A Phenyl-Modified Aggregation-Induced Phosphorescent Emission-Active Cationic Ru(II) Complex for Detecting Picric Acid in Aqueous Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis and Characterizations of L1 and Ru1
2.3. Sample Preparation and Sensing of PA
3. Results and Discussion
3.1. AIPE Properties of Ru1
3.2. Detection of PA
3.3. Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kar, B.; Das, U.; Roy, N.; Paira, P. Recent advances on organelle specific Ru(II)/Ir(III)/Re(I) based complexes for photodynamic therapy. Coord. Chem. Rev. 2023, 474, 214860. [Google Scholar] [CrossRef]
- Fernandes, R.S.; Ch, S.; Ghosh, B.; Dey, N. Sulfide-induced concentration-dependent distinct optical response: Unique chromogenic probe developed for analyzing fecal contamination in water and intracellular imaging applications. ACS Sustain. Chem. Eng. 2024, 12, 4922–4932. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, Y.; He, Z.; Lu, L. Aggregation-induced electrochemiluminescence-active ruthenium(II) complex for selective detection of dopamine. J. Electroanal. Chem. 2023, 947, 117783. [Google Scholar] [CrossRef]
- Higgins, S. Regarding ruthenium. Nat. Chem. 2010, 2, 1100. [Google Scholar] [CrossRef]
- Watson, E.E.; Russo, F.; Moreau, D.; Winssinger, N. Optochemical control of therapeutic agents through photocatalyzed isomerization. Angew. Chem. Int. Ed. 2022, 61, e202203390. [Google Scholar] [CrossRef]
- Wu, Q.; Yuan, C.; Wang, J.; Li, G.; Zhu, C.; Li, L.; Wang, Z.; Lv, Q.; Mei, W. Uridine-modified ruthenium(II) complex aslysosomal LIMP-2 targeting photodynamic therapy photosensitizer for the treatment of triple-negative breast cancer. JACS Au 2024, 4, 1081–1096. [Google Scholar] [CrossRef]
- Ramu, V.; Wijaya, L.S.; Beztsinna, N.; Van de Griend, C.; van de Water, B.; Bonnet, S.; Le Dévédec, S.E. Cell viability imaging in tumor spheroids via DNA binding of a ruthenium(ii) light-switch complex. Chem. Commun. 2024, 60, 6308–6311. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Z.; Wu, J.; Lu, L. A cellular NO sensor based on aggregation-induced electrochemiluminescence and photoelectron transfer of a novel ruthenium(II) complex. Microchem. J. 2023, 190, 108714. [Google Scholar] [CrossRef]
- Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741. [Google Scholar] [CrossRef]
- Manimaran, B.; Thanasekaran, P.; Rajendran, T.; Lin, R.-J.; Chang, I.J.; Lee, G.-H.; Peng, S.-M.; Rajagopal, S.; Lu, K.-L. Luminescence enhancement induced by aggregation of alkoxy-bridged rhenium(I) molecular rectangles. Inorg. Chem. 2002, 41, 5323–5325. [Google Scholar] [CrossRef]
- Chen, J.; Law, C.C.W.; Lam, J.W.Y.; Dong, Y.; Lo, S.M.F.; Williams, I.D.; Zhu, D.; Tang, B.Z. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chem. Mater. 2003, 15, 1535–1546. [Google Scholar] [CrossRef]
- Mei, J.; Hong, Y.; Lam, J.W.Y.; Qin, A.; Tang, Y.; Tang, B.Z. Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429–5479. [Google Scholar] [CrossRef]
- Ejaz, M.; Mohamed, M.G.; Kuo, S.-W. Fluorescent benzoxazine–perylene linked covalent organic polymer as a sensing probe for lead ions and 2,4,6-trinitrophenol. ACS Appl. Polym. Mater. 2024, 6, 9170–9179. [Google Scholar] [CrossRef]
- Suhendra, N.F.; Sharma, R.; Lee, H.-i. Thermally versatile maleimide-based polymeric thin film for detection and separation of picric acid from polluted areas. Sens. Actuators B Chem. 2024, 418, 136345. [Google Scholar] [CrossRef]
- Huo, T.; Yang, B.; He, Y. New porous organic framework Py-PDA CHOF as fluorescent chemosensor for detecting 2,4,6-trinitrophenol in environmental samples. Microchem. J. 2024, 205, 111271. [Google Scholar] [CrossRef]
- Dhiman, S.; Singla, N.; Ahmad, M.; Singh, P.; Kumar, S. Protonation- and electrostatic-interaction-based fluorescence probes for the selective detection of picric acid (2,4,6-trinitrophenol)—An explosive material. Mater. Adv. 2021, 2, 6466–6498. [Google Scholar] [CrossRef]
- Patra, S.K.; Sen, B.; Rabha, M.; Khatua, S. An aggregation-induced emission-active bis-heteroleptic ruthenium(ii) complex of thiophenyl substituted phenanthroline for the selective “turn-off” detection of picric acid. New J. Chem. 2022, 46, 169–177. [Google Scholar] [CrossRef]
- He, P.; Chen, Y.; Li, X.-N.; Yan, Y.-Y.; Liu, C. Aggregation-induced emission-active iridium(III) complexes for sensing picric acid in water. Chemosensors 2023, 11, 177. [Google Scholar] [CrossRef]
- Yan, Y.; Jia, W.; Cai, R.; Liu, C. An AIPE-active fluorinated cationic Pt(II) complex for efficient detection of picric acid in aqueous media. Chin. Chem. Lett. 2024, 35, 108819. [Google Scholar] [CrossRef]
- Marmion, M.E.; Takeuchi, K.J. Ruthenium(IV)-oxo complexes: The novel utilization of tertiary pnicogen ligands. J. Am. Chem. Soc. 1988, 110, 1472–1480. [Google Scholar] [CrossRef]
- Yang, X.-J.; Janiak, C.; Heinze, J.; Drepper, F.; Mayer, P.; Piotrowski, H.; Klüfers, P. Heteroleptic 5,5-disubstituted-2,2-bipyridine complexes of ruthenium(II): Spectral, electrochemical, and structural investigations. Inorg. Chim. Acta 2001, 318, 103–116. [Google Scholar] [CrossRef]
- Wei, L.; He, X.; Zhao, D.; Kandawa-Shultz, M.; Shao, G.; Wang, Y. Biotin-conjugated Ru(II) complexes with AIE characteristics as mitochondria-targeted photosensitizers for enhancing photodynamic therapy by disrupting cellular redox balance. Eur. J. Med. Chem. 2024, 264, 115985. [Google Scholar] [CrossRef]
- Di, L.; Xing, Y.; Yang, Z.; Qiao, C.; Xia, Z. Photostable aggregation-induced emission of iridium(III) complex realizing robust and high-resolution imaging of latent fingerprints. Sens. Actuators B Chem. 2023, 375, 132898. [Google Scholar] [CrossRef]
- Thippeswamy, M.S.; Naik, L.; Maridevarmath, C.V.; Savanur, H.M.; Malimath, G.H. Studies on the characterisation of thiophene substituted 1,3,4-oxadiazole derivative for the highly selective and sensitive detection of picric acid. J. Mol. Struct. 2022, 1264, 133274. [Google Scholar] [CrossRef]
- Zu, F.; Yan, F.; Bai, Z.; Xu, J.; Wang, Y.; Huang, Y.; Zhou, X. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim. Acta 2017, 184, 1899–1914. [Google Scholar] [CrossRef]
- Shi, Z.; Li, W.; Pi, H.; Liu, H.; Chen, H.; Li, P.; Jiang, X. Trace amounts of mercaptans with key roles in forming an efficient three-component photoinitiation system for holography. Mater. Today Chem. 2022, 26, 100999. [Google Scholar] [CrossRef]
- P, K.; Cherian, A.R.; Sirimahachai, U.; Thadathil, D.A.; Varghese, A.; Hegde, G. Detection of picric acid in industrial effluents using multifunctional green fluorescent B/N-carbon quantum dots. J. Environ. Chem. Eng. 2022, 10, 107209. [Google Scholar] [CrossRef]
- Yang, X.; Liu, W.; Liu, X.; Sun, Y.; Wang, X.; Shao, Y.; Liu, W. Construction of multifunctional luminescent lanthanide MOFs for luminescent sensing of temperature, trifluoroacetic acid vapor and explosives. Inorg. Chem. 2024, 63, 3921–3930. [Google Scholar] [CrossRef]
- Escudero, D. Revising intramolecular photoinduced electron transfer (PET) from first-principles. Acc. Chem. Res. 2016, 49, 1816–1824. [Google Scholar] [CrossRef]
- Sharma, A.; Enderlein, J.; Kumbhakar, M. Photon antibunching reveals static and dynamic quenching interaction of tryptophan with Atto-655. J. Phys. Chem. Lett. 2017, 8, 5821–5826. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, T.; Guo, X.; Cui, Q.; Zhang, W.; Dong, W.; Fei, T. Conjugated polymer nanoparticles based on anthracene and tetraphenylethene for nitroaromatics detection in aqueous phase. Chemosensors 2022, 10, 366. [Google Scholar] [CrossRef]
- Kuleshova, O.; Asako, S.; Ilies, L. Ligand-enabled, iridium-catalyzed ortho-borylation of fluoroarenes. ACS Catal. 2021, 11, 5968–5973. [Google Scholar] [CrossRef]
- Malik, S.; Mondal, U.; Jana, N.C.; Banerjee, P.; Saha, A. Using eugenol scaffold to explore the explosive sensing properties of Cd(ii)-based coordination polymers: Experimental studies and real sample analysis. Dalton Trans. 2024, 53, 12995–13011. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, L.; Shi, Y.; Liu, C. Carbazolyl-modified neutral Ir(III) complexes for efficient detection of picric acid in aqueous media. Sensors 2024, 24, 4074. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Mukherjee, P.S. Self-assembly of a nanoscopic prism via a new organometallic Pt3 acceptor and its fluorescent detection of nitroaromatics. Organometallics 2008, 27, 316–319. [Google Scholar] [CrossRef]
- Hou, Y.; Shi, R.; Yuan, H.; Zhang, M. Highly emissive perylene diimide-based bowtie-shaped metallacycles. Chin. Chem. Lett. 2023, 34, 107688. [Google Scholar] [CrossRef]
- Ma, Q.; Dong, W.; Ma, Z.; Lv, X.; Li, Y.; Duan, Q. Synthesis of phosphorescent iridium(III) complex containing carbazole and its sensing property towards nitro-aromatic compounds. Mater. Lett. 2019, 249, 120–123. [Google Scholar] [CrossRef]
- Dong, W.; Ma, Q.; Ma, Z.; Duan, Q.; Lü, X.; Qiu, N.; Fei, T.; Su, Z. Phosphorescent iridium(III) complex based photoluminescence sensor for sensitive and selective detection of picric acid. Dyes Pigm. 2020, 172, 107799. [Google Scholar] [CrossRef]
- Yi, S.; Lu, Z.; Xie, Z.; Hou, L. Amphiphilic gemini-iridium (III) complex for rapid and selective detection of picric acid in water and intracellular. Talanta 2020, 208, 120372. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Zhang, Q.; Zhang, L.; Liu, C. A Phenyl-Modified Aggregation-Induced Phosphorescent Emission-Active Cationic Ru(II) Complex for Detecting Picric Acid in Aqueous Media. Chemosensors 2025, 13, 14. https://doi.org/10.3390/chemosensors13010014
Chen R, Zhang Q, Zhang L, Liu C. A Phenyl-Modified Aggregation-Induced Phosphorescent Emission-Active Cationic Ru(II) Complex for Detecting Picric Acid in Aqueous Media. Chemosensors. 2025; 13(1):14. https://doi.org/10.3390/chemosensors13010014
Chicago/Turabian StyleChen, Ruimin, Qinglong Zhang, Liyan Zhang, and Chun Liu. 2025. "A Phenyl-Modified Aggregation-Induced Phosphorescent Emission-Active Cationic Ru(II) Complex for Detecting Picric Acid in Aqueous Media" Chemosensors 13, no. 1: 14. https://doi.org/10.3390/chemosensors13010014
APA StyleChen, R., Zhang, Q., Zhang, L., & Liu, C. (2025). A Phenyl-Modified Aggregation-Induced Phosphorescent Emission-Active Cationic Ru(II) Complex for Detecting Picric Acid in Aqueous Media. Chemosensors, 13(1), 14. https://doi.org/10.3390/chemosensors13010014