Batch-Injection Amperometric Determination of Glucose Using a NiFe2O4/Carbon Nanotube Composite Enzymeless Sensor
Abstract
:1. Introduction
2. Materials and Method
2.1. Reagents, Solutions, and Samples
2.2. Synthesis and Characterization of NiFe2O4
2.3. Preparation of NiFe2O4@MWCNTs Suspension and Modification of the GCE Surface
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of NiFe2O4 and NiFe2O4@MWCNT Composite
3.2. Electrochemical Behavior of NiFe2O4 and Its Voltammetric Response for GLU
3.3. Amperometric Study of NiFe2O4@MWCNT/GCE Using BIA-AD System
3.4. Application of NiFe2O4@MWCNT/GCE for the Determination of GLU in Synthetic Urine Using the BIA-AD System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Hasanzadeh, M.; Sayadi, M.; Alizadeh, S.; Ghasemlu, K. Modification of Multi-Walled Carbon Nanotubes Composite Paste Electrode with Nanonickel Pentacyanonitrosylferrate and Nickel Oxide Nanoparticles for Non-Enzymatic Glucose Determination. Iran. Chem. Soc. Anal. Bioanal. Chem. Res. 2023, 10, 183–192. [Google Scholar]
- Morikawa, M.-A.; Kimizuka, N.; Yoshihara, M.; Endo, T. New Colorimetric Detection of Glucose by Means of Electron-Accepting Indicators: Ligand Substitution of [Fe(Acac)3−n(Phen)n]n+ Complexes Triggered by Electron Transfer from Glucose Oxidase. Chem. A Eur. J. 2002, 8, 5580–5584. [Google Scholar] [CrossRef]
- Wei, Y.; Hui, Y.; Lu, X.; Liu, C.; Zhang, Y.; Fan, Y.; Chen, W. One-Pot Preparation of NiMn Layered Double Hydroxide-MOF Material for Highly Sensitive Electrochemical Sensing of Glucose. J. Electroanal. Chem. 2023, 933, 117276. [Google Scholar] [CrossRef]
- Wang, G.; He, X.; Wang, L.; Gu, A.; Huang, Y.; Fang, B.; Geng, B.; Zhang, X. Non-Enzymatic Electrochemical Sensing of Glucose. Microchim. Acta 2013, 180, 161–186. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, X.; Wan, G.; Shi, S.; Wang, G. NiFe2O4/CNTs Fabricated by Atomic Layer Deposition as Highly Stable Peroxidase Mimics for Sensitive Colorimetric Detection of Hydrogen Peroxide and Glucose. Mater. Res. Bull. 2022, 147, 111637. [Google Scholar] [CrossRef]
- Fatoni, A.; Widanarto, W.; Anggraeni, M.D.; Dwiasi, D.W. Glucose Biosensor Based on Activated Carbon—NiFe2O4 Nanoparticles Composite Modified Carbon Paste Electrode. Results Chem. 2022, 4, 100433. [Google Scholar] [CrossRef]
- Luo, L.; Li, Q.; Xu, Y.; Ding, Y.; Wang, X.; Deng, D.; Xu, Y. Amperometric Glucose Biosensor Based on NiFe2O4 Nanoparticles and Chitosan. Sens. Actuators B Chem. 2010, 145, 293–298. [Google Scholar] [CrossRef]
- Ramesh, M.; Sankar, C.; Umamatheswari, S.; Balamurugan, J.; Jayavel, R.; Gowran, M. Hydrothermal Synthesis of ZnZrO2/Chitosan (ZnZrO2/CS) Nanocomposite for Highly Sensitive Detection of Glucose and Hydrogen Peroxide. Int. J. Biol. Macromol. 2023, 226, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Muqaddas, S.; Javed, M.; Nadeem, S.; Asghar, M.A.; Haider, A.; Ahmad, M.; Ashraf, A.R.; Nazir, A.; Iqbal, M.; Alwadai, N.; et al. Carbon Nanotube Fiber-Based Flexible Microelectrode for Electrochemical Glucose Sensors. ACS Omega 2022, 8, 2272–2280. [Google Scholar] [CrossRef]
- Yang, S.; Li, G.; Wang, D.; Qiao, Z.; Qu, L. Synthesis of Nanoneedle-like Copper Oxide on N-Doped Reduced Graphene Oxide: A Three-Dimensional Hybrid for Nonenzymatic Glucose Sensor. Sens. Actuators B Chem. 2017, 238, 588–595. [Google Scholar] [CrossRef]
- Rinaldi, A.L.; Rodríguez-Castellón, E.; Sobral, S.; Carballo, R. Application of a Nickel Hydroxide Gold Nanoparticles Screen-Printed Electrode for Impedimetric Sensing of Glucose in Artificial Saliva. J. Electroanal. Chem. 2019, 832, 209–216. [Google Scholar] [CrossRef]
- Tee, S.Y.; Teng, C.P.; Ye, E. Metal Nanostructures for Non-Enzymatic Glucose Sensing. Mater. Sci. Eng. C 2017, 70, 1018–1030. [Google Scholar] [CrossRef] [PubMed]
- Ataei Kachouei, M.; Shahrokhian, S.; Ezzati, M. Bimetallic CoZn-MOFs Easily Derived from CoZn-LDHs, as a Suitable Platform in Fabrication of a Non-Enzymatic Electrochemical Sensor for Detecting Glucose in Human Fluids. Sens. Actuators B Chem. 2021, 344, 130254. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Rocha, D.P.; Silva, M.N.T.; Martins, P.R.; Nossol, E.; Angnes, L.; Rout, C.S.; Munoz, R.A.A. Feasible Strategies to Promote the Sensing Performances of Spinel MCo2O4 (M = Ni, Fe, Mn, Cu and Zn) Based Electrochemical Sensors: A Review. J. Mater. Chem. C Mater. 2021, 9, 7852–7887. [Google Scholar] [CrossRef]
- Naik, K.K.; Sahoo, S.; Rout, C.S. Facile Electrochemical Growth of Spinel Copper Cobaltite Nanosheets for Non-Enzymatic Glucose Sensing and Supercapacitor Applications. Microporous Mesoporous Mater. 2017, 244, 226–234. [Google Scholar] [CrossRef]
- Franceschini, F.; Taurino, I. Nickel-Based Catalysts for Non-Enzymatic Electrochemical Sensing of Glucose: A Review. Phys. Med. 2022, 14, 100054. [Google Scholar] [CrossRef]
- Danaee, I.; Jafarian, M.; Forouzandeh, F.; Gobal, F. Kinetic Studies of Glucose Electrocatalytic Oxidation on GC/Ni Electrode. Int. J. Chem. Kinet. 2012, 44, 712–721. [Google Scholar] [CrossRef]
- Chen, C.; Xie, Q.; Yang, D.; Xiao, H.; Fu, Y.; Tan, Y.; Yao, S. Recent Advances in Electrochemical Glucose Biosensors: A Review. RSC Adv. 2013, 3, 4473. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; de Faria, L.V.; Nascimento, A.B.; Germscheidt, R.L.; Patra, S.; Hernández-Saravia, L.P.; Bonacin, J.A.; Munoz, R.A.A.; Angnes, L. Sensing Performances of Spinel Ferrites MFe2O4 (M = Mg, Ni, Co, Mn, Cu and Zn) Based Electrochemical Sensors: A Review. Anal. Chim. Acta 2022, 1233, 340362. [Google Scholar] [CrossRef]
- Chu, D.; Li, F.; Song, X.; Ma, H.; Tan, L.; Pang, H.; Wang, X.; Guo, D.; Xiao, B. A Novel Dual-Tasking Hollow Cube NiFe2O4-NiCo-LDH@rGO Hierarchical Material for High Preformance Supercapacitor and Glucose Sensor. J. Colloid. Interface Sci. 2020, 568, 130–138. [Google Scholar] [CrossRef]
- Bashal, A.H.; Hefnawy, M.A.; Ahmed, H.A.; El-Atawy, M.A.; Pashameah, R.A.; Medany, S.S. Green Synthesis of NiFe2O4 Nano-Spinel Oxide-Decorated Carbon Nanotubes for Efficient Capacitive Performance—Effect of Electrolyte Concentration. Nanomaterials 2023, 13, 2643. [Google Scholar] [CrossRef] [PubMed]
- Afkhami, A.; Khoshsafar, H.; Bagheri, H.; Madrakian, T. Preparation of NiFe2O4/Graphene Nanocomposite and Its Application as a Modifier for the Fabrication of an Electrochemical Sensor for the Simultaneous Determination of Tramadol and Acetaminophen. Anal. Chim. Acta 2014, 831, 50–59. [Google Scholar] [CrossRef]
- Katowah, D.F.; Hussein, M.A.; Alam, M.M.; Ismail, S.H.; Osman, O.I.; Sobahi, T.R.; Asiri, A.M.; Ahmed, J.; Rahman, M.M. Designed Network of Ternary Core-Shell PPCOT/NiFe2O4/C-SWCNTs Nanocomposites. A Selective Fe3+ Ionic Sensor. J. Alloys Compd. 2020, 834, 155020. [Google Scholar] [CrossRef]
- Hosseinpour, A.; Sadeghi, H.; Morisako, A. Simulation of DC-Hopping Conduction in Spinel Ferrites Using Free Electron Gas Model. J. Magn. Magn. Mater. 2007, 316, e283–e286. [Google Scholar] [CrossRef]
- Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon Nanotube Chemical Sensors. Chem. Rev. 2019, 119, 599–663. [Google Scholar] [CrossRef] [PubMed]
- Mehmandoust, M.; Pourhakkak, P.; Tiris, G.; Karimi-Maleh, H.; Erk, N. A Reusable and Sensitive Electrochemical Sensor for Determination of Idarubicin in Environmental and Biological Samples Based on NiFe2O4 Nanospheres Anchored N-Doped Graphene Quantum Dots Composite; an Electrochemical and Molecular Docking Investigation. Environ. Res. 2022, 212, 113264. [Google Scholar] [CrossRef] [PubMed]
- Askari, N.; Salarizadeh, N.; Askari, M.B. Electrochemical Determination of Rutin by Using NiFe2O4 Nanoparticles-Loaded Reduced Graphene Oxide. J. Mater. Sci. Mater. Electron. 2021, 32, 9765–9775. [Google Scholar] [CrossRef] [PubMed]
- Ensafi, A.A.; Jafari-Asl, M.; Rezaei, B.; Allafchian, A.R. Simultaneous Determination of Guanine and Adenine in DNA Based on NiFe2O4 Magnetic Nanoparticles Decorated MWCNTs as a Novel Electrochemical Sensor Using Adsorptive Stripping Voltammetry. Sens. Actuators B Chem. 2013, 177, 634–642. [Google Scholar] [CrossRef]
- Kuznowicz, M.; Rębiś, T.; Jędrzak, A.; Nowaczyk, G.; Szybowicz, M.; Jesionowski, T. Glucose Determination Using Amperometric Non-Enzymatic Sensor Based on Electroactive Poly(Caffeic Acid)@MWCNT Decorated with CuO Nanoparticles. Microchim. Acta 2022, 189, 159. [Google Scholar] [CrossRef]
- Rocha, D.P.; Cardoso, R.M.; Tormin, T.F.; de Araujo, W.R.; Munoz, R.A.A.; Richter, E.M.; Angnes, L. Batch-injection Analysis Better than Ever: New Materials for Improved Electrochemical Detection and On-site Applications. Electroanalysis 2018, 30, 1386–1399. [Google Scholar] [CrossRef]
- Haššo, M.; Švorc, Ľ. Batch Injection Analysis in Tandem with Electrochemical Detection: The Recent Trends and an Overview of the Latest Applications (2015–2020). Monatshefte Chem.-Chem. Mon. 2022, 153, 985–1000. [Google Scholar] [CrossRef] [PubMed]
- Garcia, P.T.; Dias, A.A.; Souza, J.A.C.; Coltro, W.K.T. Batch Injection Analysis towards Auxiliary Diagnosis of Periodontal Diseases Based on Indirect Amperometric Detection of Salivary α-Amylase on a Cupric Oxide Electrode. Anal. Chim. Acta 2018, 1041, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Veloso, W.B.; Ribeiro, G.A.C.; da Rocha, C.Q.; Tanaka, A.A.; da Silva, I.S.; Dantas, L.M.F. Flow-through Amperometric Determination of Ampicillin Using a Copper Electrode in a Batch Injection Analysis System. Measurement 2020, 155, 107516. [Google Scholar] [CrossRef]
- Quintino, M.S.M.; Angnes, L. Batch Injection Analysis: An Almost Unexplored Powerful Tool. Electroanalysis 2004, 16, 513–523. [Google Scholar] [CrossRef]
- Brooks, T.; Keevil, C.W. A Simple Artificial Urine for the Growth of Urinary Pathogens. Lett. Appl. Microbiol. 1997, 24, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Kurian, J.; Lahiri, B.B.; Mathew, M.J.; Philip, J. High Magnetic Fluid Hyperthermia Efficiency in Copper Ferrite Nanoparticles Prepared by Solvothermal and Hydrothermal Methods. J. Magn. Magn. Mater. 2021, 538, 168223. [Google Scholar] [CrossRef]
- de Matos Morawski, F.; Caon, N.B.; Sousa, K.A.P.; Faita, F.L.; Parize, A.L.; Jost, C.L. Hybrid Chitosan-Coated Manganese Ferrite Nanoparticles for Electrochemical Sensing of Bifenox Herbicide. J. Environ. Chem. Eng. 2021, 9, 106298. [Google Scholar] [CrossRef]
- Adibi, M.; Mirkazemi, S.M.; Alamolhoda, S. The Influence of Citric Acid on the Microstructure and Magnetic Properties of Cobalt Ferrite Nanoparticles Synthesized by Hydrothermal Method. Appl. Phys. A Mater. Sci. Process 2021, 127, 497. [Google Scholar] [CrossRef]
- Xian, G.; Kong, S.; Li, Q.; Zhang, G.; Zhou, N.; Du, H.; Niu, L. Synthesis of Spinel Ferrite MFe2O4 (M = Co, Cu, Mn, and Zn) for Persulfate Activation to Remove Aqueous Organics: Effects of M-Site Metal and Synthetic Method. Front. Chem. 2020, 8, 177. [Google Scholar] [CrossRef]
- Cao, Z.; Qiu, L.; Yang, Y.; Chen, Y.; Liu, X. The Surface Modifications of Multi-Walled Carbon Nanotubes for Multi-Walled Carbon Nanotube/Poly(Ether Ether Ketone) Composites. Appl. Surf. Sci. 2015, 353, 873–881. [Google Scholar] [CrossRef]
- Lu, C.; Lin, F.; Shao, H.; Bi, S.; Chen, N.; Shao, G.; Jiang, J. Carboxylated Carbon Nanotube/Polyimide Films with Low Thermal Expansion Coefficient and Excellent Mechanical Properties. Polymers 2022, 14, 4565. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, C.; Isasi, J.; Arévalo, P.; Fernández-Ramos, M.; Rapp, M.; Alcolea, M.; Marco, J.F.; Martín-Hernández, F. Structural and Magnetic Studies of NiFe2O4 and NiFe2O4@SiO2-Silane Agent Samples Useful for the Removal of Cu2+ Ions. J. Alloys Compd. 2022, 899, 163403. [Google Scholar] [CrossRef]
- Wang, W.; Ding, Z.; Zhao, X.; Wu, S.; Li, F.; Yue, M.; Liu, J.P. Microstructure and Magnetic Properties of MFe2O4 (M = Co, Ni, and Mn) Ferrite Nanocrystals Prepared Using Colloid Mill and Hydrothermal Method. J. Appl. Phys. 2015, 117, 17A328. [Google Scholar] [CrossRef]
- Soto-Arreola, A.; Huerta-Flores, A.M.; Mora-Hernández, J.M.; Torres-Martínez, L.M. Comparative Study of the Photocatalytic Activity for Hydrogen Evolution of MFe2O4 (M = Cu, Ni) Prepared by Three Different Methods. J. Photochem. Photobiol. A Chem. 2018, 357, 20–29. [Google Scholar] [CrossRef]
- Sankaranarayanan, R.; Shailajha, S.; Mubina, M.S.K.; Anilkumar, C.P. Effect of Ni2+ and Fe3+ Ion Concentrations on Structural, Optical, Magnetic, and Impedance Response of NiFe2O4 Nanoparticles Prepared by Sol-Gel Process. J. Supercond. Nov. Magn. 2020, 33, 3631–3642. [Google Scholar] [CrossRef]
- Ayyappan, S.; Mahadevan, S.; Chandramohan, P.; Srinivasan, M.P.; Philip, J.; Raj, B. Influence of Co2+ Ion Concentration on the Size, Magnetic Properties, and Purity of CoFe2O4 Spinel Ferrite Nanoparticles. J. Phys. Chem. C 2010, 114, 6334–6341. [Google Scholar] [CrossRef]
- Esther Nimshi, R.; Judith Vijaya, J.; Al-Najar, B.; Hazeem, L.; Bououdina, M.; John Kennedy, L.; Kombaiah, K.; Bellucci, S. Multifunctional Core-Shell NiFe2O4Shield with TiO2/RGO Nanostructures for Biomedical and Environmental Applications. Bioinorg. Chem. Appl. 2022, 2022, 4805490. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Li, H.; Wu, J.; Dong, Y.; Zhang, H.; Chen, H.; Ren, C. 3DRGO-NiFe2O4/NiO Nanoparticles for Fast and Simple Detection of Organophosphorus Pesticides. Chin. Chem. Lett. 2020, 31, 177–180. [Google Scholar] [CrossRef]
- Zeshan, M.; Waheed, M.S.; Ishaq, S.A.; Siddique, A.; Ullah, A.; Sherif, E.S.M.; Ansari, M.Z.; Khan, S.A.; Khan, A.R.; Farid, H.M.T. Sol–Gel Preparation of Spinel Ferrites/Polyaniline Composites for Electromagnetic Interface Shielding. Chem. Pap. 2023, 77, 6533–6542. [Google Scholar] [CrossRef]
- Larrude, D.G.; Maia Da Costa, M.E.H.; Freire, F.L. Synthesis and Characterization of Silver Nanoparticle-Multiwalled Carbon Nanotube Composites. J. Nanomater. 2014, 2014, 654068. [Google Scholar] [CrossRef]
- Prajapati, N.; Murthy, C.N.; Machhi, H.K.; Soni, S.S. A Novel F-MWCNT-Based Nanocomposite for Enhancement of Photoconversion Efficiency of DSSC. J. Mater. Sci. Mater. Electron. 2023, 34, 2129. [Google Scholar] [CrossRef]
- Ma, W.; Zhao, Y.; Zhu, Z.; Guo, L.; Cao, Z.; Xia, Y.; Yang, H.; Gong, F.; Zhong, J. Synthesis of Poly(Methyl Methacrylate) Grafted Multiwalled Carbon Nanotubes via a Combination of RAFT and Alkyne-Azide Click Reaction. Appl. Sci. 2019, 9, 603. [Google Scholar] [CrossRef]
- Feng, J.M.; Dai, Y.J. Water-Assisted Growth of Graphene on Carbon Nanotubes by the Chemical Vapor Deposition Method. Nanoscale 2013, 5, 4422–4426. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed]
- Chandramohan, P.; Srinivasan, M.P.; Velmurugan, S.; Narasimhan, S.V. Cation Distribution and Particle Size Effect on Raman Spectrum of CoFe2O4. J. Solid. State Chem. 2011, 184, 89–96. [Google Scholar] [CrossRef]
- Ortiz-Quiñonez, J.L.; Pal, U.; Villanueva, M.S. Structural, Magnetic, and Catalytic Evaluation of Spinel Co, Ni, and Co-Ni Ferrite Nanoparticles Fabricated by Low-Temperature Solution Combustion Process. ACS Omega 2018, 3, 14986–15001. [Google Scholar] [CrossRef]
- Sahoo, P.; Shrestha, R.G.; Shrestha, L.K.; Hill, J.P.; Takei, T.; Ariga, K. Surface Oxidized Carbon Nanotubes Uniformly Coated with Nickel Ferrite Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2016, 26, 1301–1308. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Tian, Y.; Lin, L.; Zhuiykov, S. Fabrication of Ni(OH)2&NiOOH Film/Ni Electrode and the Effect of NaOH Concentration on Its Glucose Detection. J. Electrochem. Soc. 2019, 166, B1732–B1741. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Sun, S.; Wu, Y.; Sun, Q.; Liu, X. A Facile One-Step Hydrothermal Approach to Synthesize Hierarchical Core-Shell NiFe2O4@NiFe2O4 Nanosheet Arrays on Ni Foam with Large Specific Capacitance for Supercapacitors. RSC Adv. 2018, 8, 15222–15228. [Google Scholar] [CrossRef]
- Trafela, Š.; Zavašnik, J.; Šturm, S.; Rožman, K.Ž. Formation of a Ni(OH)2/NiOOH Active Redox Couple on Nickel Nanowires for Formaldehyde Detection in Alkaline Media. Electrochim. Acta 2019, 309, 346–353. [Google Scholar] [CrossRef]
- Rocha, R.G.; Cardoso, R.M.; Zambiazi, P.J.; Castro, S.V.F.; Ferraz, T.V.B.; Aparecido, G.d.O.; Bonacin, J.A.; Munoz, R.A.A.; Richter, E.M. Production of 3D-Printed Disposable Electrochemical Sensors for Glucose Detection Using a Conductive Filament Modified with Nickel Microparticles. Anal. Chim. Acta 2020, 1132, 1–9. [Google Scholar] [CrossRef]
- Silva, M.N.T.; Rocha, R.G.; Richter, E.M.; Munoz, R.A.A.; Nossol, E. Nickel Oxy-Hydroxy/Multi-Wall Carbon Nanotubes Film Coupled with a 3D-Printed Device as a Nonenzymatic Glucose Sensor. Biosensors 2023, 13, 646. [Google Scholar] [CrossRef]
- Akbar, F.; Tariq, M.; Khan, H.U.; Khan, J.; Uddin, M.K.; Ahmed, S.S.; Rahim, A. Development of Ag–Ni NPs Loaded on MWCNTs for Highly Sensitive, Selective and Reproducible Non-Enzymatic Electrochemical Detection of Glucose. J. Mater. Sci. Mater. Electron. 2021, 32, 16166–16181. [Google Scholar] [CrossRef]
- Diaz-Morales, O.; Ferrus-Suspedra, D.; Koper, M.T.M. The Importance of Nickel Oxyhydroxide Deprotonation on Its Activity towards Electrochemical Water Oxidation. Chem. Sci. 2016, 7, 2639–2645. [Google Scholar] [CrossRef]
- Stefano, J.S.; Lima, A.P.; Nascentes, C.C.; Krzyzaniak, S.R.; Mello, P.A.; Gonçalves, J.M.; Richter, E.M.; Nossol, E.; Munoz, R.A.A. Electrochemical Detection of 2,4,6-Trinitrotoluene on Carbon Nanotube Modified Electrode: Effect of Acid Functionalization. J. Solid State Electrochem. 2020, 24, 121–129. [Google Scholar] [CrossRef]
- Mocak, J.; Bonda, A.M.; Mitchella, S.; Scollaryb, G. A Statistical Overview of Standard (IUPAC and ACS) and New Procedures for Determining the Limits of Detection and Quantification: Application to Voltammetric and Stripping Techniques. Pure Appl. Chem. 1997, 69, 297–328. [Google Scholar] [CrossRef]
- Wang, T.-T.; Huang, X.-F.; Huang, H.; Luo, P.; Qing, L.-S. Nanomaterial-Based Optical- and Electrochemical-Biosensors for Urine Glucose Detection: A Comprehensive Review. Adv. Sens. Energy Mater. 2022, 1, 100016. [Google Scholar] [CrossRef]
- Latimer, G.W., Jr. Guidelines for Standard Method Performance Requirements: Official Methods of Analysis; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Zhou, F.; Jing, W.; Liu, S.; Mao, Q.; Xu, Y.; Han, F.; Wei, Z.; Jiang, Z. Electrodeposition of Gold Nanoparticles on ZnO Nanorods for Improved Performance of Enzymatic Glucose Sensors. Mater. Sci. Semicond. Process 2020, 105, 104708. [Google Scholar] [CrossRef]
- Yuan, C.-J.; Hsu, C.-L.; Wang, S.-C.; Chang, K.-S. Eliminating the Interference of Ascorbic Acid and Uric Acid to the Amperometric Glucose Biosensor by Cation Exchangers Membrane and Size Exclusion Membrane. Electroanalysis 2005, 17, 2239–2245. [Google Scholar] [CrossRef]
- Nagpal, D.; Gupta, A.; Mariappan, C.R.; Kumar, A. Mesoporous Cobalt Ferrite Flowers Based Excellent Non Enzymatic Glucose Sensor. J. Porous Mater. 2023, 30, 83–91. [Google Scholar] [CrossRef]
- Archana, V.; Xia, Y.; Fang, R.; Gnana Kumar, G. Hierarchical CuO/NiO-Carbon Nanocomposite Derived from Metal Organic Framework on Cello Tape for the Flexible and High Performance Nonenzymatic Electrochemical Glucose Sensors. ACS Sustain. Chem. Eng. 2019, 7, 6707–6719. [Google Scholar] [CrossRef]
- Shahnavaz, Z.; Lorestani, F.; Alias, Y.; Woi, P.M. Polypyrrole-ZnFe2O4 Magnetic Nano-Composite with Core-Shell Structure for Glucose Sensing. Appl. Surf. Sci. 2014, 317, 622–629. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Chen, J.; Fan, S.; Liang, J.; Ding, L.; Chen, S. Self-Assembled NiFe2O4/Carbon Nanotubes Sponge for Enhanced Glucose Biosensing Application. Appl. Surf. Sci. 2016, 362, 115–120. [Google Scholar] [CrossRef]
Analytical Parameters | Electrodes | |
---|---|---|
MWCNT/GCE | NiFe2O4@MWCNT/GCE | |
r2 | 0.98 | 0.99 |
Sensitivity (µAL µmol−1) | 0.018 ± 0.001 | 0.052 ± 0.001 |
Intercept (µA) | −0.012 | 2.094 |
LOD (µmol L−1) | 84 | 24 |
Sample | Spiked/µmol L−1 | Found/µmol L−1 | Recovery/% |
---|---|---|---|
Synthetic urine | 100 | 83.9 | 83.9 |
300 | 284.2 | 94.7 |
Material | LOD (µmol L−1) | Linear Range (mmol L−1) | Sample | Type of Sensor | Ref. |
---|---|---|---|---|---|
CoFe2O4/Nickel foil | 100 | 0.1–1.1 | Blood | Non-enzymatic | [71] |
CuO/NiO-C/CT | 37 | 0.1–2.5 | Human serum samples | Non-enzymatic | [72] |
ZnFe2O4/ppy | 100 | 0.1–8.0 | Human serum samples | Non-enzymatic | [73] |
Ni(OH)2/AuNP/SPE | 40 | 0.1–2.0 | Artificial saliva samples | Non-enzymatic | [11] |
CHIT/NiFe2O4/GCE | - | 0.1–20.0 | - | Enzymatic | [7] |
GOx-AC-NiFe2O4/CPE | 1100.0 | 2.0–10.0 | Blood sample | Enzymatic | [6] |
NiFe2O4/CNTs | 2.2 | 0.005–0.06 | Juice samples | Enzymatic | [5] |
NiFe2O4/CNTs | 98.0 | 0.0–3.0 and 3.2–12.4 | - | Enzymatic | [74] |
NiFe2O4@MWCNT/GCE | 24 | 0.05–0.6 | Artificial urine | Non-enzymatic | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, A.B.; de Faria, L.V.; Matias, T.A.; Lopes, O.F.; Muñoz, R.A.A. Batch-Injection Amperometric Determination of Glucose Using a NiFe2O4/Carbon Nanotube Composite Enzymeless Sensor. Chemosensors 2024, 12, 112. https://doi.org/10.3390/chemosensors12060112
Nascimento AB, de Faria LV, Matias TA, Lopes OF, Muñoz RAA. Batch-Injection Amperometric Determination of Glucose Using a NiFe2O4/Carbon Nanotube Composite Enzymeless Sensor. Chemosensors. 2024; 12(6):112. https://doi.org/10.3390/chemosensors12060112
Chicago/Turabian StyleNascimento, Amanda B., Lucas V. de Faria, Tiago A. Matias, Osmando F. Lopes, and Rodrigo A. A. Muñoz. 2024. "Batch-Injection Amperometric Determination of Glucose Using a NiFe2O4/Carbon Nanotube Composite Enzymeless Sensor" Chemosensors 12, no. 6: 112. https://doi.org/10.3390/chemosensors12060112
APA StyleNascimento, A. B., de Faria, L. V., Matias, T. A., Lopes, O. F., & Muñoz, R. A. A. (2024). Batch-Injection Amperometric Determination of Glucose Using a NiFe2O4/Carbon Nanotube Composite Enzymeless Sensor. Chemosensors, 12(6), 112. https://doi.org/10.3390/chemosensors12060112