SO2 Detection over a Wide Range of Concentrations: An Exploration on MOX-Based Gas Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemoresistive Gas Sensors
2.2. Lab-Test Setup
2.3. Sensing Measurements
3. Results
3.1. Operational Temperature
3.2. Sensitivity
3.3. Humidity Effect
3.4. Repeatability
3.5. Selectivity
3.6. Cross-Selectivity
4. Discussion
4.1. Intrinsic Properties
4.1.1. Oxygen Chemisorption
4.1.2. Acid and Basic Centers
4.1.3. Hydrated Layers
4.2. Extrinsic Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mathieu, Y.; Tzanis, L.; Soulard, M.; Patarin, J.; Vierling, M.; Molière, M. Adsorption of SOx by Oxide Materials: A Review. Fuel Process. Technol. 2013, 114, 81–100. [Google Scholar] [CrossRef]
- Meng, Z. Oxidative Damage of Sulfur Dioxide on Various Organs of Mice: Sulfur Dioxide Is a Systemic Oxidative Damage Agent. Inhal. Toxicol. 2003, 15, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Barnett, A.G.; Williams, G.M.; Schwartz, J.; Neller, A.H.; Best, T.L.; Petroeschevsky, A.L.; Simpson, R.W. Air Pollution and Child Respiratory Health: A Case-Crossover Study in Australia and New Zealand. Am. J. Respir. Crit. Care Med. 2005, 171, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Occupational Safety and Health Administration. Available online: https://www.Osha.Gov/Chemicaldata/549 (accessed on 9 May 2024).
- López-Cervantes, V.B.; López-Olvera, A.; Obeso, J.L.; Torres, I.K.; Martínez-Ahumada, E.; Carmona-Monroy, P.; Sánchez-González, E.; Solís-Ibarra, D.; Lima, E.; Jangodaz, E.; et al. Robust Co(II)-Based Metal–Organic Framework for the Efficient Uptake and Selective Detection of SO2. Chem. Mater. 2024, 36, 2735–2742. [Google Scholar] [CrossRef]
- Hansell, A.; Oppenheimer, C. Health Hazards from Volcanic Gases: A Systematic Literature Review. Arch. Environ. Health 2004, 59, 628–639. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Rao, M.; Li, Q. Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S. Sensors 2019, 19, 905. [Google Scholar] [CrossRef] [PubMed]
- Morulane, K.L.; Swart, H.C.; Motaung, D.E. A Review on Topical Advancement and Challenges of Indium Oxide Based Gas Sensors: Future Outlooks. J. Environ. Chem. Eng. 2024, 12, 112144. [Google Scholar] [CrossRef]
- Dey, S.; Mehta, N.S. Automobile Pollution Control Using Catalysis. Resour. Environ. Sustain. 2020, 2, 100006. [Google Scholar] [CrossRef]
- Lan, W.; Rao, Y.; Zhao, X.; Zhao, Y.; Min, X.; Wu, Y.; Jiang, Z.; Li, T.; Li, Y.; Chen, H.; et al. Rapid Visual Detection of Sulfur Dioxide Residues in Food Using Acid-Sensitive CdTe Quantum Dots-Loaded Alginate Hydrogel Beads. Food Chem. 2024, 446, 138791. [Google Scholar] [CrossRef]
- Peter Singh, L.; Gill, S.S.; Gill, R.; Tuteja, N. Mechanism of Sulfur Dioxide Toxicity and Tolerance in Crop Plants. In Improving Crop Resistance to Abiotic Stress; Tuteja, N., Gill, S.S., Tiburcio, A.F., Tuteja, R., Eds.; Wiley: New York, NY, USA, 2012; pp. 133–163. ISBN 978-3-527-32840-6. [Google Scholar]
- Pecunia, V.; Petti, L.; Andrews, J.; Ollearo, R.; Gelinck, G.H.; Nasrollahi, B.; Jailani, J.M.; Li, N.; Kim, J.H.; Ng, T.N.; et al. Roadmap on Printable Electronic Materials for Next-Generation Sensors. Nano Futures 2024. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, L.; Li, R.; Zhao, F.; Guo, L.; Wang, P.; Cao, W.; Ding, Z.; Qiao, Z. Layer-Tunable Synthesis of Tetragonal Pr-Doped SnO2 Nanoplates for Enhanced Sensitive SO2 Sensor. Sens. Actuators B Chem. 2024, 409, 135629. [Google Scholar] [CrossRef]
- Shin, D.; Besmann, T.M.; Armstrong, B.L. Phase Stability of Noble Metal Loaded WO3 for SO2 Sensor Applications. Sens. Actuators B Chem. 2013, 176, 75–80. [Google Scholar] [CrossRef]
- Cao, L.; Yu, L.; Li, S.; Nan, N.; Zhang, C.; Fan, X. In-Situ Growth of Well-Ordered ZnO Nanowire-Networks with Interconnected Junctions for Enhanced SO2 Gas Sensing Properties. Appl. Surf. Sci. 2024, 646, 158899. [Google Scholar] [CrossRef]
- Minh, L.H.; Thuy Thu, P.T.; Thanh, B.Q.; Hanh, N.T.; Thu Hanh, D.T.; Van Toan, N.; Hung, C.M.; Van Duy, N.; Van Tong, P.; Hoa, N.D. Hollow ZnO Nanorices Prepared by a Simple Hydrothermal Method for NO2 and SO2 Gas Sensors. RSC Adv. 2021, 11, 33613–33625. [Google Scholar] [CrossRef]
- Franco, M.A.; Conti, P.P.; Andre, R.S.; Correa, D.S. A Review on Chemiresistive ZnO Gas Sensors. Sens. Actuators Rep. 2022, 4, 100100. [Google Scholar] [CrossRef]
- Kanan, S.; Obeideen, K.; Moyet, M.; Abed, H.; Khan, D.; Shabnam, A.; El-Sayed, Y.; Arooj, M.; Mohamed, A.A. Recent Advances on Metal Oxide Based Sensors for Environmental Gas Pollutants Detection. Crit. Rev. Anal. Chem. 2024, 1–34. [Google Scholar] [CrossRef]
- Das, S.; Girija, K.G.; Debnath, A.K.; Vatsa, R.K. Enhanced NO2 and SO2 Sensor Response under Ambient Conditions by Polyol Synthesized Ni Doped SnO2 Nanoparticles. J. Alloys Compd. 2021, 854, 157276. [Google Scholar] [CrossRef]
- Berger, F.; Fromm, M.; Chambaudet, A.; Planade, R. Tin Dioxide-Based Gas Sensors for SO2 Detection: A Chemical Interpretation of the Increase in Sensitivity Obtained after a Primary Detection. Sens. Actuators B Chem. 1997, 45, 175–181. [Google Scholar] [CrossRef]
- Zhao, C.; Gong, H.; Niu, G.; Wang, F. Ultrasensitive SO2 Sensor for Sub-Ppm Detection Using Cu-Doped SnO2 Nanosheet Arrays Directly Grown on Chip. Sens. Actuators B Chem. 2020, 324, 128745. [Google Scholar] [CrossRef]
- Tyagi, P.; Sharma, A.; Tomar, M.; Gupta, V. Metal Oxide Catalyst Assisted SnO2 Thin Film Based SO2 Gas Sensor. Sens. Actuators B Chem. 2016, 224, 282–289. [Google Scholar] [CrossRef]
- Gaiardo, A.; Krik, S.; Valt, M.; Fabbri, B.; Tonezzer, M.; Feng, Z.; Guidi, V.; Bellutti, P. Development of a Sensor Array Based on Pt, Pd, Ag and Au Nanocluster Decorated SnO2 for Precision Agriculture. Meet. Abstr. 2021, MA2021-01, 1550. [Google Scholar] [CrossRef]
- Spagnoli, E.; Krik, S.; Fabbri, B.; Valt, M.; Ardit, M.; Gaiardo, A.; Vanzetti, L.; Della Ciana, M.; Cristino, V.; Vola, G.; et al. Development and Characterization of WO3 Nanoflakes for Selective Ethanol Sensing. Sens. Actuators B Chem. 2021, 347, 130593. [Google Scholar] [CrossRef]
- Gaiardo, A.; Fabbri, B.; Giberti, A.; Guidi, V.; Bellutti, P.; Malagù, C.; Valt, M.; Pepponi, G.; Gherardi, S.; Zonta, G.; et al. ZnO and Au/ZnO Thin Films: Room-Temperature Chemoresistive Properties for Gas Sensing Applications. Sens. Actuators B Chem. 2016, 237, 1085–1094. [Google Scholar] [CrossRef]
- Rossi, A.; Spagnoli, E.; Tralli, F.; Marzocchi, M.; Guidi, V.; Fabbri, B. New Approach for the Detection of Sub-Ppm Limonene: An Investigation through Chemoresistive Metal-Oxide Semiconductors. Sensors 2023, 23, 6291. [Google Scholar] [CrossRef]
- Rossi, A.; Fabbri, B.; Spagnoli, E.; Gaiardo, A.; Valt, M.; Ferroni, M.; Ardit, M.; Krik, S.; Pedrielli, A.; Vanzetti, L.; et al. Functionalization of Indium Oxide for Empowered Detection of CO2 over an Extra-Wide Range of Concentrations. ACS Appl. Mater. Interfaces 2023, 15, 33732–33743. [Google Scholar] [CrossRef]
- Gaiardo, A.; Fabbri, B.; Giberti, A.; Valt, M.; Gherardi, S.; Guidi, V.; Malagù, C.; Bellutti, P.; Pepponi, G.; Casotti, D.; et al. Tunable Formation of Nanostructured SiC/SiOC Core-Shell for Selective Detection of SO2. Sens. Actuators B Chem. 2020, 305, 127485. [Google Scholar] [CrossRef]
- Spagnoli, E.; Gaiardo, A.; Fabbri, B.; Valt, M.; Krik, S.; Ardit, M.; Cruciani, G.; Della Ciana, M.; Vanzetti, L.; Vola, G.; et al. Design of a Metal-Oxide Solid Solution for Sub-Ppm H2 Detection. ACS Sens. 2022, 7, 573–583. [Google Scholar] [CrossRef]
- Occupational Safety and Health Administration. Available online: https://www.Osha.Gov/Chemicaldata/491 (accessed on 9 May 2024).
- Centers for Disease Control and Prevention, The National Institute for Occupational Safety and Health. Available online: https://www.Cdc.Gov/Niosh/Idlh/10102440.Html (accessed on 9 May 2024).
- American Conference of Governmental Industrial Hygienist. Available online: https://www.Acgih.Org/Carbon-Monoxide-3/ (accessed on 9 May 2024).
- American Conference of Governmental Industrial Hygienist. Available online: https://www.Acgih.Org/Carbon-Dioxide/ (accessed on 9 May 2024).
- Occupational Safety and Health Administration. Available online: https://www.Osha.Gov/Chemicaldata/911 (accessed on 9 May 2024).
- Centers for Disease Control and Prevention, The National Institute for Occupational Safety and Health. Available online: https://www.Cdc.Gov/Niosh/Pel88/10102-44.Html (accessed on 9 May 2024).
- Rodriguez, J. The Chemical Properties of Bimetallic Surfaces: Importance of Ensemble and Electronic Effects in the Adsorption of Sulfur and SO2. Prog. Surf. Sci. 2006, 81, 141–189. [Google Scholar] [CrossRef]
- Ciana, M.D.; Valt, M.; Fabbri, B.; Gaiardo, A.; Spagnoli, E.; Krik, S.; Bernardoni, P.; Gilli, N.; Migliori, A.; Quaranta, A.; et al. SO2 Sensing Mechanism of Nanostructured SiC-SiOxC Core Shell: An Operando DRIFT Investigation. Sens. Actuators B Chem. 2022, 371, 132497. [Google Scholar] [CrossRef]
- Fu, X.; Liu, J.; Han, T.; Zhang, X.; Meng, F.; Liu, J. A Three-Dimensional Hierarchical CdO Nanostructure: Preparation and Its Improved Gas-Diffusing Performance in Gas Sensor. Sens. Actuators B Chem. 2013, 184, 260–267. [Google Scholar] [CrossRef]
- Khune, A.S.; Padghan, V.; Bongane, R.; Narwade, V.N.; Dole, B.N.; Ingle, N.N.; Tsai, M.-L.; Hianik, T.; Shirsat, M.D. Highly Selective Chemiresistive SO2 Sensor Based on a Reduced Graphene Oxide/Porphyrin (rGO/TAPP) Composite. J. Electron. Mater. 2023, 52, 8108–8123. [Google Scholar] [CrossRef]
- Kumar, R.; Kaur, A. Chemiresistive Gas Sensors Based on Thermally Reduced Graphene Oxide for Sensing Sulphur Dioxide at Room Temperature. Diam. Relat. Mater. 2020, 109, 108039. [Google Scholar] [CrossRef]
- Peng, K.; Li, Q.; Ma, M.; Li, N.; Sheng, H.; Li, H.; Huang, Y.; Yun, F. Acidic Gas Determination Using Indium Tin Oxide-Based Gas Sensors. Sensors 2024, 24, 1286. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, T.; Zhu, C.; Yin, X.; Dong, P.; Wu, X. AgNWs@SnO2/CuO Nanocomposites for Ultra-Sensitive SO2 Sensing Based on Surface Acoustic Wave with Frequency-Resistance Dual-Signal Display. Sens. Actuators B Chem. 2023, 375, 132966. [Google Scholar] [CrossRef]
- Dhingra, V.; Kumar, S.; Kumar, R.; Garg, A.; Chowdhuri, A. Room Temperature SO2 and H2 Gas Sensing Using Hydrothermally Grown GO–ZnO Nanorod Composite Films. Mater. Res. Express 2020, 7, 065012. [Google Scholar] [CrossRef]
- Tyagi, P.; Sharma, A.; Tomar, M.; Gupta, V. A Comparative Study of RGO-SnO2 and MWCNT-SnO2 Nanocomposites Based SO2 Gas Sensors. Sens. Actuators B Chem. 2017, 248, 980–986. [Google Scholar] [CrossRef]
- Tyagi, P.; Sharma, A.; Tomar, M.; Gupta, V. SnO2 Thin Film Sensor Having NiO Catalyst for Detection of SO2 Gas with Improved Response Characteristics. Sens. Actuators B Chem. 2017, 248, 998–1005. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Chen, Y.; Zhang, Y.; Gao, X.; Xu, P.; Li, X.; Fang, J.; Wen, W. An Integrated Micro-Chip with Ru/Al2O3/ZnO as Sensing Material for SO2 Detection. Sens. Actuators B Chem. 2018, 262, 26–34. [Google Scholar] [CrossRef]
- Fu, Y.; Li, J.; Xu, H. SnO2 Recycled from Tin Slime for Enhanced SO2 Sensing Properties by NiO Surface Decoration. Mater. Sci. Semicond. Process. 2020, 114, 105073. [Google Scholar] [CrossRef]
- Ivanov, P.; Llobet, E.; Vilanova, X.; Brezmes, J.; Hubalek, J.; Correig, X. Development of High Sensitivity Ethanol Gas Sensors Based on Pt-Doped SnO2 Surfaces. Sens. Actuators B Chem. 2004, 99, 201–206. [Google Scholar] [CrossRef]
- Dhongade, V.; Sharma, L.; Kahandal, A.; Aiyer, R.C.; Rajdeo, K.; Tagad, C. Pd Doped SnO2 Based Room Temperature Operable Resistive Sensor for the Detection of Ethanol Vapors. Mater. Today Proc. 2021, 46, 6437–6444. [Google Scholar] [CrossRef]
- Aleksanyan, M.; Sayunts, A.; Shahkhatuni, G.; Simonyan, Z.; Shahnazaryan, G.; Aroutiounian, V. Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor. Chemosensors 2022, 10, 245. [Google Scholar] [CrossRef]
- Gaskov, A.; Rumyantseva, M.; Marikutsa, A. Tin Oxide Materials: Synthesis, Properties, and Applications; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 7; pp. 163–212. [Google Scholar] [CrossRef]
- Sahm, T.; Gurlo, A.; Bârsan, N.; Weimar, U. Basics of Oxygen and SnO2 Interaction; Work Function Change and Conductivity Measurements. Sens. Actuators B Chem. 2006, 118, 78–83. [Google Scholar] [CrossRef]
- Marikutsa, A.; Rumyantseva, M.; Konstantinova, E.A.; Gaskov, A. The Key Role of Active Sites in the Development of Selective Metal Oxide Sensor Materials. Sensors 2021, 21, 2554. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Y.; Wang, P.; Cheng, X.; Wang, Q.; Yang, Y.; Luo, Y.; An, B.; Xie, E. UV Irradiation of Au-Modified SnO2 Nanorods Enabling the Rapid Detection of Low-Concentration NO2 at Room Temperature. IEEE Sens. J. 2023, 23, 1803–1808. [Google Scholar] [CrossRef]
Sensor | Optimal Working Temperature [°C] |
---|---|
WO3 | 200 |
ZnO | 400 |
SnO2:Pd | 400 |
SnO2:Au | 400 |
SnO2 | 400 |
SnO2:Pt | 300 |
SnO2:Ag | 400 |
Sensing Materials | Operating Temperature [°C] | Concentration [ppm] | Response Formula | Response in Dry/Wet Air | LOD | Reference |
---|---|---|---|---|---|---|
rGO/TAPP | RT | 5 | (Rgas − Rair)/Rair | -/0.45 at 30 RH% | 5 ppm | [39] |
Ni/SnO2 | RT | 5 | Rgas/Rair | -/2.4 at ∼55–65 RH% | - | [19] |
rGO | RT | 5 | (Rair − Rgas)/Rair | 3.21/- | - | [40] |
ITO(In2O3/SnO2) | 240 | 5 | Rair/Rgas | -/1.8 at 35 RH% | - | [41] |
Ag NWs@SnO2/CuO | 80 | 50 | Rair/Rgas | 2.1/- | 0.25 ppm | [42] |
GO/ZnO NR | RT | 25 | Rgas/Rair | 2.97/- | - | [43] |
RGO/SnO2 nanocomposites | 60 | 10 | (Rair/Rg) − 1 | 1.2/- | - | [44] |
SnO2/NiO | 180 | 500 | (Rair/Rg) − 1 | 56/50 at dry/70 RH% | - | [45] |
Ru/Al2O3/ZnO | 350 | 100 | (Rair − Rgas)/Rair | 65/- | 5 ppm | [46] |
NiO:SnO2 | 240 | 100 | Rair/Rgas | 10/9.1 at dry/70 RH% | - | [47] |
SnO2:Au | 400 | 5 | (Ggas − Gair)/Gair | 10.4/2 at dry/30 RH% | 0.48 ppm * | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, A.; Spagnoli, E.; Visonà, A.; Ahmed, D.; Marzocchi, M.; Guidi, V.; Fabbri, B. SO2 Detection over a Wide Range of Concentrations: An Exploration on MOX-Based Gas Sensors. Chemosensors 2024, 12, 111. https://doi.org/10.3390/chemosensors12060111
Rossi A, Spagnoli E, Visonà A, Ahmed D, Marzocchi M, Guidi V, Fabbri B. SO2 Detection over a Wide Range of Concentrations: An Exploration on MOX-Based Gas Sensors. Chemosensors. 2024; 12(6):111. https://doi.org/10.3390/chemosensors12060111
Chicago/Turabian StyleRossi, Arianna, Elena Spagnoli, Alan Visonà, Danial Ahmed, Marco Marzocchi, Vincenzo Guidi, and Barbara Fabbri. 2024. "SO2 Detection over a Wide Range of Concentrations: An Exploration on MOX-Based Gas Sensors" Chemosensors 12, no. 6: 111. https://doi.org/10.3390/chemosensors12060111
APA StyleRossi, A., Spagnoli, E., Visonà, A., Ahmed, D., Marzocchi, M., Guidi, V., & Fabbri, B. (2024). SO2 Detection over a Wide Range of Concentrations: An Exploration on MOX-Based Gas Sensors. Chemosensors, 12(6), 111. https://doi.org/10.3390/chemosensors12060111