boron-Doped Diamond Electrodes for an Application in Neuraminidase Sensing. Electrochemistry 2015, 83, 357–362. [Google Scholar] [CrossRef]
- Adhikari, B.R.; Govindhan, M.; Schraft, H.; Chen, A. Simultaneous and sensitive detection of acetaminophen and valacyclovir based on two dimensional graphene nanosheets. J. Electroanal. Chem. 2016, 780, 241–248. [Google Scholar] [CrossRef]
- Holgado, T.M.M.; Quintana, M.C.; Pinilla, J.M. Electrochemical study of taxol (paclitaxel) by cathodic stripping voltammetry: Determination in human urine. Microchem. J. 2003, 74, 99–104. [Google Scholar] [CrossRef]
- Taei, M.; Hassanpour, F.; Salavati, H.; Sadeghi, Z.; Alvandi, H. Highly Selective Electrochemical Determination of Taxol Based on ds-DNA-Modified Pencil Electrode. Appl. Biochem. Biotechnol. 2015, 176, 344–358. [Google Scholar] [CrossRef]
- Tajik, S.; Taher, M.A.; Beitollahi, H.; Torkzadeh-Mahani, M. Electrochemical determination of the anticancer drug taxol at a ds-DNA modified pencil-graphite electrode and its application as a label-free electrochemical biosensor. Talanta 2015, 134, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Hahn, Y.; Lee, H.Y. Electrochemical behavior and square wave voltammetric determination of doxorubicin hydrochloride. Arch. Pharm. Res. 2004, 27, 31–34. [Google Scholar] [CrossRef]
- Bahner, N.; Reich, P.; Frense, D.; Menger, M.; Schieke, K.; Beckmann, D. An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Anal. Bioanal. Chem. 2018, 410, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Chen, Y.; Zhao, Q.; Shuang, S.; Dong, C. Electrochemical Sensor for Ultrasensitive Determination of Doxorubicin and Methotrexate Based on Cyclodextrin-Graphene Hybrid Nanosheets. Electroanalysis 2011, 23, 2400–2407. [Google Scholar] [CrossRef]
- Hatamluyi, B.; Es’haghi, Z. A layer-by-layer sensing architecture based on dendrimer and ionic liquid supported reduced graphene oxide for simultaneous hollow-fiber solid phase microextraction and electrochemical determination of anti-cancer drug imatinib in biological samples. J. Electroanal. Chem. 2017, 801, 439–449. [Google Scholar] [CrossRef]
- Rodríguez, J.; Castañeda, G.; Lizcano, I. Electrochemical sensor for leukemia drug imatinib determination in urine by adsorptive striping square wave voltammetry using modified screen-printed electrodes. Electrochim. Acta 2018, 269, 668–675. [Google Scholar] [CrossRef]
- Chen, H.; Luo, K.; Li, K. A facile electrochemical sensor based on NiO-ZnO/MWCNT-COOH modified GCE for simultaneous quantification of Imatinib and Itraconazole. J. Electrochem. Soc. 2019, 166, B697–B707. [Google Scholar] [CrossRef]
- Tseng, T.W.; Rajaji, U.; Chen, T.W.; Chen, S.M.; Huang, Y.C.; Mani, V.; Jothi, A.I. Sonochemical synthesis and fabrication of perovskite type calcium titanate interfacial nanostructure supported on graphene oxide sheets as a highly efficient electrocatalyst for electrochemical detection of chemotherapeutic drug. Ultrason. Sonochem. 2020, 69, 105242. [Google Scholar] [CrossRef]
- Diouf, A.; Moufid, M.; Bouyahya, D.; Osterlund, L.; Bari, N.E.; Bouchikhi, B. An electrochemical sensor based on chitosan capped with gold nanoparticles combined with a voltammetric electronic tongue for quantitative aspirin detection in human physiological fluids and tablets. Mater. Sci. Eng. C 2020, 110, 110665. [Google Scholar] [CrossRef]
- Feyziazar, M.; Hasanzadeh, M.; Farshchi, F.; Saadati, A.; Hassanpour, S. An innovative method to electrochemical branching of chitosan in the presence of copper nanocubics on the surface of glassy carbon and its electrical behaviour study: A new platform for pharmaceutical analysis using elec trochemical sensors. React. Funct. Polym. 2020, 146, 104402. [Google Scholar] [CrossRef]
- Afkhami, A.; Bahiraei, A.; Madrakian, T. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater. Sci. Eng. C 2016, 59, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Kimuam, K.; Rodthongkum, N.; Ngamrojanavanich, N.; Chailapakul, O.; Ruecha, N. Single step preparation of platinum nanoflowers/reduced gra phene oxide electrode as a novel platform for diclofenac sensor. Microchem. J. 2020, 155, 104744. [Google Scholar] [CrossRef]
- Karuppiah, C.; Cheemalapati, S.; Chen, S.-M.; Palanisamy, S. Carboxyl-func tionalized graphene oxide-modified electrode for the electrochemical determination of nonsteroidal anti-inflammatory drug diclofenac. Ionics 2015, 21, 231–238. [Google Scholar] [CrossRef]
- Qian, L.; Thiruppathi, A.R.; Elmahdy, R.; van der Zalm, J.; Chen, A. Graphene oxide based electrochemical sensors for the sensitive detection of pharmaceutical drug naproxen. Sensors 2020, 20, 1252. [Google Scholar] [CrossRef] [PubMed]
- Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kulkarni, R.M.; Kulkarni, D.B.; Teggi, R.A.; Joshi, V.V. Electrooxidation and determination of flufenamic acid at graphene oxide modified carbon electrode. Surf. Interfaces 2017, 9, 107–113. [Google Scholar] [CrossRef]
- Aguilar-Lira, G.Y.; Alvarez-Romero, G.A.; Zamora-Suarez, A.; Pardave, M.P.; Rojas-Hernandez, A.; Rodríguez-Avila, J.A.; Paez-Hernandez, M.E. New insights on diclofenac electrochemistry using graphite as working electrode. J. Electroanal. Chem. 2017, 794, 182–188. [Google Scholar] [CrossRef]
- Okoth, O.K.; Yan, K.; Liu, L.; Zhang, J. Simultaneous electrochemical determi nation of paracetamol and diclofenac based on poly (diallyldimethylammonium chloride) functionalized graphene. Electroanalysis 2016, 28, 76–82. [Google Scholar] [CrossRef]
- Bayraktepe, D.E.; Yazan, Z. Application of single-use electrode based on nano clay and MWCNT for simultaneous determination of acetaminophen, ascorbic acid and acetylsalicylic acid in pharmaceutical dosage. Electro Anal. 2020, 32, 1263–1272. [Google Scholar] [CrossRef]
- Montes, R.H.O.; Lima, A.R.; Cunha, R.R.; Guedes, T.J.; Santos, W.T.P.D.; Nossol, E.; Richter, E.M.; Munoz, R.A.A. Size effects of multi-walled carbon nanotubes on the electrochemical oxidation of propionic acid derivative drugs: Ibuprofen and naproxen. J. Electroanal. Chem. 2016, 775, 342–349. [Google Scholar] [CrossRef]
- Khaled, E.; Kamel, M.S.; Hassan, H.N.A.; Haroun, A.A.; Youssef, A.M.; Enein, H.Y.A. Novel multi walled carbon nanotubes/b-cyclodextrin based carbon paste electrode for flow injection potentiometric determination of piroxicam. Talanta 2012, 97, 96–102. [Google Scholar] [CrossRef]
- Kong, F.-Y.; Li, R.-F.; Yao, L.; Wang, Z.-X.; Lv, W.-X.; Wang, W. Pt nanoparticles supported on nitrogen doped reduced graphene oxide-single wall carbon nanotubes as a novel platform for highly sensitive electrochemical sensing of piroxicam. J. Electroanal. Chem. 2019, 832, 385–391. [Google Scholar] [CrossRef]
- Nigovic, B.; Juric, S.; Mornar, A. Electrochemical determination of nepafenac topically applied nonsteroidal anti-inflammatory drug using graphene nanoplatelets-carbon nanofibers modified glassy carbon electrode. J. Electroanal. Chem. 2018, 817, 30–35. [Google Scholar] [CrossRef]
- Dondo, N.; Shumba, M.; Moyo, M.; Nyoni, S. Simultaneous non-steroidal anti inflammatory drug electrodetection on nitrogen doped carbon nanodots and nanosized cobalt phthallocyanine conjugate modified glassy carbon electrode. Arab. J. Chem. 2020, 13, 7809–7819. [Google Scholar] [CrossRef]
- Sivakumar, M.; Sakthivel, M.; Chen, S.-M.; Cheng, Y.-H.; Pandi, K. One-step synthesis of porous copper oxide for electrochemical sensing of acetylsali cylic acid in the real sample. J. Colloid Interface Sci. 2017, 501, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Bukkitgar, S.D.; Shetti, N.P.; Kulkarni, R.M.; Halbhavi, S.B.; Wasim, M.; Mylar, M.; Durgi, P.S.; Chirmure, S.S. Electrochemical oxidation of nimesulide in aqueous acid solutions based on TiO2 nanostructure modified electrode as a sensor. J. Electroanal. Chem. 2016, 778, 103–109. [Google Scholar] [CrossRef]
- Muthusankar, G.; Sasikumar, R.; Chen, S.-M.; Gopu, G.; Sengottuvelan, N.; Rwei, S.P. Electrochemical synthesis of nitrogen-doped carbon quantum dots decorated copper oxide for the sensitive and selective detection of non steroidal anti-inflammatory drug in berries. J. Colloid Interface Sci. 2018, 523, 191–200. [Google Scholar] [CrossRef]
- Jain, R.; Shrivastava, S. A Graphene-polyaniline-Bi2O3 hybrid film sensor for voltammetric quantification of anti-inflammatory drug etodolac. J. Electrochem. Soc. 2014, 161, H189–H194. [Google Scholar] [CrossRef]
- Sakthivel, M.; Ramaraj, S.; Chen, S.-M.; Dinesh, B. Synthesis of rose like struc tured LaCoO3 assisted functionalized carbon nanofiber nanocomposite for efficient electrochemical detection of anti-inflammatory drug 4 aminoantipyrine. Electrochim. Acta 2018, 260, 571–581. [Google Scholar] [CrossRef]
- Khoobi, A.; Soltani, N.; Aghaei, M. Computational design and multivariate statistical analysis for electrochemical sensing platform of iron oxide nano particles in sensitive detection of anti-inflammatory drug diclofenac in bio logical fluids. J. Alloys Compd. 2020, 831, 154715. [Google Scholar] [CrossRef]
- Dehdashti, A.; Babaei, A. Highly sensitive electrochemical sensor based on Pt doped NiO Nanoparticles/MWCNTs nanocomposite modified electrode for simultaneous sensing of piroxicam and amlodipine. Electroanalysis 2020, 32, 1017–1024. [Google Scholar] [CrossRef]
- Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Reddy, K.R.; Shukla, S.S.; Aminabhavi, T.M. Electrochemical behavior of flufenamic acid at Amberlite XAD-4 resin and silver-doped titanium dioxide/Amberlite XAD-4resin modified carbon electrodes. Colloids Surf. B 2019, 177, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kakarla, R.R.; Shukla, S.S.; Aminabhavi, T.M. Sensors based on ruthenium-doped TiO2 nanoparticles loaded into multi walled carbon nanotubes for the detection of flufenamic acid and mefenamic acid. Anal. Chim. Acta 2019, 1051, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cao, Z.; Zhang, G.; Yan, Y.; Yang, X.; Chang, J.; Song, Y.; Jia, Y.; Pan, P.; Mi, W.; et al. An electrochemical sensor based on plasma treated zinc oxide nanoflowers for the simultaneous detection of dopa mine and diclofenac sodium. Microchem. J. 2020, 158, 105237. [Google Scholar] [CrossRef]
- Monsef, R.; Salavati-Niasari, M. Hydrothermal architecture of Cu5V2O10 nanostructures as new electro-sensing catalysts for voltammetric quantifi cation of mefenamic acid in pharmaceuticals and biological samples. Biosens. Bioelectr. 2021, 178, 113017. [Google Scholar] [CrossRef] [PubMed]
- Parsaee, Z.; Karachi, N.; Abrishamifar, S.M.; Kahkha, M.R.R.; Razavi, R. Silver choline chloride modified graphene oxide: Novel nano-bioelectrochemical sensor for celecoxib detection and CCD-RSM model. Ultrason. Sonochem. 2018, 45, 106–115. [Google Scholar] [CrossRef]
- Bahrani, S.; Razmi, Z.; Ghaedi, M.; Asfaram, A.; Javadian, H. Ultrasound-accel erated synthesis of gold nanoparticles modified choline chloride function alized graphene oxide as a novel sensitive bioelectrochemical sensor: Optimized meloxicam detection using CCD-RSM design and application for human plasma sample. Ultrason. Sonochem. 2018, 42, 776–786. [Google Scholar] [CrossRef]
- Govindasamy, M.; Mani, V.; Chen, S.-M.; Maiyalagan, T.; Selvaraj, S.; Chen, T.-W.; Lee, S.-Y.; Chang, W.-H. Highly sensitive determination of non-steroidal anti inflammatory drug nimesulide using electrochemically reduced graphene oxide nanoribbons. RSC Adv. 2017, 7, 33043–33051. [Google Scholar] [CrossRef]
- Mekassa, B.; Baker, P.G.L.; Chandravanshi, B.S.; Tessema, M. Synthesis, characterization, and preparation of nickel nanoparticles decorated electro chemically reduced graphene oxide modified electrode for electrochemical sensing of diclofenac. J. Solid State Electrochem. 2018, 22, 3607–3619. [Google Scholar] [CrossRef]
- Shalauddin, M.; Akhter, S.; Basirun, W.J.; Bagheri, S.; Anuar, N.S.; Johan, M.R. Hybrid nanocellulose/f-MWCNTs nanocomposite for the electrochemical sensing of diclofenac sodium in pharmaceutical drugs and biological fluids. Electrochim. Acta 2019, 304, 323–333. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Hasan, M.M.; Abdullah, I.H.; Abdellah, A.M.; Yehia, A.M.; Ahmed, N.; Abbas, W.; Allam, N.K. Smart bi-metallic perovskite nanofibers as selective and reusable sensors of nano-level concentrations of non-steroidal anti-inflammatory drugs. Talanta 2018, 185, 344–351. [Google Scholar] [CrossRef]
- Tarlekar, P.; Chatterjee, S. Enhancement in sensitivity of non-steroidal anti inflammatory drug mefenamic acid at carbon nanostructured sensor. J. Electroanal. Chem. 2017, 803, 51–57. [Google Scholar] [CrossRef]
- Coldibeli, B.; Campos, N.S.M.; Salamanca-Neto, C.A.R.; Scremin, J.; Mattos, G.J.; Marcheafave, G.G.; Sartori, E.R. Feasibility of the use of boron-doped diamond electrode coupled to electroanalytical techniques for the individual deter mination of pravastatin and its association with acetylsalicylic acid. J. Electroanal. Chem. 2020, 862, 113987. [Google Scholar] [CrossRef]
- Aguilar-Lira, G.Y.; Gutierrez-Salgado, J.M.; Rojas-Hernandez, A.; Avila, J.A.R.; Paez-Hernandez, M.E.; Alvarez-Romero, G.A. Artificial neural network for the voltamperometric quantification of diclofenac in presence of other nonsteroidal anti-inflammatory drugs and some commercial excipients. J. Electroanal. Chem. 2017, 801, 527–535. [Google Scholar] [CrossRef]
- Bayraktepe, D.E.; Yazan, Z.; Onal, M. Sensitive and cost effective disposable composite electrode based on graphite, nanosmectite and multiwall carbon nanotubes for the simultaneous trace level detection of ascorbic acid and acetylsalicylic acid in pharmaceuticals. Talanta 2019, 203, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Atta, N.F.; Galal, A.; El-Ads, E.H.; Galal, A.E. New insight in fabrication of a sensitive nano-magnetite/glutamine/carbon based electrochemical sensor for determination of aspirin and omeprazole. J. Electrochem. Soc. 2019, 166, B161–B172. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Li, R.-F.; Yao, L.; Wang, Z.-X.; Lv, W.-X.; Kong, F.-Y.; Wang, W. Highly sensitive determination of piroxicam using a glassy carbon electrode modified with silver nanoparticles dotted single walled carbon nanotubes-reduced graphene oxide nanocomposite. J. Electroanal. Chem. 2018, 823, 1–8. [Google Scholar] [CrossRef]
- Lima, A.P.; Nunes, G.L.; Franco, R.G.; Mariano-Neto, R.; Oliveira, G.S.; Richter, E.M.; Nossol, E.; Munoz, R.A.A. Al2O3 microparticles immobilized on glassy-carbon electrode as catalytic sites for the electrochemical oxidation and high detectability of naproxen: Experimental and simulation insights. J. Electroanal. Chem. 2021, 882, 114988. [Google Scholar] [CrossRef]
- Prado, T.M.D.; Badaro, C.C.; Machado, R.G.; Fadini, P.S.; Fatibello-Filho, O.; Moraes, F.C. Using bismuth vanadate/copper oxide nanocomposite as pho toelectrochemical sensor for naproxen determination in sewage. Electro Anal. 2020, 32, 1930–1937. [Google Scholar] [CrossRef]
- Sarhangzadeh, K.; Khatami, A.A.; Jabbari, M.; Bahari, S. Simultaneous deter mination of diclofenac and indomethacin using a sensitive electrochemical sensor based on multiwalled carbon nanotube and ionic liquid nano composite. J. Appl. Electrochem. 2013, 43, 1217–1224. [Google Scholar] [CrossRef]
- Farshchi, F.; Hasanzadeh, M.; Feyziazar, M.; Saadati, A.; Hassanpour, S. Elec tropolymerization of chitosan in the presence of CuNPs on the surface of a copper electrode: An advanced nanocomposite for the determination of mefenamic acid and indomethacin in human plasmasamples and prevention of drug poisoning. Anal. Methods 2020, 12, 1212–1217. [Google Scholar] [CrossRef]
- Torrinha, A.; Martins, M.; Tavares, M.; Delerue-Matos, C.; Morais, S. Carbon paper as a promising sensing material: Characterization and electroanalysis of ketoprofen in wastewater and fish. Talanta 2021, 226, 122111. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, M.; Yaftian, M.R.; Piri, F.; Shayani-Jam, H. A new diclofenac molec ularly imprinted electrochemical sensor based upon a polyaniline/reduced graphene oxide nano-composite. Biosens. Bioelectr. 2018, 122, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Puangjan, A.; Chaiyasith, S.; Wichitpanya, S.; Daengduang, S.; Puttota, S. Elec trochemical sensor based on PANI/MnO2-Sb2O3 nanocomposite for selective simultaneous voltammetric determination of ascorbic acid and acetylsali cylic acid. J. Electroanal. Chem. 2016, 782, 192–201. [Google Scholar] [CrossRef]
- Jaramillo-Aguirre, A.; Espitia-H, J.; Castro-Narvaez, S.; Rojas, G. Voltammetric determination of diclofenac at a PEDOT modified glassy carbon electrode. J. Phys. Conf. Ser 2020, 1541, 12002. [Google Scholar] [CrossRef]
- Wong, A.; Santos, A.M.; Fatibello-Filho, O. Determination of piroxicam and nimesulide using an electrochemical sensor based on reduced graphene oxide and PEDOT: PSS. J. Electroanal. Chem. 2017, 799, 547–555. [Google Scholar] [CrossRef]
- Thiagarajan, S.; Rajkumar, M.; Chen, S.-M. Nano TiO2-PEDOT film for the simultaneous detection of ascorbic acid and diclofena. Int. J. Electrochem. Sci. 2012, 7, 2109–2122. [Google Scholar] [CrossRef]
- Farghali, R.A.; Ahmed, R.A.; Alharthi, A.A. Synthesis and characterization of electrochemical sensor based on polymeric/TiO2 nanocomposite modified with imidizolium ionic liquid for determination of diclofenac. Int. J. Elec Trochem. Sci. 2018, 13, 10390–10414. [Google Scholar] [CrossRef]
- Vernekar, P.R.; Purohit, B.; Shetti, N.P.; Chandra, P. Glucose modified carbon paste sensor in the presence of cationic surfactant for mefenamic acid detection in urine and pharmaceutical samples. Microchem. J. 2021, 160, 105599. [Google Scholar] [CrossRef]
- Bukkitgar, S.D.; Shetti, N.P.; Kulkarni, R.M.; Churmure, S. Nano-silica modified electrode as a sensor for the determination of mefenamic acid-A voltam metric sensor. Mater. Today 2018, 5, 21466–21473. [Google Scholar]
- Hasanzadeh, M.; Shadjou, N.; Saghatforoush, L.; Dolatabadi, J.E.N. Preparation of a new electrochemical sensor based on iron (III) complexes modified carbon paste electrode for simultaneous determination of mefenamic acid and indomethacin. Colloids Surf. B 2012, 92, 91–97. [Google Scholar] [CrossRef]
- Ghobadpour, G.; Farjami, F.; Fasihi, F. Sensitive Electrochemical monitoring of piroxicam in pharmaceuticals using carbon ionic liquid electrode. Curr. Pharm. Anal 2019, 15, 45–50. [Google Scholar] [CrossRef]
- Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Bukkitgar, S.D.; Bagihalli, G.B.; Kulkarni, R.M.; Reddy, K.R. Novel nanoclay-based electrochemical sensor for highly efficient electrochemical sensing nimesulide. J. Phys. Chem. Solids 2020, 137, 109210. [Google Scholar] [CrossRef]
- Oliveira, T.M.B.; Pessoa, G.D.P.; dos Santos, A.B.; de Lima-Neto, P.; Correia, A.N. Simultaneous electrochemical sensing of emerging organic contaminants in full-scale sewage treatment plants. Chem. Eng. J. 2015, 267, 347–354. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, J.; Li, Y. MXene with great adsorption ability toward organic dye: An excellent material for constructing a ratiometric electrochemical sensing platform. ACS Sens. 2019, 4, 2058–2064. [Google Scholar] [CrossRef]
- Roushani, M.; Shahdost-fard, F. Covalent attachment of aptamer onto nano composite as a high performance electrochemical sensing platform: Fabri cation of an ultra-sensitive ibuprofen electrochemical aptasensor. Mater. Sci. Eng. C 2016, 68, 128–135. [Google Scholar] [CrossRef]
- Roushani, M.; Shahdost-fard, F. Ultra-sensitive detection of ibuprofen (IBP) by electrochemical aptasensor using the dendrimer-quantum dot (Den-QD) bioconjugate as an immobilization platform with special features. Mater. Sci. Eng. C 2017, 75, 1091–1096. [Google Scholar] [CrossRef]
- Azadbakht, A.; Derikvandi, Z. Aptamer-based sensor for diclofenac quantifi cation using carbon nanotubes and graphene oxide decorated with magnetic nanomaterials. J. Iran. Chem. Soc. 2018, 15, 595–606. [Google Scholar] [CrossRef]
- Nguyen, T.T.K.; Vu, T.T.; Anquetin, G.; Tran, H.V.; Reisberg, S.; Noel, V.; Mattana, G.; Nguyen, Q.V.; Lam, T.D.; Pham, M.C.; et al. Enzyme-less electrochemical displacement heterogeneous immunosensor for diclofenac detection. Biosens. Bioelectron. 2017, 97, 246–252. [Google Scholar] [CrossRef]
- Derikvand, H.; Roushani, M.; Abbasi, A.R.; Derikvand, Z.; Azadbakht, A. Design of folding-based impedimetric aptasensor for determination of the nonste roidal anti-inflammatory drug. Anal. Biochem. 2016, 513, 77–86. [Google Scholar] [CrossRef]
- Kashefi-Kheyrabadi, L.; Mehrgardi, M.A. Design and construction of a label free aptasensor for electrochemical detection of sodium diclofenac. Biosens. Bioelectron. 2012, 33, 184–189. [Google Scholar] [CrossRef]
- Shahdost-fard, F.; Roushani, M. An impedimetric aptasensor based on water soluble cadmium telluride (CdTe) quantum dots (QDs) for detection of ibuprofen. J. Electroanal. Chem. 2016, 763, 18–24. [Google Scholar] [CrossRef]
- Kassahun, G.S.; Griveau, S.; Juillard, S.; Champavert, J.; Ringuede, A.; Bresson, B.; Tran, Y.; Bedioui, F.; Slim, C. Hydrogel matrix-grafted impedimetric apta sensors for the detection of diclofenac. Langmuir 2020, 36, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Roushani, M.; Shahdost-Fard, F. Applicability of AuNPs@N-GQDs nano composite in the modeling of the amplified electrochemical ibuprofen aptasensing assay by monitoring of riboflavin. Bioelectrochemistry 2019, 126, 38–47. [Google Scholar] [CrossRef] [PubMed]
Electrode | Analyte | LOD (μmol/L) | Linear Range (μmol/L) | Ref. |
---|---|---|---|---|
SPCE/(CSþAuNPs) | Aspirin | 0.03 pg/mL | 1 pg/mL–1 μg/mL | [225] |
CuNCs/CuE | Mefenamic acid | 1 nM | 4 nM–10 mM | [226] |
CS-CuNCs/CuE | Indomethacin | 1 nM | 1 nM–10 mM | [226] |
AuNPs/MWCNTs/GCE | Diclofenac sodium | 0.02 μM | 0.03–200 μM | [227] |
PtNFs/RGO/SPE | Diclofenac | 40 nM | 0.1–100 μM | [228] |
G-DVD/GO/AgNPs@b-CD | Naproxen | 0.023 μM | 0.4–80 μM | [146] |
GO-COOH/GCE | Diclofenac | 0.09 μM | 1.2–400 μM | [229] |
GO/GCE | Naproxen | 1.94 μM | 10 μM–1 μM | [230] |
GO/CPE | Flufenamic acid | 5.0 nM | 0.001–0.09 μM | [231] |
Graphite rod | Diclofenac | 0.76 μM | 2.56–9.5 μM | [232] |
PDDA-GR/GCE | Diclofenac | 0.609 μM | 10–100 μM | [233] |
Nano-sepiolite/MWCNTs/PGE | Paracetamol | 0.018 μM | 0.059–60 μM | [234] |
SD-MWCNTs/GCE | Ibuprofen | 1.9 μM | 10–1000 μM | [235] |
FMWCNTs/b-CD/CPE | Piroxicam | 0.7 μM | 10−6–10−2 M | [236] |
Pt-N-RGO-SWCNTs/GCE | Piroxicam | 5.0 ng/mL | 0.02–20 μg/mL | [237] |
GNP-CNF/GCE | Nepafenac | 63 nM | 4.0–15 μM | [238] |
NDCNDs/CoTAPhPcNPs/GCE | Aspirin | 9.66 nM | - | [239] |
CuO/GCE | ASA | 0.037 μM | 0.1–714 μM | [240] |
TiO2 NPs/GCE | Nimesulide | 3.37 nM | 0.1–40 μM | [241] |
N-CQD/Cu2O/GCE | Aspirin | 0.002 μM | 1–907 μM | [242] |
GNS/PANI/Bi2O3/GCE | Etodolac | 10.03 ngmL−1 | 20–100 ngmL−1 | [243] |
f-CNF/LaCoO3/GCE | 4-AAP | 1.0 nM | 0.001–1374 μM | [244] |
Iron oxide NPs/CPE | Diclofenac | 2.45 nM | 0.01–100 μM | [245] |
Pt-NiO/MWCNTs/GCE | Piroxicam, Amlodipine | 0.061 μM | 0.6–320.0 mM | [246] |
XAD/CPE | Flufenamic acid | 3.6 nM | 0.05–8.0 μM | [247] |
Ag-TiO2/XAD/CPE | Flufenamic acid | 1.2 nM | 0.05–8.0 μM | [247] |
Ru-TiO2/MWCNTs/CPE | Flufenamic acid | 0.68 nM | 0.01–0.9 μM | [248] |
Ru-TiO2/MWCNTs/CPE | Mefenamic acid | 0.45 nM | 0.01–0.9 μM | [248] |
Oxygen plasma-treated ZnO/SPE | Dopamine, Diclofenac | 0.28 μM | 0.1–300 μM | [249] |
Cu5V2O10/CPE | Mefenamic acid | 2.34 nM | 0.01–470 μM | [250] |
AgNPs-ChCl-GO/CPE | Celecoxib | 2.51 nM | 9.6 nM–0.74 μM | [251] |
AuNPs-ChCl-GO/CPE | Meloxicam | 1.008 nM | 9.0 nM–0.85 μM | [252] |
ER-GONRs/SPCE | Nimesulide | 3.50 nM | 0.01 μM–1.50 mM | [253] |
NiNPs/ERGO/GCE | Diclofenac | 0.09 μM | 0.25–125.00 μM | [254] |
f-MWCNTs/NC/GCE | Diclofenac | 0.012 μM | 0.05–250.0 μM | [255] |
BaNb2O6NFs/CPE | Lornoxicam | 0.639 nM | 4.0 nM–0.25 mM | [256] |
SWCNTs/GCE | Mefenamic acid | 13.4 nM | 0.1–35 μM | [257] |
CP-BDDE | Pravastatin | 0.204 μM | 1.08–16.4 μM | [258] |
MWCNTs/CPE | Diclofenac | 0.74 μM | 2.49–10 μM | [259] |
Nano-smectite/MWCNTs/PGE | AA | 0.096 μM | 0.319–60.0 μM | [260] |
Fe3O4/Gluta/MWCNTs/CPE | Aspirin | 11.8 nM | 20–170 μM | [261] |
AuNPs/Graphene/CILE | Celecoxib | 0.2 μM | 0.5–15 μM | [163] |
AgNPs/SWCNTs/rGO/GCE | Piroxicam | 0.5 μM | 1.5–400 μM | [262] |
Al2O3 microparticles/GCE | Naproxen | 12 nM | 50–500 nM | [263] |
FTO/BiVO4/CuO | Naproxen | 5 nM | 5–480 nM | [264] |
MWCNTs-IL/CCE | Indomethacin | 260 nM | 1–50 μM | [265] |
Polychitosan-CuNPs/CuE | Mefenamic acid | 0.004 μM | 0.004–10,000 μM | [266] |
Carbon paper-based sensor | Ketoprofen | 0.11 μM | 0.088–1.96 μM | [267] |
PANI-rGO-MIP/CPE | Diclofenac | 1.1 mgL−1 | 5–80 mgL−1 | [268] |
PANI/MnO2-Sb2O3/FTO | ASA | 0.20 nM | 1.2–228.68 nM | [269] |
PEDOT/GCE | Diclofenac | 9.06 nM | 50.0–250 nM | [270] |
RGO-PEDOT-PSS/GCE | Piroxicam, Nimesulide | 0.1 μM | 0.87–26 μM | [271] |
TiO2-PEDOT/GCE | AA | 0.02 μM | 6–46 μM | [272] |
PEDOT/TiO2/[BMIM]Cl/CPE | Diclofenac | 11.7 nM | 50–100 μM | [273] |
Glucose/CPE | Mefenamic acid | 1.01 nM | 25 nM–500 μM | [274] |
Nano-silica/CPE | Mefenamic acid | 1.0 nM | 0.2–5 μM | [275] |
Fe(III)-SBMCP/CPE | Mefenamic acid | 0.02 μM | 0.05–150 μM | [276] |
Carbon ionic liquid electrode | Piroxicam | 40 μM | 0.2–60 μM | [277] |
Nanoclay/CPE | Nimesulide | 1.01 nM | 0.01–0.35 μM | [278] |
HMDE | Tetrazine | 27.8 nM | 0.02–15.2 μM | [279] |
MB/Cu/Ti3C2Tx/GCE | Piroxicam | 0.05 μM | 0.1–80 μM | [280] |
MB/Apt/MWCNTs/IL/Chitosan/GCE | Ibuprofen | 20 pM | 70 pM–6 μM | [281] |
Apt-Den-QDs/GCE | Ibuprofen | 333 fM | 0.001–12 nM | [282] |
MWCNTs/msCYP1A2-SPE | Naproxen | 16 μM | 9–300 μM | [147] |
Apt/MWCNTs/GO/Fe3O4/GCE | Diclofenac | 33 pM | 100–1300 pM | [283] |
DCF-Probe/E-Probe/GCE | Diclofenac | 0.1 pM | 10−14 M–10−10 M | [284] |
Apt/NiHCF/PtNPs/PEI/MWCNTs/Au | Diclofenac | 2.7 nM | 10–200 nM | [285] |
GCE/AHA/DBA | Diclofenac | 0.27 μM | 0–5 μM | [286] |
Apt/CdTeQD/GCE | Ibuprofen | 16 pM | 0.05–20,000 nM | [287] |
Au/SAM/Hydrogel/Apt | Diclofenac | 0.02 nM | 30 pM−1 μM | [288] |
Apt/AuNPs/GCE | Ibuprofen | 0.5 pM | 0.05–7 nM | [153] |
Apt/AuNPs@N-GQDs/GCE | Ibuprofen | 33.33 aM | 10−7–200 nM | [289] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malode, S.J.; Ali Alshehri, M.; Shetti, N.P. Nanomaterial-Based Electrochemical Sensors for the Detection of Pharmaceutical Drugs. Chemosensors 2024, 12, 234. https://doi.org/10.3390/chemosensors12110234
Malode SJ, Ali Alshehri M, Shetti NP. Nanomaterial-Based Electrochemical Sensors for the Detection of Pharmaceutical Drugs. Chemosensors. 2024; 12(11):234. https://doi.org/10.3390/chemosensors12110234
Chicago/Turabian StyleMalode, Shweta J., Mohammed Ali Alshehri, and Nagaraj P. Shetti. 2024. "Nanomaterial-Based Electrochemical Sensors for the Detection of Pharmaceutical Drugs" Chemosensors 12, no. 11: 234. https://doi.org/10.3390/chemosensors12110234
APA StyleMalode, S. J., Ali Alshehri, M., & Shetti, N. P. (2024). Nanomaterial-Based Electrochemical Sensors for the Detection of Pharmaceutical Drugs. Chemosensors, 12(11), 234. https://doi.org/10.3390/chemosensors12110234