Development of a Chemical Sensor Device for Monitoring Hazardous Gases Generated in the Semiconductor Manufacturing Process
Abstract
:1. Introduction
2. Detection Method for Exhaust Gases
2.1. Acidic and Alkaline Gases
2.2. Volatile Organic Compounds (VOC)
2.3. Flammable and Corrosive Gases
2.4. Greenhouse Gas (GHG)
Materials and Devices | Principle of Detection | Target Gas | Operating Temp. | Response | Response Time | LOD | Ref. |
---|---|---|---|---|---|---|---|
S-SnO2 Sensor | Chemiresistive | C2F6 | 200 °C | 13.44 at 25 ppm | 10 s | 0.5 ppm | [105] |
N-SnO2 Sensor | Chemiresistive | C2F6 | 200 °C | 11.9 at 30 ppm | - | 7 ppb | [106] |
DAPPI-FAIMS 1 | Photoionization | SF6 | RT | 0.25 pA at 3 ppm | - | 0.02 ppm | [107] |
MDP sensor 2 | Optical | SF6 | RT | 2748 μV at 100 ppm | 1 s | 11 ppb | [108] |
CuO/TiO2 sensor | Chemiresistive | N2O | RT | 0.011 at 1 ppm | 36 s | 50 ppb | [109] |
TCN(II)– KOH-rGO/CF sensor 3 | Electrochemical | N2O | RT | −31 μA cm2 at 2 ppm | 5 s | 1 ppm | [110] |
TDLAS sensor 4 | Optical | CO | 40 °C | 133 ppt at 0.1 Hz | 200 s | 133 ppt | [111] |
CaO-ZnO sensor | Chemiresistive | CO2 | 150 °C | 1.60 at 500 ppm | 170 s | 11 ppb | [112] |
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hossain, N.; Mobarak, M.H.; Mimona, M.A.; Islam, M.A.; Hossain, A.; Zohura, F.T.; Chowdhury, M.A. Advances and significances of nanoparticles in semiconductor applications—A review. Results Eng. 2023, 19, 101347. [Google Scholar] [CrossRef]
- Peng, Y. The Relationship between US-China Semiconductor Friction and US National Security: A Realism Perspective. Obrana a Strategie 2024, 24, 41–60. [Google Scholar] [CrossRef]
- Ruberti, M. The chip manufacturing industry: Environmental impacts and eco-efficiency analysis. Sci. Total Environ. 2023, 858, 159873. [Google Scholar] [CrossRef] [PubMed]
- Nagapurkar, P.; Nandy, P.; Nimbalkar, S. Cleaner Chips: Decarbonization in Semiconductor Manufacturing. Sustainability 2024, 16, 218. [Google Scholar] [CrossRef]
- Chen, H.-W. Exposure and health risk of gallium, indium, and arsenic from semiconductor manufacturing industry workers. Bull. Environ. Contam. Toxicol. 2007, 78, 123–127. [Google Scholar] [CrossRef]
- Keeping the Semiconductor Industry on the Path to Net Zero. Available online: https://www.mckinsey.com/industries/semiconductors/our-insights/keeping-the-semiconductor-industry-on-the-path-to-net-zero (accessed on 26 September 2024).
- Chein, H.; Chen, T.M.; Aggarwal, S.G.; Tsai, C.-J.; Huang, C.-C. Inorganic Acid Emission Factors of Semiconductor Manufacturing Processes. J. Air Waste Manag. Assoc. 2004, 54, 218–228. [Google Scholar] [CrossRef]
- Lu, H.-H.; Lu, M.-C.; Le, T.-C.; An, Z.; Pui, D.Y.H.; Tsai, C.-J. Continuous Improvements and Future Challenges of Air Pollution Control at an Advanced Semiconductor Fab. Aerosol Air Qual. Res. 2023, 23, 230034. [Google Scholar] [CrossRef]
- A Short Introduction to Semiconductor Fabrication. Available online: https://semiconductor.samsung.com/emea/news-events/tech-blog/a-short-introduction-to-semiconductor-fabrication/ (accessed on 26 September 2024).
- Yeh, M.-P.; Wu, L.-F.; Fan, E.-T.; Chen, T.; Chuang, T.-S.; Lee, S.L.; Tung, K.-L. Characteristics of inorganic acid emission from various generation semiconductor manufacturing factories. Chemosphere 2024, 347, 140745. [Google Scholar] [CrossRef]
- Peng, J.-L.; Yeh, M.-P.; Liu, K.-H.; Chen, T.; Chuang, T.-S.; Lee, S.L.; Tung, K.-L. Source and characteristics of inorganic acidic gases and aerosols emission in a semiconductor plant. Sep. Purif. Technol. 2024, 354, 128806. [Google Scholar] [CrossRef]
- Seo, I.; Jeon, R.; Yoon, T.-u.; Lee, C.-H. Optimization of cleaning process in semiconductor gas delivery system by computational fluid dynamics simulation. Process Saf. Environ. Prot. 2024, 191, 505–522. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Ong, E. Advancements in greenhouse gas emission reduction methodology for fluorinated compounds and N2O in the semiconductor industry via abatement systems. Front. Energy Res. 2024, 11, 1234486. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Wang, R. Current Status of Detection Technologies for Indoor Hazardous Air Pollutants and Particulate Matter. Aerosol Air Qual. Res. 2023, 23, 230193. [Google Scholar] [CrossRef]
- Khan, S.; Newport, D.; Le Calvé, S. Development of a Toluene Detector Based on Deep UV Absorption Spectrophotometry Using Glass and Aluminum Capillary Tube Gas Cells with a LED Source. Micromachines 2019, 10, 193. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Smuts, J.; Walsh, P.; Fan, H.; Hildenbrand, Z.; Wong, D.; Wetz, D.; Schug, K.A. Permanent gas analysis using gas chromatography with vacuum ultraviolet detection. J. Chromatogr. A 2015, 1388, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Cotte-Rodríguez, I.; Justes, D.R.; Nanita, S.C.; Noll, R.J.; Mulligan, C.C.; Sanders, N.L.; Cooks, R.G. Analysis of gaseous toxic industrial compounds and chemical warfare agent simulants by atmospheric pressure ionization mass spectrometry. Analyst 2006, 131, 579–589. [Google Scholar] [CrossRef]
- Strang, C.R. Part per Billion Level Detection of Semiconductor Processing Gas and Vapor Emissions by Fourier Transform Infrared Spectroscopy. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1988. [Google Scholar]
- Dhall, S.; Mehta, B.R.; Tyagi, A.K.; Sood, K. A review on environmental gas sensors: Materials and technologies. Sens. Int. 2021, 2, 100116. [Google Scholar] [CrossRef]
- Panda, S.; Mehlawat, S.; Dhariwal, N.; Kumar, A.; Sanger, A. Comprehensive review on gas sensors: Unveiling recent developments and addressing challenges. Mater. Sci. Eng. B 2024, 308, 117616. [Google Scholar] [CrossRef]
- Ta, Q.T.H.; Sreedhar, A.; Tri, N.N.; Noh, J.-S. In situ growth of TiO2 on Ti3C2Tx MXene for improved gas-sensing performances. Ceram. Int. 2024, 50, 27227–27236. [Google Scholar] [CrossRef]
- Fathy, A.; Sabry, Y.M.; Hunter, I.W.; Khalil, D.; Bourouina, T. Direct Absorption and Photoacoustic Spectroscopy for Gas Sensing and Analysis: A Critical Review. Laser Photonics Rev. 2022, 16, 2100556. [Google Scholar] [CrossRef]
- Mikkonen, T.; Luoma, D.; Hakulinen, H.; Genty, G.; Vanninen, P.; Toivonen, J. Detection of gaseous nerve agent simulants with broadband photoacoustic spectroscopy. J. Hazard. Mater. 2022, 440, 129851. [Google Scholar] [CrossRef]
- Ta, Q.T.H.; Thakur, D.; Noh, J.-S. Enhanced Gas Sensing Performance of ZnO/Ti3C2Tx MXene Nanocomposite. Micromachines 2022, 13, 1710. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Eadi, S.B.; Noothalapati, H.; Otyepka, M.; Lee, H.-D.; Jayaramulu, K. Porous materials as effective chemiresistive gas sensors. Chem. Soc. Rev. 2024, 53, 2530–2577. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shi, C.; Zeng, B.; Zhang, J.; Wen, Z.; Shi, F.; Cui, Y.; Wang, J. Fiber colorimetric sensors with ambient humidity tolerance for NH3 sensing. Sens. Actuators B Chem. 2024, 405, 135341. [Google Scholar] [CrossRef]
- Saxena, P.; Shukla, P. A review on recent developments and advances in environmental gas sensors to monitor toxic gas pollutants. Environ. Prog. Sustain. Energy 2023, 42, 14126. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, C.; Liang, C.; Liu, Y.; Li, H.; Zhang, C.; Duan, X.; Pan, Y. Sensitive Materials Used in Surface Acoustic Wave Gas Sensors for Detecting Sulfur-Containing Compounds. Polymers 2024, 16, 457. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2012, 24, 012004. [Google Scholar] [CrossRef]
- Electrochemical Sensor. Available online: https://rikenkeiki.com.my/understanding-electrochemical-sensor/ (accessed on 28 October 2024).
- Stapf, A.; Gondek, C.; Kroke, E.; Roewer, G. Wafer Cleaning, Etching, and Texturization. In Handbook of Photovoltaic Silicon; Yang, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–48. [Google Scholar]
- Karen, A.; Reinhardt, R.F.R. Handbook of Cleaning for Semiconductor Manufacturing Fundamentals and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA; Scrivener Publishing LLC: Salem, MA, USA, 2011. [Google Scholar]
- Burleigh-Flayer, H.; Wong, K.L.; Alarie, Y. Evaluation of the pulmonary effects of HCl using CO2 challenges in guinea pigs. Fundam. Appl. Toxicol. 1985, 5, 978–985. [Google Scholar] [CrossRef]
- Crutzen, P.J. The possible importance of CSO for the sulfate layer of the stratosphere. Geophys. Res. Lett. 1976, 3, 73–76. [Google Scholar] [CrossRef]
- Liu, W.; Fang, J.; Liang, Y.; Wang, X.; Zhang, Q.; Wang, J.; He, M.; Wang, W.; Deng, J.; Ren, C.; et al. Acid rain reduced soil carbon emissions and increased the temperature sensitivity of soil respiration: A comprehensive meta-analysis. Sci. Total Environ. 2024, 923, 171370. [Google Scholar] [CrossRef]
- Air Pollution Control and Emissions Standards for the Semiconductor Industry. Available online: https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=O0020032 (accessed on 26 September 2024).
- Environmental, Health, and Safety Guidelines for Semiconductors & Other Electronics Manufacturing. Available online: https://documents1.worldbank.org/curated/pt/748851491555774063/pdf/114072-WP-ENGLISH-Semiconductors-and-Other-Electronic-PUBLIC.pdf (accessed on 26 September 2024).
- Chang, J.; Zhu, C.; Wang, Z.; Wang, Y.; Li, C.; Hu, Q.; Xu, R.; Du, T.; Xu, M.; Feng, L. A full-set and self-powered ammonia leakage monitor system based on CNTs-PPy and triboelectric nanogenerator for zero-carbon vessels. Nano Energy 2022, 98, 107271. [Google Scholar] [CrossRef]
- Gorbova, E.; Tzorbatzoglou, F.; Molochas, C.; Chloros, D.; Demin, A.; Tsiakaras, P. Fundamentals and Principles of Solid-State Electrochemical Sensors for High Temperature Gas Detection. Catalysts 2022, 12, 1. [Google Scholar] [CrossRef]
- Kim, H.-R.; Haensch, A.; Kim, I.-D.; Barsan, N.; Weimar, U.; Lee, J.-H. The Role of NiO Doping in Reducing the Impact of Humidity on the Performance of SnO2-Based Gas Sensors: Synthesis Strategies, and Phenomenological and Spectroscopic Studies. Adv. Funct. Mater. 2011, 21, 4456–4463. [Google Scholar] [CrossRef]
- Ismail, A.H.; Yahya, N.A.M.; Yaacob, M.H.; Mahdi, M.A.; Sulaiman, Y. Optical ammonia gas sensor of poly(3,4-polyethylenedioxythiophene), polyaniline and polypyrrole: A comparative study. Synth. Met. 2020, 260, 116294. [Google Scholar] [CrossRef]
- Perkins, J.; Gholipour, B. Optoelectronic Gas Sensing Platforms: From Metal Oxide Lambda Sensors to Nanophotonic Metamaterials. Adv. Photonics Res. 2021, 2, 2000141. [Google Scholar] [CrossRef]
- Qiao, S.; Sampaolo, A.; Patimisco, P.; Spagnolo, V.; Ma, Y. Ultra-highly sensitive HCl-auco sensor based on a low-frequency quartz tuning fork and a fiber-coupled multi-pass cell. Photoacoustics 2022, 27, 100381. [Google Scholar] [CrossRef]
- Ma, Y.; He, Y.; Tong, Y.; Yu, X.; Tittel, F.K. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection. Opt. Express 2018, 26, 32103–32110. [Google Scholar] [CrossRef]
- Li, M.; Tang, J.; Luo, Y.; Yang, J.; Liu, J.; Peng, J.; Fang, Y. Imine Bond-Based Fluorescent Nanofilms toward High-Performance Detection and Efficient Removal of HCl and NH3. Anal. Chem. 2023, 95, 2094–2101. [Google Scholar] [CrossRef]
- Kondratev, V.M.; Vyacheslavova, E.A.; Shugabaev, T.; Kirilenko, D.A.; Kuznetsov, A.; Kadinskaya, S.A.; Shomakhov, Z.V.; Baranov, A.I.; Nalimova, S.S.; Moshnikov, V.A.; et al. Si Nanowire-Based Schottky Sensors for Selective Sensing of NH3 and HCl via Impedance Spectroscopy. ACS Appl. Nano Mater. 2023, 6, 11513–11523. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Wang, Z.; Yan, J.; Chen, Y. Ultra-trace chlorinated gases optical sensor with moisture-resistant based on structural-customizable UiO-66 3D photonic crystals. Sens. Actuators B Chem. 2023, 393, 134219. [Google Scholar] [CrossRef]
- Kwak, H.T.; Kim, H.; Yoo, H.; Choi, M.; Oh, K.; Kim, Y.; Kong, B.D.; Baek, C.K. Hydrogen Fluoride Gas Sensor by Silicon Nanosheet Field-Effect Transistor. IEEE Sens. J. 2023, 23, 16545–16552. [Google Scholar] [CrossRef]
- Liu, X.; Qiao, S.; Han, G.; Liang, J.; Ma, Y. Highly sensitive HF detection based on absorption enhanced light-induced thermoelastic spectroscopy with a quartz tuning fork of receive and shallow neural network fitting. Photoacoustics 2022, 28, 100422. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Cui, X.; Xiao, Y.; Chen, T.; Xiao, X.; Wang, Y. Pt/MoS2/Polyaniline Nanocomposite as a Highly Effective Room Temperature Flexible Gas Sensor for Ammonia Detection. ACS Appl. Mater. Interfaces 2023, 15, 9604–9617. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yuan, Y.; Lang, M.; Lv, Z.; Ma, W.; Gu, N.; Liu, H.; Fang, J.; Zhang, H.; Cheng, Y. Core-shell Au@SiO2 nanocrystals doped PANI for highly sensitive, reproducible and flexible ammonia sensor at room temperature. Appl. Surf. Sci. 2022, 598, 153821. [Google Scholar] [CrossRef]
- Chein, H.; Chen, M.-H. Estimation of VOCs emission factor for semiconductor manufacturing processes. WIT Trans. Ecol. Environ. 2001, 47, 491–500. [Google Scholar]
- Venkataswamy, R.; Trimble, L.; McDonald, A.; Nevers, D.; Bengochea, L.V.; Carswell, A.; Rossner, A.; Seo, J. Environmental Impact Assessment of Chemical Mechanical Planarization Consumables: Challenges, Future Needs, and Perspectives. ACS Sustain. Chem. Eng. 2024, 12, 11841–11855. [Google Scholar] [CrossRef]
- Kim, C.; Sul, Y.T.; Pui, D.Y.H. Real-time and online screening method for materials emitting volatile organic compounds. J. Nanoparticle Res. 2016, 18, 282. [Google Scholar] [CrossRef]
- Chein, H.; Chen, T.M. Emission characteristics of volatile organic compounds from semiconductor manufacturing. J. Air Waste Manag. Assoc. 2003, 53, 1029–1036. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, X.; Wang, G.; Shao, X.; Li, Z.; Nie, L.; Li, G. Sector-based volatile organic compounds emission characteristics from the electronics manufacturing industry in China. Atmos. Pollut. Res. 2021, 12, 101097. [Google Scholar] [CrossRef]
- Abdillah, S.F.I.; Kao, T.-C.; You, S.-J.; Wang, Y.-F. Non-methane hydrocarbons from integrated semiconductor manufacturing processes: Assessments of chemical footprints, emissions factors, and treatment efficiency. J. Clean. Prod. 2024, 434, 140408. [Google Scholar] [CrossRef]
- Mølhave, L.; Liu, Z.; Jørgensen, A.H.; Pedersen, O.F.; Kjægaard, S.K. Sensory And Physiological Effects On Humans Of Combined Exposures To Air Temperatures And Volatile Organic Compounds. Indoor Air 1993, 3, 155–169. [Google Scholar] [CrossRef]
- Madronich, S.; Shao, M.; Wilson, S.R.; Solomon, K.R.; Longstreth, J.D.; Tang, X.Y. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with changing climate: Implications for human and environmental health. Photochem. Photobiol. Sci. 2015, 14, 149–169. [Google Scholar] [CrossRef] [PubMed]
- Hui, K.; Yuan, Y.; Xi, B.; Tan, W. A review of the factors affecting the emission of the ozone chemical precursors VOCs and NOx from the soil. Environ. Int. 2023, 172, 107799. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, S.; Moody, E.; McKinley, M.; Knutsen, J.; Madl, A.; Paustenbach, D. Worker exposure to methanol vapors during cleaning of semiconductor wafers in a manufacturing setting. J. Occup. Environ. Hyg. 2008, 5, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.-H.; Lu, I.C.; Huang, P.-W.; Wu, Y.-J.; Whang, L.-M. Biological treatment of volatile organic compounds (VOCs)-containing wastewaters from wet scrubbers in semiconductor industry. Chemosphere 2021, 282, 131137. [Google Scholar] [CrossRef] [PubMed]
- Semiconductor Manufacturing: National Emission Standards for Hazardous Air Pollutants (NESHAP). Available online: https://www.epa.gov/stationary-sources-air-pollution/semiconductor-manufacturing-national-emission-standards-hazardous (accessed on 26 September 2024).
- AN 200514—The Application of PID V1.0. Available online: https://semeatech.com/Products/Documentation/Technical%20Documents/ (accessed on 28 October 2024).
- Kumar, P.; Deep, A.; Kim, K.-H.; Brown, R.J.C. Coordination polymers: Opportunities and challenges for monitoring volatile organic compounds. Prog. Polym. Sci. 2015, 45, 102–118. [Google Scholar] [CrossRef]
- Schütze, A.; Baur, T.; Leidinger, M.; Reimringer, W.; Jung, R.; Conrad, T.; Sauerwald, T. Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to? Environments 2017, 4, 20. [Google Scholar] [CrossRef]
- Sáaedi, A.; Shabani, P.; Yousefi, R. High performance of methanol gas sensing of ZnO/PAni nanocomposites synthesized under different magnetic field. J. Alloys Compd. 2019, 802, 335–344. [Google Scholar] [CrossRef]
- Xuan, W.; Zheng, L.; Cao, L.; Miao, S.; Hu, D.; Zhu, L.; Zhao, Y.; Qiang, Y.; Gu, X.; Huang, S. Machine Learning-Assisted Sensor Based on CsPbBr3@ZnO Nanocrystals for Identifying Methanol in Mixed Environments. ACS Sens. 2023, 8, 1252–1260. [Google Scholar] [CrossRef]
- Mishra, S.; Patel, C.; Pandey, D.; Mukherjee, S.; Raghuvanshi, A. Semiconducting 2D Copper(I) Iodide Coordination Polymer as a Potential Chemiresistive Sensor for Methanol. Small 2024, 20, 2311448. [Google Scholar] [CrossRef]
- Kulkarni, S.; Ghosh, R. A simple approach for sensing and accurate prediction of multiple organic vapors by sensors based on CuO nanowires. Sens. Actuators B Chem. 2021, 335, 129701. [Google Scholar] [CrossRef]
- Lee, J.; Min, H.; Choe, Y.-S.; Lee, Y.G.; Kim, K.; Lee, H.-S.; Lee, W. Highly sensitive and selective detection of benzene, toluene, xylene, and formaldehyde using Au-coated SnO2 nanorod arrays for indoor air quality monitoring. Sens. Actuators B Chem. 2023, 394, 134359. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, K.; Cho, B.; Kwak, Y.; Kim, J. Highly Sensitive Detection of Benzene, Toluene, and Xylene Based on CoPP-Functionalized TiO2 Nanoparticles with Low Power Consumption. ACS Sens. 2020, 5, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Zou, X.; Chen, H.; Fan, M.; Li, G.-D. High-performance formaldehyde sensing realized by alkaline-earth metals doped In2O3 nanotubes with optimized surface properties. Sens. Actuators B Chem. 2020, 304, 127241. [Google Scholar] [CrossRef]
- Tang, Y.; Han, Z.; Qi, Y.; Yang, Z.; Han, H.; Jiang, Y.; Zhang, X.; Wu, L.; Wang, Z.; Liu, J.; et al. Enhanced ppb-level formaldehyde sensing performance over Pt deposited SnO2 nanospheres. J. Alloys Compd. 2022, 899, 163230. [Google Scholar] [CrossRef]
- Misra, A.; Hogan, J.D.; Chorush, R.A. Handbook of Chemicals and Gases for the Semiconductor Industry; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Kim, S.-R.; Moon, H.-S.; Jeong, P.-H. Optimal Ventilation Design for Flammable Gas Leaking from Gas Box Used in Semiconductor Manufacturing: Case Study on Korean Semiconductor Industry. Fire 2023, 6, 432. [Google Scholar] [CrossRef]
- Chelton, C.F.; Glowatz, M.; Mosovsky, J.A. Chemical hazards in the semiconductor industry. IEEE Trans. Educ. 1991, 34, 269–288. [Google Scholar] [CrossRef]
- TSMC 2022—Sustainability Report. Available online: https://www.tsmc.com/english/aboutTSMC/dc_csr_report (accessed on 26 September 2024).
- Orejuela, V.; García-Tabares, E.; Rey-Stolle, I.; García, I. Arsenic Diffusion in MOVPE-Grown GaAs/Ge Epitaxial Structures. Adv. Electron. Mater. 2024, 10, 2400021. [Google Scholar] [CrossRef]
- Neeraj; Sharma, S.; Goel, A.; Sonam, R.; Deswal, S.S.; Gupta, R.S. Modeling and Simulation Characteristics of a Highly-Sensitive Stack-Engineered Junctionless Accumulation Nanowire FET for PH3 Gas Detector. ECS J. Solid State Sci. Technol. 2024, 13, 027007. [Google Scholar] [CrossRef]
- Gonzalez-Juez, E. Gas-Delivery Fluid-Mechanical Timescales in Semiconductor Manufacturing. IEEE Trans. Semicond. Manuf. 2024, 37, 38–45. [Google Scholar] [CrossRef]
- Lugani, G.S.; Skaggs, R.; Morris, B.; Tolman, T.; Tervo, D.; Uhlenbrock, S.; Hacker, J.; Tan, C.S.; Nehlsen, J.P.; Ridgeway, R.G.; et al. Direct Emissions Reduction in Plasma Dry Etching Using Alternate Chemistries: Opportunities, Challenges and Need for Collaboration. IEEE Trans. Semicond. Manuf. 2024. [Google Scholar] [CrossRef]
- Semiconductor Manufacturing Plant Front-End Process. Available online: https://product.rikenkeiki.co.jp/english/device/ (accessed on 28 October 2024).
- Pérez-Padilla, R.; Stelmach, R.; Soto-Quiroz, M.; Cruz, A.A. Fighting respiratory diseases: Divided efforts lead to weakness. J Bras Pneumol 2014, 40, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wang, M.; Yu, X. Auxiliary Material in Process. In Handbook of Integrated Circuit Industry; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1743–1773. [Google Scholar]
- Employee Standard Summary. Available online: https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1025AppB (accessed on 26 September 2024).
- Takada, T.; Fukunaga, T.; Hayashi, K.; Yokota, Y.; Tachibana, T.; Miyata, K.; Kobashi, K. Boron-doped diamond thin film sensor for detection of various semiconductor manufacturing gases. Sens. Actuators A Phys. 2000, 82, 97–101. [Google Scholar] [CrossRef]
- Virji, S.; Kojima, R.; Fowler, J.D.; Kaner, R.B.; Weiller, B.H. Polyaniline Nanofiber−Metal Salt Composite Materials for Arsine Detection. Chem. Mater. 2009, 21, 3056–3061. [Google Scholar] [CrossRef]
- Furue, R.; Koveke, E.P.; Sugimoto, S.; Shudo, Y.; Hayami, S.; Ohira, S.-I.; Toda, K. Arsine gas sensor based on gold-modified reduced graphene oxide. Sens. Actuators B Chem. 2017, 240, 657–663. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Li, C.; Zhang, X.; Yun, J.; Cao, D. A review on nanofiber-based composites for toxic and flammable gas sensing. Adv. Compos. Hybrid Mater. 2024, 7, 108. [Google Scholar] [CrossRef]
- Kusuma, Y.G.; Parvathi, S.; Sirisha, Y.; Lasya, C. Gas Detection and Environmental Monitoring Using Raspberry Pi Pico. In Proceedings of the 2024 IEEE Students Conference on Engineering and Systems (SCES), Prayagraj, India, 21–23 June 2024; pp. 1–5. [Google Scholar]
- Kadhim, M.M.; Abdullaha, S.A.; Taban, T.Z.; Alomar, T.S.; Ahmed Al-Masoud, N.; Hachim, S.K. The effect of Stone–Wales defect on the sensitivity of a ZnO monolayer in detection of PH3 and AsH3 gases: A DFT study. Appl. Phys. A 2023, 129, 159. [Google Scholar] [CrossRef]
- Saadh, M.J.; Mustafa, M.A.; Yaseen, B.M.; Ballal, S.; Kaur, M.; Sinha, A.; Alubiady, M.H.S.; Al-Abdeen, S.H.Z.; Shakier, H.G.; Hameed, S.M.; et al. The possibility of using the Zn (II) Butadiyne-linked porphyrin nanoring for detection and adsorption of AsH3, NO2, H2O, SO2, CS2, CO, and CO2 gases. Comput. Theor. Chem. 2024, 1241, 114829. [Google Scholar] [CrossRef]
- Szary, M.J. Toward high selectivity of sensor arrays: Enhanced adsorption interaction and selectivity of gas detection (N2, O2, NO, CO, CO2, NO2, SO2, AlH3, NH3, and PH3) on transition metal dichalcogenides (MoS2, MoSe2, and MoTe2). Acta Mater. 2024, 274, 120016. [Google Scholar] [CrossRef]
- Sardarzadeh, S.; Karamdel, J.; Nayebi, P. Adsorption of SO2, H2S, NH3, PH3, and AsH3 Gas Molecules on Pristine Armchair Phosphorene Nanoribbon: A First-Principles Study. Phys. Status Solidi B 2020, 257, 2000120. [Google Scholar] [CrossRef]
- Ya-Min, Z.; Yong-Sheng, F. The strategy and technology selection for non-CO2 greenhouse gas emission control. Adv. Clim. Chang. Res. 2014, 5, 28–33. [Google Scholar] [CrossRef]
- Radonjič, G.; Tompa, S. Carbon footprint calculation in telecommunications companies—The importance and relevance of scope 3 greenhouse gases emissions. Renew. Sustain. Energy Rev. 2018, 98, 361–375. [Google Scholar] [CrossRef]
- Pelcat, M. GHG Emissions of Semiconductor Manufacturing in 2021. Available online: https://hal.science/hal-04112708 (accessed on 8 November 2024).
- Fluorinated Greenhouse Gas Emissions and Supplies Reported to the GHGRP. Available online: https://www.epa.gov/ghgreporting/fluorinated-greenhouse-gas-emissions-and-supplies-reported-ghgrp (accessed on 26 September 2024).
- Ferraz-Almeida, R.; Spokas, K.A.; De Oliveira, R.C. Columns and Detectors Recommended in Gas Chromatography to Measure Greenhouse Emission and O2 Uptake in Soil: A Review. Commun. Soil Sci. Plant Anal. 2020, 51, 582–594. [Google Scholar] [CrossRef]
- Rauh, F.; Schwenk, M.; Pejcic, B.; Myers, M.; Ho, K.-B.; Stalker, L.; Mizaikoff, B. A mid-infrared sensor for the determination of perfluorocarbon-based compounds in aquatic systems for geosequestration purposes. Talanta 2014, 130, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.W.; Muir, D.C.G.; Moody, C.A.; Ellis, D.A.; Kwan, W.C.; Solomon, K.R.; Mabury, S.A. Collection of Airborne Fluorinated Organics and Analysis by Gas Chromatography/Chemical Ionization Mass Spectrometry. Anal. Chem. 2002, 74, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, T.; Feng, Y.P.; Li, H.; Shen, L. Highly Sensitive and Selective Sensors for CF4 Gas Molecules Based on Two-Node Hollow Fullerene. Adv. Mater. Interfaces 2020, 7, 2000985. [Google Scholar] [CrossRef]
- Kim, J.; Thompson, R.; Park, H.; Bogle, S.; Mühle, J.; Park, M.-K.; Kim, Y.; Harth, C.M.; Salameh, P.K.; Schmidt, R.; et al. Emissions of Tetrafluoromethane (CF4) and Hexafluoroethane (C2F6) From East Asia: 2008 to 2019. J. Geophys. Res. Atmos. 2021, 126, e2021JD034888. [Google Scholar] [CrossRef]
- He, J.; Meng, H.; Wang, X.; Xu, Y.; Feng, L. S-doped SnO2 nanoparticles with a smaller grain size for highly efficient detection of greenhouse gas hexafluoroethane. Sens. Actuators B Chem. 2024, 418, 136335. [Google Scholar] [CrossRef]
- Meng, H.; Liu, Z.; Wang, X.; Feng, L. A fluorinated greenhouse gas sensor based on N-doped tin oxide materials. Environ. Sci. Nano 2024, 11, 459–469. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.; Wang, H.; Li, S.; Jin, J.; Gao, F.; Chen, C. Highly sensitive and selective sulfur hexafluoride detection based on DAPPI-FAIMS. Sens. Actuators B Chem. 2024, 407, 135488. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, M.; Cui, D.; Li, C.; Qi, H.; Chen, K.; Ma, F.; Huang, J.; Zhang, G.; Zhao, J. Multi-pass Differential Photoacoustic Sensor for Real-Time Measurement of SF6 Decomposition Component H2S at the ppb Level. Anal. Chem. 2023, 95, 8214–8222. [Google Scholar] [CrossRef]
- Turlybekuly, A.; Sarsembina, M.; Mentbayeva, A.; Bakenov, Z.; Soltabayev, B. CuO/TiO2 heterostructure-based sensors for conductometric NO2 and N2O gas detection at room temperature. Sensors Actuators B Chem. 2023, 397, 134635. [Google Scholar] [CrossRef]
- Ramu, A.G.; Umar, A.; Gopi, S.; Algadi, H.; Albargi, H.; Ibrahim, A.A.; Alsaiari, M.A.; Wang, Y.; Choi, D. Tetracyanonickelate (II)/KOH/reduced graphene oxide fabricated carbon felt for mediated electron transfer type electrochemical sensor for efficient detection of N2O gas at room temperature. Environ. Res. 2021, 201, 111591. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Chen, J.; Wang, K.; Mei, J.; Tan, T.; Wang, G.; Liu, K.; Gao, X. Highly precise measurement of atmospheric N2O and CO using improved White cell and RF current perturbation. Sens. Actuators B Chem. 2022, 352, 130995. [Google Scholar] [CrossRef]
- Joshi, S.; Jones, L.A.; Sabri, Y.M.; Bhargava, S.K.; Sunkara, M.V.; Ippolito, S.J. Facile conversion of zinc hydroxide carbonate to CaO-ZnO for selective CO2 gas detection. J. Colloid Interface Sci. 2020, 558, 310–322. [Google Scholar] [CrossRef]
No. | Principle of Detection | Advantages | Disadvantages |
---|---|---|---|
1 | Catalytic combustion | Simple operation Fast response Can detect mostly flammable gases Low cost Work in air or oxygen medium | Silicones, leaded fuels, and sulfur compounds poisoning Environmental factors such as temperature and humidity affect accuracy High power consumption Requires a warm-up period Unable to detect other types of gases |
2 | Thermal conductivity | Long-term stability Not require oxygen to operate Can detect a wide range of gases | High power consumption Environmental factors such as temperature and humidity affect accuracy Cross-sensitivity issues Only gases with large differences in thermal conductivities can be distinguished |
3 | Gas Chromatography | High sensitivity (ppb level) Capable of analyzing complex multiphase separation gases | Cannot achieve continuous sampling and analysis Complex system |
4 | Chemiresistive | High sensitivity (ppm level) Rapid response Compact design Capable of detecting a broad spectrum of gases (both toxic and flammable) | Susceptibility to sulfur and weak acid poisoning Environmental factors such as temperature and humidity affect accuracy Nonlinear feedback Cross-sensitivity issues |
5 | Nondispersive infrared sensor (NIDR) | Capable of detecting multiple gases (CO2, GHG, etc.) Does not involve chemical reactions High sensitivity level Accurate and quick measurements Avoidance of cross-sensitivity | Only appropriate for gases with IR absorptivity (difficult to measure gases include: H2, N2, O2) Elevated cost Not user-friendly Requires regular calibration |
6 | Electrochemical | High sensitivity (ppm level) A wide range of gases can be detected (NOx, NH3, CO, etc.) Rapid and accurate measurements Low power consumption Good linear output | Limited operating conditions, such as temperature ranging from −30 °C to +50 °C and relative humidity between 60% and 80% Unable to differentiate between gas molecules from the same family Requires regular calibration |
7 | Surface acoustic wave (SAW) | A wide range of gases can be detected, depending on the properties of the material on the sensing layer. High sensitivity (ppb level) Rapid and accurate measurements Ease of integration Small size | Environmental factors such as temperature and humidity affect accuracy Complex electronic circuits |
8 | Photoionization detector (PID) | High sensitivity (ppb level) A wide range of gases, including VOCs, acid, and toxic gases, can be detected | High cost Verify the detection range before use Accuracy is influenced by environmental factors such as humidity |
Materials and Devices | Principle of Detection | Target Gas | Operating Temp. | Response | Response Time | LOD | Ref. |
---|---|---|---|---|---|---|---|
HCl-LITES Sensor 1 | Optical | HCl | RT | 711.6 μV at 500 ppm | 200 ms | 148 ppb | [43] |
UiO-66 Sensor 2 | Optical | HCl | RT | 22.75 nm at 2.5 ppm | 0.49 s | 10.9 ppb | [47] |
Si-NS FET Sensor 3 | Field-effect Transistors | HF | RT | 1447% at 7.5 ppm | 333.6 s | 219 ppb | [48] |
HF-LITES sensor 4 | Optical | HF | RT | 38 μV at 100 ppm | 110 s | 71 ppb | [49] |
Imine Bond-QCM 5 Sensor | Optical | HCl and NH3 | RT | 49 (a.u.) at 150 ppb (HCl) 20 (a.u.) at 1.5 ppm (NH3) | 0.6 s (HCl) 0.3 s (NH3) | 150 ppb (HCl) 1.5 ppm (NH3) | [45] |
Si NWs-based Sensor 6 | Schottky | HCl and NH3 | - | 0.8% per μmol·L−1 (HCl) and −0.2% per μmol·L−1 (NH3) at 4 μmol·L−1 (80 ppb) | 1 min | 4 μmol·L−1 (80 ppb) | [46] |
(Pt/MP-2) sensor 7 | Chemiresistive | NH3 | RT | 16.64 at 50 ppm | 15 s | 250 ppb | [50] |
PAni-Au@SiO2 sensor 8 | Chemiresistive | NH3 | RT | 80% at 10 ppm | 35 s | 10 ppb | [51] |
Materials and Devices | Principle of Detection | Target Gas | Operating Temp. | Response | Response Time | LOD | Ref. |
---|---|---|---|---|---|---|---|
ZnO/PAni -based sensor | Chemiresistive | Methanol | 60 °C | 19.2 at 100 ppm | 18.2 s | 0.121 ppm | [67] |
CsPbBr3@ZnO sensor | Chemiresistive | Methanol | RT | 0.13 at 10 ppm | 3.27 s | 1 ppm | [68] |
CP1 Chemiresistive sensor 1 | Chemiresistive | Methanol | RT | 66.7 at 100 ppm | 17.5 s | 1.22 ppb | [69] |
CuO-based chemiresistive sensors | Chemiresistive | Acetone | 200 °C | 610% at 500 ppm | 60 s | 125 ppm | [70] |
Au-SnO2 NRs 2 sensor | Chemiresistive | Xylene | 400 °C | 170 at 10 ppm | 1.8 s | 0.1 ppm | [71] |
TiO2-based sensors | Chemiresistive | Xylene | 330 °C | 6.09 at 1 ppm | <40 s | 5 ppb | [72] |
Ca-In2O3-based sensors | Chemiresistive | Formaldehyde | 120 °C | 116 at 100 ppm | 1 s | 60 ppb | [73] |
Pt-SnO2-based sensors | Chemiresistive | Formaldehyde | 200 °C | 16 at 1 ppm | 9 s | 60 ppb | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, M.T.N.; Lee, J.S. Development of a Chemical Sensor Device for Monitoring Hazardous Gases Generated in the Semiconductor Manufacturing Process. Chemosensors 2024, 12, 233. https://doi.org/10.3390/chemosensors12110233
Nguyen MTN, Lee JS. Development of a Chemical Sensor Device for Monitoring Hazardous Gases Generated in the Semiconductor Manufacturing Process. Chemosensors. 2024; 12(11):233. https://doi.org/10.3390/chemosensors12110233
Chicago/Turabian StyleNguyen, My Thi Ngoc, and Jun Seop Lee. 2024. "Development of a Chemical Sensor Device for Monitoring Hazardous Gases Generated in the Semiconductor Manufacturing Process" Chemosensors 12, no. 11: 233. https://doi.org/10.3390/chemosensors12110233
APA StyleNguyen, M. T. N., & Lee, J. S. (2024). Development of a Chemical Sensor Device for Monitoring Hazardous Gases Generated in the Semiconductor Manufacturing Process. Chemosensors, 12(11), 233. https://doi.org/10.3390/chemosensors12110233