Volatolomics for Anticipated Diagnosis of Cancers with Chemoresistive Vapour Sensors: A Review
Abstract
:1. Introduction
2. Cancer Detection
2.1. Conventional Methods
2.2. Recent Developments
2.3. Volatolome Analysis, a Promising Diagnosis Method
2.3.1. Origin of VOC in the Human Body
2.3.2. Various Biomarkers of Infectious Diseases
2.3.3. Lung and Skin Cancer Biomarkers
2.3.4. VOC Sensing: A Non-Invasive Method
2.3.5. Breath Collection Methods
2.3.6. Skin Headspace Collection Method
2.3.7. Analysis of Exhaled Breath
3. Sensors for Volatolome Analysis: Principles & Mechanism
3.1. Types of Sensors
3.2. Chemo-Resistive Sensors
3.3. Developments in Volatile Organic Compounds’ Sensors
3.4. Nanotoxicity
4. Electronic Noses (E-Nose)
4.1. Working Principles
4.2. Data Treatments
4.3. Artificial Neural Networking
5. Performances of E-Nose in Biomarkers’ Detection
5.1. Sensors’ Characteristics
5.2. Brief Overview of Existing Capabilities of E-Noses
5.3. Tailoring the Sensors’ Selectivity to Improve the E-Nose Discrimination Ability
6. Conclusions & Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Cancer Today: Global Cancer Statistics in 2020. Available online: https://gco.iarc.who.int/today (accessed on 4 July 2024).
- Dominioni, L.; Imperatori, A.; Rovera, F.; Ochetti, A.; Torrigiotti, G.; Paolucci, M. Stage I Nonsmall Cell Lung Carcinoma: Analysis of Survival and Implications for Screening. Cancer 2000, 89, 2334–2344. [Google Scholar] [CrossRef] [PubMed]
- Alberg, A.J.; Ford, J.G.; Samet, J.M. Epidemiology of Lung Cancer: ACCP Evidence-Based Clinical Practice Guidelines (2nd Edition). Chest 2007, 132, 29S–55S. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M.J. Cancer Statistics 2009. CA Cancer J. Clin. 2009, 59, 225–249. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2015. CA Cancer J. Clin. 2015, 65, 5–29. [Google Scholar] [CrossRef]
- Berg, C.D.; Aberle, D.R. CT Screening for Lung Cancer. N. Engl. J. Med. 2007, 356, 743–744; author reply 746–747. [Google Scholar]
- New, M.; Keith, R. Early Detection and Chemoprevention of Lung Cancer. F1000Research 2018, 7, 61. [Google Scholar] [CrossRef]
- Marks, R. An Overview of Skin Cancers. Cancer 1995, 75, 607–612. [Google Scholar] [CrossRef]
- Schinke, C.; Mo, Y.; Yu, Y.; Amiri, K.; Sosman, J.; Greally, J.; Verma, A. Aberrant DNA Methylation in Malignant Melanoma. Melanoma Res. 2010, 20, 253–265. [Google Scholar] [CrossRef]
- Balch, C.M.; Gershenwald, J.E.; Soong, S.J.; Thompson, J.F.; Atkins, M.B.; Byrd, D.R.; Buzaid, A.C.; Cochran, A.J.; Coit, D.G.; Ding, S.; et al. Final Version of 2009 AJCC Melanoma Staging and Classification. J. Clin. Oncol. 2009, 27, 6199–6206. [Google Scholar] [CrossRef]
- Böni, R.; Schuster, C.; Nehrhoff, B.; Burg, G. Epidemiology of Skin Cancer. Neuroendocrinol. Lett. 2002, 23, 48–51. [Google Scholar] [CrossRef]
- Han, J.; Qureshi, A.A.; Nan, H.; Zhang, J.; Song, Y.; Guo, Q.; Hunter, D.J. A Germline Variant in the Interferon Regulatory Factor 4 Gene as a Novel Skin Cancer Risk Locus. Cancer Res. 2011, 71, 1533–1539. [Google Scholar] [CrossRef] [PubMed]
- Dancey, A.L.; Mahon, B.S.; Rayatt, S.S. A Review of Diagnostic Imaging in Melanoma. J. Plast. Reconstr. Aesthet. Surg. 2008, 61, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Tabár, L.; Yen, A.M.-F.; Wu, W.Y.-Y.; Chen, S.L.-S.; Chiu, S.Y.-H.; Fann, J.C.-Y.; Ku, M.M.-S.; Smith, R.A.; Duffy, S.W.; Chen, T.H.-H. Insights from the Breast Cancer Screening Trials: How Screening Affects the Natural History of Breast Cancer and Implications for Evaluating Service Screening Programs. Breast J. 2015, 21, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Tosteson, A.N.A.; Fryback, D.G.; Hammond, C.S.; Hanna, L.G.; Grove, M.R.; Brown, M.; Wang, Q.; Lindfors, K.; Pisano, E.D. Consequences of False-Positive Screening Mammograms. JAMA Intern. Med. 2014, 174, 954–961. [Google Scholar] [CrossRef]
- American Cancer Society. Cancer Facts & Figures 2015; American Cancer Society: Atlanta, GA, USA, 2015; pp. 1–9. [Google Scholar]
- Sone, S.; Nakayama, T.; Honda, T.; Tsushima, K.; Li, F.; Haniuda, M.; Takahashi, Y.; Suzuki, T.; Yamanda, T.; Kondo, R.; et al. Long-Term Follow-up Study of a Population-Based 1996-1998 Mass Screening Programme for Lung Cancer Using Mobile Low-Dose Spiral Computed Tomography. Lung Cancer 2007, 58, 329–341. [Google Scholar] [CrossRef]
- Altintas, Z.; Tothill, I. Biomarkers and Biosensors for the Early Diagnosis of Lung Cancer. Sens. Actuators B Chem. 2013, 188, 988–998. [Google Scholar] [CrossRef]
- Poli, D.; Carbognani, P.; Corradi, M.; Goldoni, M.; Acampa, O.; Balbi, B.; Bianchi, L.; Rusca, M.; Mutti, A. Exhaled Volatile Organic Compounds in Patients with Non-Small Cell Lung Cancer: Cross Sectional and Nested Short-Term Follow-up Study. Respir. Res. 2005, 6, 71. [Google Scholar] [CrossRef]
- Sung, H.-J.; Cho, J.-Y. Biomarkers for the Lung Cancer Diagnosis and Their Advances in Proteomics. BMB Rep. 2008, 41, 615–625. [Google Scholar] [CrossRef]
- Choi, Y.-E.; Kwak, J.-W.; Park, J.W. Nanotechnology for Early Cancer Detection. Sensors 2010, 10, 428–455. [Google Scholar] [CrossRef]
- Bohunicky, B.; Mousa, S.A. Biosensors: The New Wave in Cancer Diagnosis. Nanotechnol. Sci. Appl. 2010, 4, 1–10. [Google Scholar] [CrossRef]
- Lollo, G.; Rivera-Rodriguez, G.R.; Bejaud, J.; Montier, T.; Passirani, C.; Benoit, J.-P.; García-Fuentes, M.; Alonso, M.J.; Torres, D. Polyglutamic Acid–PEG Nanocapsules as Long Circulating Carriers for the Delivery of Docetaxel. Eur. J. Pharm. Biopharm. 2014, 87, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Bach, P.B.; Mirkin, J.N.; Oliver, T.K.; Azzoli, C.G.; Berry, D.; Brawley, O.W.; Byers, T.; Colditz, G.A.; Gould, M.K.; Jett, J.R.; et al. Benefits and Harms of CT Screening for Lung Cancer: A Systematic Review. JAMA 2012, 307, 2418–2429. [Google Scholar] [CrossRef] [PubMed]
- Wender, R.; Fontham, E.T.H.; Barrera, E.; Colditz, G.A.; Church, T.R.; Ettinger, D.S.; Etzioni, R.; Flowers, C.R.; Gazelle, G.S.; Kelsey, D.K.; et al. American Cancer Society Lung Cancer Screening Guidelines. CA Cancer J. Clin. 2013, 63, 107–117. [Google Scholar] [CrossRef] [PubMed]
- De Koning, H.J.; Meza, R.; Plevritis, S.K.; Haaf, K.T.; Munshi, V.N.; Jeon, J.; Erdogan, S.A.; Kong, C.Y.; Han, S.S.; Van Rosmalen, J.; et al. Benefits and Harms of CT Lung Cancer Screening Strategies. A Comparative Modeling Study for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2014, 160, 311–320. [Google Scholar] [CrossRef]
- Moyer, V.A.; US Preventive Services Task Force. Screening for Lung Cancer: U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2014, 160, 330–338. [Google Scholar] [CrossRef]
- Detterbeck, F.C.; Mazzone, P.J.; Naidich, D.P.; Bach, P.B. Screening for Lung Cancer: Diagnosis and Management of Lung Cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2013, 143, e78S–e92S. [Google Scholar] [CrossRef]
- Jaklitsch, M.T.; Jacobson, F.L.; Austin, J.H.M.; Field, J.K.; Jett, J.R.; Keshavjee, S.; MacMahon, H.; Mulshine, J.L.; Munden, R.F.; Salgia, R.; et al. The American Association for Thoracic Surgery Guidelines for Lung Cancer Screening Using Low-Dose Computed Tomography Scans for Lung Cancer Survivors and Other High-Risk Groups. J. Thorac. Cardiovasc. Surg. 2012, 144, 33–38. [Google Scholar] [CrossRef]
- Wood, D.E.; Kazerooni, E.; Baum, S.L.; Dransfield, M.T.; Eapen, G.A.; Ettinger, D.S.; Hou, L.; Jackman, D.M.; Klippenstein, D.; Kumar, R.; et al. Lung Cancer Screening, Version 1.2015. J. Natl. Compr. Cancer Netw. 2015, 13, 23–34. [Google Scholar] [CrossRef]
- Patz, E.F.; Swensen, S.J.; Herndon, J.E. Estimate of Lung Cancer Mortality from Low-Dose Spiral Computed Tomography Screening Trials: Implications for Current Mass Screening Recommendations. J. Clin. Oncol. 2004, 22, 2202–2206. [Google Scholar] [CrossRef]
- Goto, I.; Yoneda, S.; Yamamoto, M.; Kawajiri, K. Prognostic Significance of Germ Line Polymorphisms of the CYP1A1 and Glutathione S-Transferase Genes in Patients with Non-Small Cell Lung Cancer. Cancer Res. 1996, 56, 3725–3730. [Google Scholar]
- Chen, X.; Muhammad, K.G.; Madeeha, C.; Fu, W.; Xu, L.; Hu, Y.; Liu, J.; Ying, K.; Chen, L.; Yurievna, G.O. Calculated Indices of Volatile Organic Compounds (VOCs) in Exhalation for Lung Cancer Screening and Early Detection. Lung Cancer 2021, 154, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Smolinska, A.; Hauschild, A.C.; Fijten, R.R.R.; Dallinga, J.W.; Baumbach, J.; van Schooten, F.J. Current Breathomics—A Review on Data Pre-Processing Techniques and Machine Learning in Metabolomics Breath Analysis. J. Breath Res. 2014, 8, 027105. [Google Scholar] [CrossRef] [PubMed]
- Tisch, U.; Haick, H. Chemical Sensors for Breath Gas Analysis: The Latest Developments at the Breath Analysis Summit 2013. J. Breath Res. 2014, 8, 27103. [Google Scholar] [CrossRef]
- Freddi, S.; Emelianov, A.V.; Bobrinetskiy, I.I.; Drera, G.; Pagliara, S.; Kopylova, D.S.; Chiesa, M.; Santini, G.; Mores, N.; Moscato, U.; et al. Development of a Sensing Array for Human Breath Analysis Based on SWCNT Layers Functionalized with Semiconductor Organic Molecules. Adv. Health Mater. 2020, 9, e2000377. [Google Scholar] [CrossRef]
- Freddi, S.; Sangaletti, L. Trends in the Development of Electronic Noses Based on Carbon Nanotubes Chemiresistors for Breathomics. Nanomaterials 2022, 12, 2992. [Google Scholar] [CrossRef]
- Scheideler, L.; Manke, H.G.; Schwulera, U.; Inacker, O.; Hämmerle, H. Detection of Nonvolatile Macromolecules in Breath. A Possible Diagnostic Tool? Am. Rev. Respir. Dis. 1993, 148, 778–784. [Google Scholar] [CrossRef]
- Pauling, L.; Robinson, B.; Teranishi, R.; Cary, P. Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography. Proc. Natl. Acad. Sci. USA 1971, 68, 2374–2376. [Google Scholar] [CrossRef]
- Broza, Y.Y.; Zuri, L.; Haick, H. Combined Volatolomics for Monitoring of Human Body Chemistry. Sci. Rep. 2014, 4, 4611. [Google Scholar] [CrossRef]
- de Lacy Costello, B.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N.M. A Review of the Volatiles from the Healthy Human Body. J. Breath Res. 2014, 8, 014001. [Google Scholar] [CrossRef]
- Miekisch, W.; Schubert, J.K.; Noeldge-Schomburg, G.F.E. Diagnostic Potential of Breath Analysis—Focus on Volatile Organic Compounds. Clin. Chim. Acta 2004, 347, 25–39. [Google Scholar] [CrossRef]
- Cheng, W.-H.; Lee, W.-J. Technology Development in Breath Microanalysis for Clinical Diagnosis. J. Lab. Clin. Med. 1999, 133, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.B.; Byun, H.G.; So, M.S.; Huh, J.S. Analysis of Diabetic Patient’s Breath with Conducting Polymer Sensor Array. Sens. Actuators B Chem. 2005, 108, 305–308. [Google Scholar] [CrossRef]
- Trotter, M.D.; Sulway, M.J.; Trotter, E. The Rapid Determination of Acetone in Breath and Plasma. Clin. Chim. Acta 1971, 35, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Dawson, J.; Green, K.; Lazarowicz, H.; Cornford, P.; Probert, C. Analysis of Urinary Volatile Organic Compounds for Prostate Cancer Diagnosis: A Systematic Review. BJUI Compass 2024, 5, 936–947. [Google Scholar] [CrossRef]
- Cornu, J.N.; Cancel-Tassin, G.; Ondet, V.; Girardet, C.; Cussenot, O. Olfactory Detection of Prostate Cancer by Dogs Sniffing Urine: A Step Forward in Early Diagnosis. Eur. Urol. 2011, 59, 197–201. [Google Scholar] [CrossRef]
- Španěl, P.; Smith, D.; Holland, T.A.; Singary, W.A.; Elder, J.B. Analysis of Formaldehyde in the Headspace of Urine from Bladder and Prostate Cancer Patients Using Selected Ion Flow Tube Mass Spectrometry. Rapid Commun. Mass. Spectrom. 1999, 13, 1354–1359. [Google Scholar] [CrossRef]
- Cikach, F.S.; Dweik, R.A. Cardiovascular Biomarkers in Exhaled Breath. Prog. Cardiovasc. Dis. 2012, 55, 34–43. [Google Scholar] [CrossRef]
- Dummer, J.; Storer, M.; Swanney, M.; McEwan, M.; Scott-Thomas, A.; Bhandari, S.; Chambers, S.; Dweik, R.; Epton, M. Analysis of Biogenic Volatile Organic Compounds in Human Health and Disease. TrAC Trends Anal. Chem. 2011, 30, 960–967. [Google Scholar] [CrossRef]
- Kischkel, S.; Miekisch, W.; Sawacki, A.; Straker, E.M.; Trefz, P.; Amann, A.; Schubert, J.K. Breath biomarkers for lung cancer detection and assessment of smoking related effects-confounding variables, influence of normalization and statistical algorithms. Clin. Chim. Acta 2010, 411, 1637–1644. [Google Scholar] [CrossRef]
- Pleil, J.D.; Lindstrom, A.B. Exhaled Human Breath Measurement Method for Assessing Exposure to Halogenated Volatile Organic Compounds. Clin. Chem. 1997, 43, 723–730. [Google Scholar] [CrossRef]
- Wallace, L.A.; Pellizzari, E.D. Recent Advances in Measuring Exhaled Breath and Estimating Exposure and Body Burden for Volatile Organic Compounds (VOCs). Environ. Health Perspect. 1995, 103, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Wallace, L.; Buckley, T.; Pellizzari, E.; Gordon, S. Breath Measurements as Volatile Organic Compound Biomarkers. Environ. Health Perspect. 1996, 104, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Aghdassi, E.; Allard, J.P. Breath Alkanes as a Marker of Oxidative Stress in Different Clinical Conditions. Free Radic. Biol. Med. 2000, 28, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Stone, B.G.; Besse, T.J.; Duane, W.C.; Evans, C.D.; DeMaster, E.G. Effect of Regulating Cholesterol Biosynthesis on Breath Isoprene Excretion in Men. Lipids 1993, 28, 705–708. [Google Scholar] [CrossRef]
- Lebovitz, H.E. Diabetic Ketoacidosis. Lancet 1995, 345, 767–772. [Google Scholar] [CrossRef]
- Cope, K.; Risby, T.; Diehl, A.M. Increased Gastrointestinal Ethanol Production in Obese Mice: Implications for Fatty Liver Disease Pathogenesis. Gastroenterology 2000, 119, 1340–1347. [Google Scholar] [CrossRef]
- Davis, P.L.; Dal Cortivo, L.A.; Maturo, J. Endogenous Isopropanol: Forensic and Biochemical Implications. J. Anal. Toxicol. 1984, 8, 209–212. [Google Scholar] [CrossRef]
- Davies, S.; Spanel, P.; Smith, D. Quantitative Analysis of Ammonia on the Breath of Patients in End-Stage Renal Failure. Kidney Int. 1997, 52, 223–228. [Google Scholar] [CrossRef]
- Nakhleh, M.K.; Haick, H.; Humbert, M.; Cohen-Kaminsky, S. Volatolomics of Breath as an Emerging Frontier in Pulmonary Arterial Hypertension. Eur. Respir. J. 2017, 49, 1601897. [Google Scholar] [CrossRef]
- Wilson, A.D.; Baietto, M. Advances in Electronic-Nose Technologies Developed for Biomedical Applications. Sensors 2011, 11, 1105–1176. [Google Scholar] [CrossRef]
- Novak, B.J.; Blake, D.R.; Meinardi, S.; Rowland, F.S.; Pontello, A.; Cooper, D.M.; Galassetti, P.R. Exhaled Methyl Nitrate as a Noninvasive Marker of Hyperglycemia in Type 1 Diabetes. Proc. Natl. Acad. Sci. USA 2007, 104, 15613–15618. [Google Scholar] [CrossRef] [PubMed]
- Wehinger, A.; Schmid, A.; Mechtcheriakov, S.; Ledochowski, M.; Grabmer, C.; Gastl, G.A.; Amann, A. Lung Cancer Detection by Proton Transfer Reaction Mass-Spectrometric Analysis of Human Breath Gas. Int. J. Mass. Spectrom. 2007, 265, 49–59. [Google Scholar] [CrossRef]
- Wilson, A. Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath. Metabolites 2015, 5, 140–163. [Google Scholar] [CrossRef]
- Broza, Y.Y.; Kremer, R.; Tisch, U.; Gevorkyan, A.; Shiban, A.; Best, L.A.; Haick, H. A Nanomaterial-Based Breath Test for Short-Term Follow-up after Lung Tumor Resection. Nanomedicine 2013, 9, 15–21. [Google Scholar] [CrossRef]
- Preti, G.; Labows, J.N.; Kostelc, J.G.; Aldinger, S.; Daniele, R. Analysis of Lung Air from Patients with Bronchogenic Carcinoma and Controls Using Gas Chromatography-Mass Spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 1988, 432, 1–11. [Google Scholar] [CrossRef]
- Horváth, I.; Lázár, Z.; Gyulai, N.; Kollai, M.; Losonczy, G. Exhaled Biomarkers in Lung Cancer. Eur. Respir. J. 2009, 34, 261–275. [Google Scholar] [CrossRef]
- Chen, X.; Xu, F.; Wang, Y.; Pan, Y.; Lu, D.; Wang, P.; Ying, K.; Chen, E.; Zhang, W. A Study of the Volatile Organic Compounds Exhaled by Lung Cancer Cells in Vitro for Breath Diagnosis. Cancer 2007, 110, 835–844. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Cai, J.-J.; Ruan, G.-H.; Li, G.-K. The Study of Fingerprint Characteristics of the Emanations from Human Arm Skin Using the Original Sampling System by SPME-GC/MS. J. Chromatogr. B 2005, 822, 244–252. [Google Scholar] [CrossRef]
- Bernier, U.R.; Kline, D.L.; Barnard, D.R.; Schreck, C.E.; Yost, R.A. Analysis of Human Skin Emanations by Gas Chromatography/Mass Spectrometry. 2. Identification of Volatile Compounds That Are Candidate Attractants for the Yellow Fever Mosquito (Aedes Aegypti). Anal. Chem. 2000, 72, 747–756. [Google Scholar] [CrossRef]
- Acevedo, C.A.; Sanchez, E.Y.; Reyes, J.G.; Young, M.E. Volatile Profiles of Human Skin Cell Cultures in Different Degrees of Senescence. J. Chromatogr. B 2010, 878, 449–455. [Google Scholar] [CrossRef]
- Shirasu, M.; Touhara, K. The Scent of Disease: Volatile Organic Compounds of the Human Body Related to Disease and Disorder. J. Biochem. 2011, 150, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Dent, A.G.; Sutedja, T.G.; Zimmerman, P. V Exhaled Breath Analysis for Lung Cancer. J. Thorac. Dis. 2013, 5, S540–S550. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Singla, A.K.; Bajaj, A.; Elci, S.G.; Miranda, O.R.; Mout, R.; Yan, B.; Jirik, F.R.; Rotello, V.M. Array-Based Sensing of Metastatic Cells and Tissues Using Nanoparticle–Fluorescent Protein Conjugates. ACS Nano 2012, 6, 8233–8240. [Google Scholar] [CrossRef] [PubMed]
- Pavlou, A.K.; Magan, N.; Sharp, D.; Brown, J.; Barr, H.; Turner, A.P.F. An Intelligent Rapid Odour Recognition Model in Discrimination of Helicobacter Pylori and Other Gastroesophageal Isolates in Vitro. Biosens. Bioelectron. 2000, 15, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Manolis, A. The Diagnostic Potential of Breath Analysis. Clin. Chem. 1983, 29, 5–15. [Google Scholar] [CrossRef]
- Williams, H.; Pembroke, A. Sniffer Dogs in the Melanoma Clinic? Lancet 1989, 333, 734. [Google Scholar] [CrossRef]
- Church, J.; Williams, H. Another Sniffer Dog for the Clinic? Lancet 2001, 358, 930. [Google Scholar] [CrossRef]
- D’Amico, A.; Bono, R.; Pennazza, G.; Santonico, M.; Mantini, G.; Bernabei, M.; Zarlenga, M.; Roscioni, C.; Martinelli, E.; Paolesse, R.; et al. Identification of Melanoma with a Gas Sensor Array. Ski. Res. Technol. 2008, 14, 226–236. [Google Scholar] [CrossRef]
- Kwak, J.; Gallagher, M.; Ozdener, M.H.; Wysocki, C.J.; Goldsmith, B.R.; Isamah, A.; Faranda, A.; Fakharzadeh, S.S.; Herlyn, M.; Johnson, A.T.C.; et al. Volatile Biomarkers from Human Melanoma Cells. J. Chromatogr. B 2013, 931, 90–96. [Google Scholar] [CrossRef]
- Abaffy, T.; Möller, M.G.; Riemer, D.D.; Milikowski, C.; DeFazio, R.A. Comparative Analysis of Volatile Metabolomics Signals from Melanoma and Benign Skin: A Pilot Study. Metabolomics 2013, 9, 998–1008. [Google Scholar] [CrossRef]
- Paliwal, S.; Hwang, B.H.; Tsai, K.Y.; Mitragotri, S. Diagnostic Opportunities Based on Skin Biomarkers. Eur. J. Pharm. Sci. 2013, 50, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Hiroshi, K.; Masaya, H.; Nariyoshi, S.; Makoto, M. Evaluation of Volatile Sulfur Compounds in the Expired Alveolar Gas in Patients with Liver Cirrhosis. Clin. Chim. Acta 1978, 85, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, C.A.; Sanchez, E.Y.; Reyes, J.G.; Young, M.E. Volatile Organic Compounds Produced by Human Skin Cells. Biol. Res. 2007, 40, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Nose, K.; Ueda, H.; Ohkuwa, T.; Kondo, T.; Araki, S.; Ohtani, H.; Tsuda, T. Identification and Assessment of Carbon Monoxide in Gas Emanated from Human Skin. Chromatography 2006, 27, 27–29. [Google Scholar]
- Simenhoff, M.L.; Burke, J.F.; Saukkonen, J.J.; Ordinario, A.T.; Doty, R.; Dunn, S. Biochemical Profile of Uremic Breath. N. Engl. J. Med. 1977, 297, 132–135. [Google Scholar] [CrossRef]
- Meinardi, S.; Jin, K.B.; Barletta, B.; Blake, D.R.; Vaziri, N.D. Exhaled Breath and Fecal Volatile Organic Biomarkers of Chronic Kidney Disease. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2012, 1830, 2531–2537. [Google Scholar] [CrossRef]
- Zilberman, Y.; Tisch, U.; Shuster, G.; Pisula, W.; Feng, X.; Müllen, K.; Haick, H. Carbon Nanotube/Hexa-Peri-Hexabenzocoronene Bilayers for Discrimination between Nonpolar Volatile Organic Compounds of Cancer and Humid Atmospheres. Adv. Mater. 2010, 22, 4317–4320. [Google Scholar] [CrossRef]
- Mashir, A.; Dweik, R.A. Exhaled Breath Analysis: The New Interface between Medicine and Engineering. Adv. Powder Technol. 2009, 20, 420–425. [Google Scholar] [CrossRef]
- Ionescu, R.; Broza, Y.Y.; Shaltieli, H.; Sadeh, D.; Zilberman, Y.; Feng, X.; Glass-Marmor, L.; Lejbkowicz, I.; Müllen, K.; Miller, A.; et al. Detection of Multiple Sclerosis from Exhaled Breath Using Bilayers of Polycyclic Aromatic Hydrocarbons and Single-Wall Carbon Nanotubes. ACS Chem. Neurosci. 2011, 2, 687–693. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Broza, Y.Y.; Ionsecu, R.; Tisch, U.; Ding, L.; Liu, H.; Song, Q.; Pan, Y.Y.; Xiong, F.X.; Gu, K.S.; et al. A Nanomaterial-Based Breath Test for Distinguishing Gastric Cancer from Benign Gastric Conditions. Br. J. Cancer 2013, 108, 941–950. [Google Scholar] [CrossRef]
- Santonico, M.; Lucantoni, G.; Pennazza, G.; Capuano, R.; Galluccio, G.; Roscioni, C.; La Delfa, G.; Consoli, D.; Martinelli, E.; Paolesse, R.; et al. In Situ Detection of Lung Cancer Volatile Fingerprints Using Bronchoscopic Air-Sampling. Lung Cancer 2012, 77, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.; Knobloch, H.; Richards, J.; Richards, P.; Mottram, T.T.F.; Marlin, D.; Chambers, M.A. Development of a Device for Sampling Cattle Breath. Biosyst. Eng. 2012, 112, 75–81. [Google Scholar] [CrossRef]
- Bruins, M.; Rahim, Z.; Bos, A.; van de Sande, W.W.J.; Endtz, H.P.; van Belkum, A. Diagnosis of Active Tuberculosis by E-Nose Analysis of Exhaled Air. Tuberculosis 2013, 93, 232–238. [Google Scholar] [CrossRef]
- Wlodzimirow, K.A.; Abu-Hanna, A.; Schultz, M.J.; Maas, M.A.W.; Bos, L.D.J.; Sterk, P.J.; Knobel, H.H.; Soers, R.J.T.; Chamuleau, R.A.F.M. Exhaled Breath Analysis with Electronic Nose Technology for Detection of Acute Liver Failure in Rats. Biosens. Bioelectron. 2014, 53, 129–134. [Google Scholar] [CrossRef]
- Tisch, U.; Schlesinger, I.; Ionescu, R.; Nassar, M.; Axelrod, N.; Robertman, D.; Tessler, Y.; Azar, F.; Marmur, A.; Aharon-Peretz, J.; et al. Detection of Alzheimer’s and Parkinson’s Disease from Exhaled Breath Using Nanomaterial-Based Sensors. Nanomedicine 2012, 8, 43–56. [Google Scholar] [CrossRef]
- Ho, C.; Robinson, A.; Miller, D.; Davis, M. Overview of Sensors and Needs for Environmental Monitoring. Sensors 2005, 5, 4–37. [Google Scholar] [CrossRef]
- Lamagna, A.; Reich, S.; Rodríguez, D.; Boselli, A.; Cicerone, D. The Use of an Electronic Nose to Characterize Emissions from a Highly Polluted River. Sens. Actuators B Chem. 2008, 131, 121–124. [Google Scholar] [CrossRef]
- Su, S.; Wu, W.; Gao, J.; Lu, J.; Fan, C. Nanomaterials-Based Sensors for Applications in Environmental Monitoring. J. Mater. Chem. 2012, 22, 18101–18110. [Google Scholar] [CrossRef]
- Camara, E.H.M.; Breuil, P.; Briand, D.; de Rooij, N.F.; Pijolat, C. A Micro Gas Preconcentrator with Improved Performance for Pollution Monitoring and Explosives Detection. Anal. Chim. Acta 2011, 688, 175–182. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Q.; Jiang, G. Nanomaterials for Analysis and Monitoring of Emerging Chemical Pollutants. TrAC Trends Anal. Chem. 2014, 58, 10–22. [Google Scholar] [CrossRef]
- Gibson, T.D.; Prosser, O.; Hulbert, J.N.; Marshall, R.W.; Corcoran, P.; Lowery, P.; Ruck-Keene, E.A.; Heron, S. Detection and Simultaneous Identification of Microorganisms from Headspace Samples Using an Electronic Nose. Sens. Actuators B Chem. 1997, 44, 413–422. [Google Scholar] [CrossRef]
- Fleming-Jones, M.E.; Smith, R.E. Volatile Organic Compounds in Foods: A Five Year Study. J. Agric. Food Chem. 2003, 51, 8120–8127. [Google Scholar] [CrossRef] [PubMed]
- Ampuero, S.; Bosset, J.O. The Electronic Nose Applied to Dairy Products: A Review. Sens. Actuators B Chem. 2003, 94, 1–12. [Google Scholar] [CrossRef]
- Ghasemi-Varnamkhasti, M.; Mohtasebi, S.S.; Siadat, M.; Balasubramanian, S. Meat Quality Assessment by Electronic Nose (Machine Olfaction Technology). Sensors 2009, 9, 6058–6083. [Google Scholar] [CrossRef]
- Ragazzo-Sanchez, J.A.; Chalier, P.; Chevalier, D.; Ghommidh, C. Electronic Nose Discrimination of Aroma Compounds in Alcoholised Solutions. Sens. Actuators B Chem. 2006, 114, 665–673. [Google Scholar] [CrossRef]
- Kumar, A.; Castro, M.; Feller, J.F. Review on sensor array-based analytical technologies for quality control of food and beverages. Sensors 2023, 23, 4017. [Google Scholar] [CrossRef]
- Haddi, Z.; Mabrouk, S.; Bougrini, M.; Tahri, K.; Sghaier, K.; Barhoumi, H.; El Bari, N.; Maaref, A.; Jaffrezic-Renault, N.; Bouchikhi, B. E-Nose and e-Tongue Combination for Improved Recognition of Fruit Juice Samples. Food Chem. 2014, 150, 246–253. [Google Scholar] [CrossRef]
- Sobański, T.; Szczurek, a.; Nitsch, K.; Licznerski, B.W.; Radwan, W. Electronic Nose Applied to Automotive Fuel Qualification. Sens. Actuators B Chem. 2006, 116, 207–212. [Google Scholar] [CrossRef]
- Benvenho, A.R.V.; Li, R.W.C.; Gruber, J. Polymeric Electronic Gas Sensor for Determining Alcohol Content in Automotive Fuels. Sens. Actuators B Chem. 2009, 136, 173–176. [Google Scholar] [CrossRef]
- Ermanok, R.; Assad, O.; Zigelboim, K.; Wang, B.; Haick, H. Discriminative Power of Chemically Sensitive Silicon Nanowire Field Effect Transistors to Volatile Organic Compounds. ACS Appl. Mater. Interfaces 2013, 5, 11172–11183. [Google Scholar] [CrossRef]
- Li, B.; Sauvé, G.; Iovu, M.C.; Jeffries-El, M.; Zhang, R.; Cooper, J.; Santhanam, S.; Schultz, L.; Revelli, J.C.; Kusne, A.G.; et al. Volatile Organic Compound Detection Using Nanostructured Copolymers. Nano Lett. 2006, 6, 1598–1602. [Google Scholar] [CrossRef] [PubMed]
- Toal, S.J.; Trogler, W.C. Polymer Sensors for Nitroaromatic Explosives Detection. J. Mater. Chem. 2006, 16, 2871–2883. [Google Scholar] [CrossRef]
- Pleil, J.D.; Smith, L.B.; Zelnick, S.D. Personal Exposure to JP-8 Jet Fuel Vapors and Exhaust at Air Force Bases. Environ. Health Perspect. 2000, 108, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Mochalski, P.; Wzorek, B.; Śliwka, I.; Amann, A. Suitability of Different Polymer Bags for Storage of Volatile Sulphur Compounds Relevant to Breath Analysis. J. Chromatogr. B 2009, 877, 189–196. [Google Scholar] [CrossRef]
- Gilchrist, F.J.; Razavi, C.; Webb, A.K.; Jones, A.M.; Španěl, P.; Smith, D.; Lenney, W. An Investigation of Suitable Bag Materials for the Collection and Storage of Breath Samples Containing Hydrogen Cyanide. J. Breath Res. 2012, 6, 036004. [Google Scholar] [CrossRef]
- Beauchamp, J.; Herbig, J.; Gutmann, R.; Hansel, A. On the Use of Tedlar® Bags for Breath-Gas Sampling and Analysis. J. Breath Res. 2008, 2, 046001. [Google Scholar] [CrossRef]
- Schubert, J.K.; Spittler, K.H.; Braun, G.; Geiger, K.; Guttmann, J. CO2-Controlled Sampling of Alveolar Gas in Mechanically Ventilated Patients. J. Appl. Physiol. 2001, 90, 486–492. [Google Scholar] [CrossRef]
- Miekisch, W.; Kischkel, S.; Sawacki, A.; Liebau, T.; Mieth, M.; Schubert, J.K. Impact of Sampling Procedures on the Results of Breath Analysis. J. Breath Res. 2008, 2, 026007. [Google Scholar] [CrossRef]
- Bikov, A.; Paschalaki, K.; Logan-Sinclair, R.; Horváth, I.; Kharitonov, S.A.; Barnes, P.J.; Usmani, O.S.; Paredi, P. Standardised Exhaled Breath Collection for the Measurement of Exhaled Volatile Organic Compounds by Proton Transfer Reaction Mass Spectrometry. BMC Pulm. Med. 2013, 13, 43. [Google Scholar] [CrossRef]
- Pleil, J.D.; Lindstrom, A.B. Measurement of Volatile Organic Compounds in Exhaled Breath as Collected in Evacuated Electropolished Canisters. J. Chromatogr. B Biomed. Sci. Appl. 1995, 665, 271–279. [Google Scholar] [CrossRef]
- Mleth, M.; Schubert, J.K.; Gröger, T.; Sabei, B.; Kischkel, S.; Fuchs, P.; Hein, D.; Zimmermann, R.; Miekisch, W. Automated Needle Trap Heart-Cut GC/MS and Needle Trap Comprehensive Two-Dimensional GC/TOF-MS for Breath Gas Analysis in the Clinical Environment. Anal. Chem. 2010, 82, 2541–2551. [Google Scholar] [CrossRef]
- Knutson, M.D.; Viteri, F.E. Concentrating Breath Samples Using Liquid Nitrogen: A Reliable Method for the Simultaneous Determination of Ethane and Pentane. Anal. Biochem. 1996, 242, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Grote, C.; Pawliszyn, J. Solid-Phase Microextraction for the Analysis of Human Breath. Anal. Chem. 1997, 69, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Risby, T.H.; Sehnert, S.S. Clinical Application of Breath Biomarkers of Oxidative Stress Status. Free Radic. Biol. Med. 1999, 27, 1182–1192. [Google Scholar] [CrossRef]
- Raymer, J.H.; Thomas, K.W.; Cooper, S.D.; Whitaker, D.A.; Pellizzari, E.D. A Device for Sampling of Human Alveolar Breath for the Measurement of Expired Volatile Organic Compounds. J. Anal. Toxicol. 1990, 14, 337–344. [Google Scholar] [CrossRef]
- Turner, C.; Parekh, B.; Walton, C.; Spanel, P.; Smith, D.; Evans, M. An Exploratory Comparative Study of Volatile Compounds in Exhaled Breath and Emitted by Skin Using Selected Ion Flow Tube Mass Spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 526–532. [Google Scholar] [CrossRef]
- van Amsterdam, J.G.; Hollander, A.; Snelder, J.D.; Fischer, P.H.; van Loveren, H.; Vos, J.G.; Opperhuizen, A.; Steerenberg, P.A. The Effect of Air Pollution on Exhaled Nitric Oxide of Atopic and Nonatopic Subjects. Nitric Oxide 1999, 3, 492–495. [Google Scholar] [CrossRef]
- Kushch, I.; Arendacká, B.; Štolc, S.; Mochalski, P.; Filipiak, W.; Schwarz, K.; Schwentner, L.; Schmid, A.; Dzien, A.; Lechleitner, M.; et al. Breath Isoprene—Aspects of Normal Physiology Related to Age, Gender and Cholesterol Profile as Determined in a Proton Transfer Reaction Mass Spectrometry Study. Clin. Chem. Lab. Med. 2008, 46, 1011–1018. [Google Scholar] [CrossRef]
- Ishimaru, M.; Yamada, M.; Nakagawa, I.; Sugano, S. Analysis of Volatile Metabolites from Cultured Bacteria by Gas Chromatography/Atmospheric Pressure Chemical Ionization-Mass Spectrometry. J. Breath Res. 2008, 2, 037021. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) for on-Line Trace Gas Analysis. Mass Spectrom. Rev. 2005, 24, 661–700. [Google Scholar] [CrossRef]
- von Basum, G.; Dahnke, H.; Halmer, D.; Hering, P.; Mürtz, M. Online Recording of Ethane Traces in Human Breath via Infrared Laser Spectroscopy. J. Appl. Physiol. 2003, 95, 2583–2590. [Google Scholar] [CrossRef] [PubMed]
- Costello, B.P.J.D.L.; Ewen, R.J.; Ratcliffe, N.M. A Sensor System for Monitoring the Simple Gases Hydrogen, Carbon Monoxide, Hydrogen Sulfide, Ammonia and Ethanol in Exhaled Breath. J. Breath Res. 2008, 2, 037011. [Google Scholar] [CrossRef] [PubMed]
- Gelperin, A.; Johnson, A.T.C. Nanotube-Based Sensor Arrays for Clinical Breath Analysis. J. Breath Res. 2008, 2, 037015. [Google Scholar] [CrossRef] [PubMed]
- Burke, C.S.; Moore, J.P.; Wencel, D.; Maccraith, B.D. Development of a Compact Optical Sensor for Real-Time, Breath-by-Breath Detection of Oxygen. J. Breath Res. 2008, 2, 037012. [Google Scholar] [CrossRef] [PubMed]
- Hibbard, T.; Killard, a. Breath Ammonia Analysis: Clinical Application and Measurement. Crit. Rev. Anal. Chem. 2011, 41, 21–35. [Google Scholar] [CrossRef]
- Antus, B.; Horvath, I.; Barta, I. Assessment of Exhaled Nitric Oxide by a New Hand-Held Device. Respir. Med. 2010, 104, 1377–1380. [Google Scholar] [CrossRef]
- Nishibori, M.; Shin, W.; Izu, N.; Itoh, T.; Matsubara, I. Sensing Performance of Thermoelectric Hydrogen Sensor for Breath Hydrogen Analysis. Sens. Actuators B Chem. 2009, 137, 524–528. [Google Scholar] [CrossRef]
- Groves, W.A.; Achutan, C. Laboratory and Field Evaluation of a SAW Microsensor Array for Measuring Perchloroethylene in Breath. J. Occup. Environ. Hyg. 2004, 1, 779–788. [Google Scholar] [CrossRef]
- Liao, J.Y.; Ho, K.C. A Study of Partially Irreversible Characteristics in a TTF-TCNQ Gas Sensing System. Sens. Actuators B Chem. 2008, 130, 343–350. [Google Scholar] [CrossRef]
- Peng, G.; Tisch, U.; Haick, H. Detection of Nonpolar Molecules by Means of Carrier Scattering in Random Networks of Carbon Nanotubes: Toward Diagnosis of Diseases via Breath Samples. Nano Lett. 2009, 9, 1362–1368. [Google Scholar] [CrossRef]
- Righettoni, M.; Tricoli, A.; Pratsinis, S.E. Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. Anal. Chem. 2010, 82, 3581–3587. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.E.; Frank, M.; Mizaikoff, B.; Oser, H. Editorial the Future of Sensors and Instrumentation for Human Breath Analysis. IEEE Sens. J. 2010, 10, 3–6. [Google Scholar] [CrossRef]
- Arakawa, T.; Wang, X.; Kajiro, T.; Miyajima, K.; Takeuchi, S.; Kudo, H.; Yano, K.; Mitsubayashi, K. A Direct Gaseous Ethanol Imaging System for Analysis of Alcohol Metabolism from Exhaled Breath. Sens. Actuators B Chem. 2013, 186, 27–33. [Google Scholar] [CrossRef]
- Martin, J.D.M.; Romain, A.C. Building a Sensor Benchmark for E-Nose Based Lung Cancer Detection: Methodological Considerations. Chemosensors 2022, 10, 444. [Google Scholar] [CrossRef]
- Mills, A.; Lepre, A.; Wild, L. Breath-by-Breath Measurement of Carbon Dioxide Using a Plastic Film Optical Sensor. Sens. Actuators B Chem. 1997, 39, 419–425. [Google Scholar] [CrossRef]
- Fernández-Sánchez, J.F.; Cannas, R.; Spichiger, S.; Steiger, R.; Spichiger-Keller, U.E. Optical CO2-Sensing Layers for Clinical Application Based on PH-Sensitive Indicators Incorporated into Nanoscopic Metal-Oxide Supports. Sens. Actuators B Chem. 2007, 128, 145–153. [Google Scholar] [CrossRef]
- Sauerbrey, G. Verwendung von Schwingquarzen Zur Wägung Dünner Schichten Und Zur Mikrowägung. Z. Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Cui, D.; Cai, X.; Han, J.; He, Z.; Zhu, H.; Feng, G. Lipid LB Films for Room Temperature Ethanol Gas Assay. Sens. Actuators B Chem. 1997, 45, 229–232. [Google Scholar] [CrossRef]
- Ito, J.; Nakamoto, T.; Uematsu, H. Discrimination of Halitosis Substance Using QCM Sensor Array and a Preconcentrator. Sens. Actuators B Chem. 2004, 99, 431–436. [Google Scholar] [CrossRef]
- Pennazza, G.; Marchetti, E.; Santonico, M.; Mantini, G.; Mummolo, S.; Marzo, G.; Paolesse, R.; D’Amico, A.; Di Natale, C. Application of a Quartz Microbalance Based Gas Sensor Array for the Study of Halitosis. J. Breath Res. 2008, 2, 017009. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, J.; Chen, S.; Zeng, L.; Huang, Y. A Highly Sensitive QCM Sensor Coated with Ag+-ZSM-5 Film for Medical Diagnosis. Sens. Actuators B Chem. 2004, 101, 316–321. [Google Scholar] [CrossRef]
- Brenet, S.; John-Herpin, A.; Gallat, F.X.; Musnier, B.; Buhot, A.; Herrier, C.; Rousselle, T.; Livache, T.; Hou, Y. Highly-Selective Optoelectronic Nose Based on Surface Plasmon Resonance Imaging for Sensing Volatile Organic Compounds. Anal. Chem. 2018, 90, 9879–9887. [Google Scholar] [CrossRef] [PubMed]
- Boot, J.D.; de Ridder, L.; de Kam, M.L.; Calderon, C.; Mascelli, M.A.; Diamant, Z. Comparison of Exhaled Nitric Oxide Measurements between NIOX MINO® Electrochemical and Ecomedics Chemiluminescence Analyzer. Respir. Med. 2008, 102, 1667–1671. [Google Scholar] [CrossRef] [PubMed]
- Vreman, H.J.; Stevenson, D.K.; Oh, W.; Fanaroff, A.A.; Wright, L.L.; Lemons, J.A.; Wright, E.; Shankaran, S.; Tyson, J.E.; Korones, S.B. Semiportable Electrochemical Instrument for Determining Carbon Monoxide in Breath. Clin. Chem. 1994, 40, 1927–1933. [Google Scholar] [CrossRef]
- Kuban, P.; Berg, J.M.; Dasgupta, P.K. Durable Microfabricated High-Speed Humidity Sensors. Anal. Chem. 2004, 76, 2561–2567. [Google Scholar] [CrossRef]
- Neri, G.; Bonavita, A.; Micali, G.; Donato, N. Design and Development of a Breath Acetone MOS Sensor for Ketogenic Diets Control. IEEE Sens. J. 2010, 10, 131–136. [Google Scholar] [CrossRef]
- Marinelli, F.; Dell’Aquila, A.; Torsi, L.; Tey, J.; Suranna, G.P.; Mastrorilli, P.; Romanazzi, G.; Nobile, C.F.; Mhaisalkar, S.G.; Cioffi, N.; et al. An Organic Field Effect Transistor as a Selective NOx Sensor Operated at Room Temperature. Sens. Actuators B Chem. 2009, 140, 445–450. [Google Scholar] [CrossRef]
- Sekiguchi, T.; Nakamura, M.; Kato, M.; Nishikawa, K.; Hokari, K.; Sugiyama, T.; Asaka, M. Immunological Helicobacter Pylori Urease Analyzer Based on Ion-Sensitive Field Effect Transistor. Sens. Actuators B Chem. 2000, 67, 265–269. [Google Scholar] [CrossRef]
- Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A Review of Gas Sensors Employed in Electronic Nose Applications. Sens. Rev. 2004, 24, 181–198. [Google Scholar] [CrossRef]
- Eranna, G.; Joshi, B.C.; Runthala, D.P.; Gupta, R.P. Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review. Crit. Rev. Solid State Mater. Sci. 2004, 29, 111–188. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [PubMed]
- Schmid, W.; Bârsan, N.; Weimar, U. Sensing of Hydrocarbons with Tin Oxide Sensors: Possible Reaction Path as Revealed by Consumption Measurements. Sens. Actuators B Chem. 2003, 89, 232–236. [Google Scholar] [CrossRef]
- Hamakawa, S.; Li, L.; Li, A.; Iglesia, E. Synthesis and Hydrogen Permeation Properties of Membranes Based on Dense SrCe0.95Yb0.05O3-a Thin Films. Solid State Ion. 2002, 48, 71–81. [Google Scholar] [CrossRef]
- Dai, G. A Study of the Sensing Properties of Thin Film Sensor to Trimethylamine. Sens. Actuators B Chem. 1998, 53, 8–12. [Google Scholar] [CrossRef]
- Espinosa, E.H.; Ionescu, R.; Chambon, B.; Bedis, G.; Sotter, E.; Bittencourt, C.; Felten, A.; Pireaux, J.J.; Correig, X.; Llobet, E. Hybrid Metal Oxide and Multiwall Carbon Nanotube Films for Low Temperature Gas Sensing. Sens. Actuators B Chem. 2007, 127, 137–142. [Google Scholar] [CrossRef]
- Uma, S.; Shobana, M.K. Metal Oxide Semiconductor Gas Sensors in Clinical Diagnosis and Environmental Monitoring. Sens. Actuators A Phys. 2023, 349, 114044. [Google Scholar] [CrossRef]
- Pour, G.B.; Behzadi, L.F. Influence of Oxide Film Surface Morphology and Thickness on the Properties of Gas Sensitive Nanostructure Sensor. Indian J. Pure Appl. Phys. 2019, 57, 743–749. [Google Scholar]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef]
- Feller, J.F. 6.10 Electrically Conductive Nanocomposites. In Comprehensive Composite Materials II; Beaumont, P.W.R., Zweben, C.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 248–314. [Google Scholar]
- Robert, C.; Feller, J.F.; Castro, M. Sensing Skin for Strain Monitoring Made of PC-CNT Conductive Polymer Nanocomposite Sprayed Layer by Layer. ACS Appl. Mater. Interfaces 2012, 4, 3508–3516. [Google Scholar] [CrossRef]
- Lemartinel, A.; Castro, M.; Fouche, O.; De Luca, J.C.; Feller, J.F. Impact and Strain Monitoring in Glass Fiber Reinforced Epoxy Laminates with Embedded Quantum Resistive Sensors (QRSs). Compos. Sci. Technol. 2022, 221, 109352. [Google Scholar] [CrossRef]
- Feller, J.F.; Castro, M.; Kumar, B. Polymer-Carbon Nanotube Conductive Nanocomposites for Sensing. In Polymer-Carbon Nanotube Composites: Preparation, Properties & Applications; McNally, T., Pötschke, P., Eds.; Woodhead Publishing: Cambridge, UK, 2011; pp. 760–803. ISBN 9781845697617. [Google Scholar]
- Tripathi, K.M.; Sachan, A.; Castro, M.; Choudhary, V.; Sonkar, S.K.; Feller, J.F. Green Carbon Nanostructured Quantum Resistive Sensors to Detect Volatile Biomarkers. Sustain. Mater. Technol. 2018, 16, 1–11. [Google Scholar] [CrossRef]
- Duarte, L.; Nag, S.; Castro, M.; Zaborova, E.; Ménand, M.; Sollogoub, M.; Bennevault, V.; Feller, J.F.; Guégan, P. Chemical Sensors Based on New Polyamides Biobased on (Z) Octadec-9-Enedioic Acid and β-Cyclodextrin. Macromol. Chem. Phys. 2016, 217, 1620–1628. [Google Scholar] [CrossRef]
- Castro, M.; Lu, J.; Bruzaud, S.; Kumar, B.; Feller, J.F. Carbon Nanotubes/Poly(ε-Caprolactone) Composite Vapour Sensors. Carbon 2009, 47, 1930–1942. [Google Scholar] [CrossRef]
- Wang, J.; Musameh, M. Carbon Nanotube/Teflon Composite Electrochemical Sensors and Biosensors. Anal. Chem. 2003, 75, 2075–2079. [Google Scholar] [CrossRef] [PubMed]
- Radushkevich, L.V.; Lukyanovich, V.M. About the Structure of Carbon Formed by Thermal Decomposition of Carbon Monoxide on Iron Substrate. J. Phys. Chem. (Mosc.) 1952, 26, 88–95. [Google Scholar]
- Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Meyyappan, M. Carbon Nanotubes: Science and Applications; CRC Press: Boca Raton, FL, USA, 2005; ISBN 0849321115. [Google Scholar]
- Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M.S. Electronic Structure of Chiral Graphene Tubules. Appl. Phys. Lett. 1992, 60, 2204–2206. [Google Scholar] [CrossRef]
- Sinha, N.; Ma, J.; Yeow, J.T.W. Carbon Nanotube-Based Sensors. J. Nanosci. Nanotechnol. 2006, 6, 573–590. [Google Scholar] [CrossRef]
- Llobet, E. Gas Sensors Using Carbon Nanomaterials: A Review. Sens. Actuators B Chem. 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Kroto, H.W. The Stability of the Fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 1987, 329, 529–531. [Google Scholar] [CrossRef]
- Di Crescenzo, A.; Ettorre, V.; Fontana, A. Non-Covalent and Reversible Functionalization of Carbon Nanotubes. Beilstein J. Nanotechnol. 2014, 5, 1675–1690. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, A. Functionalization of Single-Walled Carbon Nanotubes. Angew. Chem. Int. Ed. 2002, 41, 1853–1859. [Google Scholar] [CrossRef]
- Niyogi, S.; Hamon, M.A.; Hu, H.; Zhao, B.; Bhowmik, P.; Sen, R.; Itkis, M.E.; Haddon, R.C. Chemistry of Single-Walled Carbon Nanotubes. Acc. Chem. Res. 2002, 35, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Sin, M.L.Y.; Chow, G.C.T.; Wong, G.M.K.; Li, W.J.; Leong, P.H.W.; Wong, K.W. Ultralow-Power Alcohol Vapor Sensors Using Chemically Functionalized Multiwalled Carbon Nanotubes. IEEE Trans. Nanotechnol. 2007, 6, 571–577. [Google Scholar] [CrossRef]
- Norizan, M.N.; Moklis, M.H.; Ngah Demon, S.Z.; Halim, N.A.; Samsuri, A.; Mohamad, I.S.; Knight, V.F.; Abdullah, N. Carbon Nanotubes: Functionalisation and Their Application in Chemical Sensors. RSC Adv. 2020, 10, 43704–43732. [Google Scholar] [CrossRef]
- Nag, S.; Sachan, A.; Castro, M.; Choudhary, V.; Feller, J.F. Spray Layer-by-Layer Assembly of POSS Functionalized CNT Quantum Chemo-Resistive Sensors with Tuneable Selectivity and Ppm Resolution to VOC Biomarkers. Sens. Actuators B Chem. 2016, 222, 362–373. [Google Scholar] [CrossRef]
- Kong, J.; Chapline, M.G.; Dai, H. Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors. Adv. Mater. 2001, 13, 1384–1386. [Google Scholar] [CrossRef]
- Sayago, I.; Terrado, E.; Lafuente, E.; Horrillo, M.C.; Maser, W.K.; Benito, A.M.; Navarro, R.; Urriolabeitia, E.P.; Martinez, M.T.; Gutierrez, J. Hydrogen Sensors Based on Carbon Nanotubes Thin Films. Synth. Met. 2005, 148, 15–19. [Google Scholar] [CrossRef]
- Yun, Y.; Dong, Z.; Shanov, V.; Heineman, W.R.; Halsall, H.B.; Bhattacharya, A.; Conforti, L.; Narayan, R.K.; Ball, W.S.; Schulz, M.J. Nanotube Electrodes and Biosensors. Nano Today 2007, 2, 30–37. [Google Scholar] [CrossRef]
- Sachan, A.; Castro, M.; Choudhary, V.; Feller, J.F. Influence of Water Molecules on the Detection of Volatile Organic Compounds (VOC) Cancer Biomarkers by Nanocomposite Quantum Resistive Vapour Sensors VQRS. Chemosensors 2018, 6, 64. [Google Scholar] [CrossRef]
- Tung, T.T.; Castro, M.; Kim, T.Y.; Suh, K.S.; Feller, J.F. High Stability Silver Nanoparticles–Graphene/Poly(Ionic Liquid)-Based Chemoresistive Sensors for Volatile Organic Compounds’ Detection. Anal. Bioanal. Chem. 2014, 406, 3995–4004. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, N.; Clarke, C. Nanostructured Chemiresistive Gas Sensors for Medical Applications. Sensors 2019, 19, 462. [Google Scholar] [CrossRef] [PubMed]
- Tung, T.T.; Castro, M.; Pillin, I.; Kim, T.Y.; Suh, K.S.; Feller, J.F. Graphene—Fe3O4/PIL–PEDOT for the Design of Sensitive and Stable Quantum Chemo-Resistive VOC Sensors. Carbon 2014, 74, 104–112. [Google Scholar] [CrossRef]
- Nag, S.; Castro, M.; Choudhary, V.; Feller, J.-F. Boosting Selectivity and Sensitivity to Biomarkers of Quantum Resistive Vapour Sensors Used for Volatolomics with Nanoarchitectured Carbon Nanotubes or Graphene Platelets Connected by Fullerene Junctions. Chemosensors 2021, 9, 66. [Google Scholar] [CrossRef]
- Jian, Y.; Hu, W.; Zhao, Z.; Cheng, P.; Haick, H.; Yao, M.; Wu, W. Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials. Nanomicro Lett. 2020, 12, 71. [Google Scholar] [CrossRef]
- Zhang, L.; Khan, K.; Zou, J.; Zhang, H.; Li, Y. Recent Advances in Emerging 2D Material-based Gas Sensors: Potential in Disease Diagnosis. Adv. Mater. Interfaces 2019, 6, 1901329. [Google Scholar] [CrossRef]
- Tung, T.T.; Tran, M.T.; Feller, J.F.; Castro, M.; Van Ngo, T.; Hassan, K.; Nine, M.J.; Losic, D. Graphene and Metal Organic Frameworks (MOFs) Hybridization for Tunable Chemoresistive Sensors for Detection of Volatile Organic Compounds (VOCs) Biomarkers. Carbon 2020, 159, 333–344. [Google Scholar] [CrossRef]
- Mishra, S.K.; Tripathi, S.N.; Choudhary, V.; Gupta, B.D. SPR Based Fiber Optic Ammonia Gas Sensor Utilizing Nanocomposite Film of PMMA / Reduced Graphene Oxide Prepared by in Situ Polymerization. Sens. Actuators B Chem. 2014, 199, 190–200. [Google Scholar] [CrossRef]
- Bai, H.; Xu, Y.; Zhao, L.; Li, C.; Shi, G. Non-Covalent Functionalization of Graphene Sheets by Sulfonated Polyaniline. Chem. Commun. 2009, 4, 1667–1669. [Google Scholar] [CrossRef]
- Tung, T.T.; Castro, M.; Feller, J.F.; Kim, T.Y.; Suh, K.S. Hybrid Film of Chemically Modified Graphene and Vapor-Phase-Polymerized PEDOT for Electronic Nose Applications. Org. Electron. 2013, 14, 2789–2794. [Google Scholar] [CrossRef]
- Xiang, C.; Jiang, D.; Zou, Y.; Chu, H.; Qiu, S.; Zhang, H.; Xu, F.; Sun, L.; Zheng, L. Ammonia Sensor Based on Polypyrrole–Graphene Nanocomposite Decorated with Titania Nanoparticles. Ceram. Int. 2015, 41, 6432–6438. [Google Scholar] [CrossRef]
- Dariyal, P.; Sharma, S.; Chauhan, G.S.; Singh, B.P.; Dhakate, S.R. Recent Trends in Gas Sensing via Carbon Nanomaterials: Outlook and Challenges. Nanoscale Adv. 2021, 3, 6514–6544. [Google Scholar] [CrossRef] [PubMed]
- Shurmer, H.V.; Gardner, J.W. Odour Discrimination with an Electronic Nose. Sens. Actuators B Chem. 1992, 8, 1–11. [Google Scholar] [CrossRef]
- Gardner, J.W.; Shin, H.W.; Hines, E.L. An Electronic Nose System to Diagnose Illness. Sens. Actuators B Chem. 2000, 70, 19–24. [Google Scholar] [CrossRef]
- Gao, T.; Woodka, M.D.; Brunschwig, B.S.; Lewis, N.S. Chemiresistors for Array-Based Vapor Sensing Using Composites of Carbon Black with Low Volatility Organic Molecules. Chem. Mater. 2006, 18, 5193–5202. [Google Scholar] [CrossRef]
- D’Amico, A.; Pennazza, G.; Santonico, M.; Martinelli, E.; Roscioni, C.; Galluccio, G.; Paolesse, R.; Di Natale, C. An Investigation on Electronic Nose Diagnosis of Lung Cancer. Lung Cancer 2010, 68, 170–176. [Google Scholar] [CrossRef]
- D’Amico, A.; Di Natale, C.; Sarro, P.M. Ingredients for Sensors Science. Sens. Actuators B Chem. 2015, 207, 1060–1068. [Google Scholar] [CrossRef]
- Ziyatdinov, A.; Fernández Diaz, E.; Chaudry, A.; Marco, S.; Persaud, K.; Perera, A. A Software Tool for Large-Scale Synthetic Experiments Based on Polymeric Sensor Arrays. Sens. Actuators B Chem. 2013, 177, 596–604. [Google Scholar] [CrossRef]
- Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile Organic Compounds of Lung Cancer and Possible Biochemical Pathways. Chem. Rev. 2012, 112, 5949–5966. [Google Scholar] [CrossRef]
- Bachar, N.; Mintz, L.; Zilberman, Y.; Ionescu, R.; Feng, X.; Müllen, K.; Haick, H. Polycyclic Aromatic Hydrocarbon for the Detection of Nonpolar Analytes under Counteracting Humidity Conditions. ACS Appl. Mater. Interfaces 2012, 4, 4960–4965. [Google Scholar] [CrossRef]
- Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosing Lung Cancer in Exhaled Breath Using Gold Nanoparticles. Nat. Nanotechnol. 2009, 4, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Nakhleh, M.K.; Amal, H.; Jeries, R.; Broza, Y.Y.; Aboud, M.; Gharra, A.; Ivgi, H.; Khatib, S.; Badarneh, S.; Har-Shai, L.; et al. Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules. ACS Nano 2017, 11, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Hurot, C.; Scaramozzino, N.; Buhot, A.; Hou, Y. Bio-Inspired Strategies for Improving the Selectivity and Sensitivity of Artificial Noses: A Review. Sensors 2020, 20, 1803. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, T.; Gębicki, J.; Kamysz, W. Advances in Olfaction-Inspired Biomaterials Applied to Bioelectronic Noses. Sens. Actuators B Chem. 2018, 257, 511–537. [Google Scholar] [CrossRef]
- Spencer, T.L.; Lavrik, N.; Hu, D.L. Synthetic Moth Antennae Fabricated as Preconcentrator for Odor Collection. In Proceedings of the 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Montreal, QC, Canada, 28–31 May 2017; pp. 1–3. [Google Scholar]
- Raman, B.; Sun, P.A.; Gutierrez-Galvez, A.; Gutierrez-Osuna, R. Processing of Chemical Sensor Arrays with a Biologically Inspired Model of Olfactory Coding. IEEE Trans. Neural Netw. 2006, 17, 1015–1024. [Google Scholar] [CrossRef]
- Hervé-Bazin, B.; Ambroise, D.; Brémer, D.; Binet, S.; Courtois, B.; Fubini, B.; Gensdarmes, F.; Jaurand, M.C.; Lacroix, G.; Lafon, D.; et al. Les Nanoparticules: Un Enjeu Majeur Pour La Santé Au Travail? Hervé-Bazin, B., Ed.; EDP Science: Les Ulis, France, 2007. [Google Scholar]
- Li, N.; Sioutas, C.; Cho, A.; Schmitz, D.; Misra, C.; Sempf, J.; Wang, M.; Oberley, T.; Froines, J.; Nel, A. Ultrafine Particulate Pollutants Induce Oxidative Stress and Mitochondrial Damage. Environ. Health Perspect. 2002, 111, 455–460. [Google Scholar] [CrossRef]
- Geiser, M.; Rothen-Rutishauser, B.; Kapp, N.; Schürch, S.; Kreyling, W.; Schulz, H.; Semmler, M.; Hof, V.I.; Heyder, J.; Gehr, P. Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells. Environ. Health Perspect. 2005, 113, 1555–1560. [Google Scholar] [CrossRef]
- Duarte, K.; Justino, C.I.L.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Direct-Reading Methods for Analysis of Volatile Organic Compounds and Nanoparticles in Workplace Air. Trends Anal. Chem. 2013, 53, 21–32. [Google Scholar] [CrossRef]
- Ma-Hock, L.; Strauss, V.; Treumann, S.; Küttler, K.; Wohlleben, W.; Hofmann, T.; Gröters, S.; Wiench, K.; van Ravenzwaay, B.; Landsiedel, R. Comparative Inhalation Toxicity of Multi-Wall Carbon Nanotubes, Graphene, Graphite Nanoplatelets and Low Surface Carbon Black. Part. Fibre Toxicol. 2013, 10, 23. [Google Scholar] [CrossRef]
- Guo, N.L.; Wan, Y.; Denvir, J.; Porter, D.W.; Pacurari, M.; Wolfarth, M.G.; Castranova, V.; Qian, Y.; Babb, M.; Cancer, R. Multi-Walled Carbon Nanotube-Induced Gene Signatures in the Mouse Lung: Potential Predictive Value for Human Lung Cancer Risk and Prognosis. J. Toxicol. Environ. Health A 2012, 75, 1129–1153. [Google Scholar] [CrossRef]
- Bellucci, S. Carbon Nanotubes Toxicity. In Nanoparticles and Nanodevices in Biological Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 47–67. [Google Scholar]
- Zhao, X.; Liu, R. Recent Progress and Perspectives on the Toxicity of Carbon Nanotubes at Organism, Organ, Cell, and Biomacromolecule Levels. Environ. Int. 2012, 40, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of Graphene-Family Nanoparticles: A General Review of the Origins and Mechanisms. Part. Fibre Toxicol. 2016, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Mytych, J.; Maciej, W. Nanoparticle Technology as a Double-Edged Sword: Cytotoxic, Genotoxic and Epigenetic Effects on Living Cells. J. Biomater. Nanobiotechnol. 2013, 4, 53–63. [Google Scholar] [CrossRef]
- Wang, K.; Ruan, J.; Song, H.; Zhang, J.; Wo, Y.; Guo, S.; Cui, D. Biocompatibility of Graphene Oxide. Nanoscale Res. Lett. 2011, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Buck, L.; Axel, R. A Novel Multigene Family May Encode Odorant Receptors: A Molecular Basis for Odor Recognition. Cell 1991, 65, 175–187. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y.; Zhao, Z.; Feng, X.; Wang, Z.; Jiao, M. Advanced Algorithms for Low Dimensional Metal Oxides-Based Electronic Nose Application: A Review. Crystals 2023, 13, 615. [Google Scholar] [CrossRef]
- Wilson, A.D.; Baietto, M. Applications and Advances in Electronic-Nose Technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef]
- Russo, D.V.; Burek, M.J.; Iutzi, R.M.; Mracek, J.A.; Hesjedal, T. Development of an Electronic Nose Sensing Platform for Undergraduate Education in Nanotechnology. Eur. J. Phys. 2011, 32, 675. [Google Scholar] [CrossRef]
- Burl, M.C.; Doleman, B.J.; Schaffer, A.; Lewis, N.S. Assessing the Ability to Predict Human Percepts of Odor Quality from the Detector Responses of a Conducting Polymer Composite-Based Electronic Nose. Sens. Actuators B Chem. 2001, 72, 149–159. [Google Scholar] [CrossRef]
- Lu, A. Piezoelectric Phenomenon of Fullerene-Graphene Bonded Structure. J. Nanomater. 2014, 2014, 943013. [Google Scholar] [CrossRef]
- Tran, M.T.; Kumar, A.; Sachan, A.; Castro, M.; Allegre, W.; Feller, J.F. Emerging strategies based on sensors for chronic wound monitoring and management. Chemosensors 2022, 10, 311. [Google Scholar] [CrossRef]
- Feller, J.F.; Grohens, Y. Electrical Response of Poly(Styrene)/Carbon Black Conductive Polymer Composites (CPC) to Methanol, Toluene, Chloroform and Styrene Vapors as a Function of Filler Nature and Matrix Tacticity. Synth. Met. 2005, 154, 193–196. [Google Scholar] [CrossRef]
- Nagle, H.T.; Gutierrez-Osuna, R.; Schiffman, S.S. The How and Why of Electronic Noses. IEEE Spectr. 1998, 35, 22–31. [Google Scholar] [CrossRef]
- Persaud, K.; Dodd, G. Analysis of Discrimination Mechanisms in the Mammalian Olfactory System Using a Model Nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef]
- Konvalina, G.; Haick, H. Sensors for Breath Testing: From Nanomaterials to Comprehensive Disease Detection. Acc. Chem. Res. 2014, 47, 66–76. [Google Scholar] [CrossRef]
- Scott, S.M.; James, D.; Ali, Z. Data Analysis for Electronic Nose Systems. Microchim. Acta 2006, 156, 183–207. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Barbero, G.F.; Palma, M.; Ayuso, J.; Álvarez, J.A.; Barroso, C.G. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose. Sensors 2016, 16, 695. [Google Scholar] [CrossRef]
- Mertens, B.; Thompson, M.; Fearn, T. Principal Component Outlier Detection and SIMCA: A Synthesis. Analyst 1994, 119, 2777–2784. [Google Scholar] [CrossRef]
- Amari, A.; El Bari, N.; Bouchikhi, B. Electronic Nose for Anchovy Freshness Monitoring Based on Sensor Array and Pattern Recognition Methods: Principal Components Analysis, Linear Discriminant Analysis and Support Vector Machine. Int. J. Comput. 2014, 6, 61–67. [Google Scholar] [CrossRef]
- Hai, Z.; Wang, J. Electronic Nose and Data Analysis for Detection of Maize Oil Adulteration in Sesame Oil. Sens. Actuators B Chem. 2006, 119, 449–455. [Google Scholar] [CrossRef]
- Campbell, M.G.; Liu, S.F.; Swager, T.M.; Dincă, M. Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 13780–13783. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A. The Statistical Utilization of Multiple Measurements. Ann. Eugen. 1938, 8, 376–386. [Google Scholar] [CrossRef]
- Fisher, R.A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, J.; Gao, L. Discrimination and Characterization of Strawberry Juice Based on Electronic Nose and Tongue: Comparison of Different Juice Processing Approaches by LDA, PLSR, RF, and SVM. J. Agric. Food Chem. 2014, 62, 6426–6434. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.M. Neural Networks for Pattern Recognition. J. Am. Stat. Assoc. 1995, 92, 482. [Google Scholar] [CrossRef]
- Tisan, A.; Chin, J. An End-User Platform for FPGA-Based Design and Rapid Prototyping of Feedforward Artificial Neural Networks With On-Chip Backpropagation Learning. IEEE Trans. Ind. Inf. 2016, 12, 1124–1133. [Google Scholar] [CrossRef]
- Pardo, M.; Sberveglieri, G. Remarks on the Use of Multilayer Perceptrons for the Analysis of Chemical Sensor Array Data. Sens. J. IEEE 2004, 4, 355–363. [Google Scholar] [CrossRef]
- Uyanık, T.; Yalman, Y.; Kalenderli, Ö.; Arslanoğlu, Y.; Terriche, Y.; Su, C.L.; Guerrero, J.M. Data-Driven Approach for Estimating Power and Fuel Consumption of Ship: A Case of Container Vessel. Mathematics 2022, 10, 4167. [Google Scholar] [CrossRef]
- Gardner, J.W.; Boilot, P.; Hines, E.L. Enhancing Electronic Nose Performance by Sensor Selection Using a New Integer-Based Genetic Algorithm Approach. Sens. Actuators B Chem. 2005, 106, 114–121. [Google Scholar] [CrossRef]
- Yan, J.; Guo, X.; Duan, S.; Jia, P.; Wang, L.; Peng, C.; Zhang, S. Electronic Nose Feature Extraction Methods: A Review. Sensors 2015, 15, 27804–27831. [Google Scholar] [CrossRef]
- Rath, R.J.; Farajikhah, S.; Oveissi, F.; Dehghani, F.; Naficy, S. Chemiresistive Sensor Arrays for Gas/Volatile Organic Compounds Monitoring: A Review. Adv. Eng. Mater. 2022, 25, 2200830. [Google Scholar] [CrossRef]
- Schroeder, V.; Evans, E.D.; Wu, Y.C.M.; Voll, C.C.A.; McDonald, B.R.; Savagatrup, S.; Swager, T.M. Chemiresistive Sensor Array and Machine Learning Classification of Food. ACS Sens. 2019, 4, 2101–2108. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, T.; Lozano, J.; Paredes, J.A.; Álvarez, F.J.; Suárez, J.I. Electronic Nose Based on Independent Component Analysis Combined with Partial Least Squares and Artificial Neural Networks for Wine Prediction. Sensors 2012, 12, 8055–8072. [Google Scholar] [CrossRef] [PubMed]
- Camardo Leggieri, M.; Mazzoni, M.; Fodil, S.; Moschini, M.; Bertuzzi, T.; Prandini, A.; Battilani, P. An Electronic Nose Supported by an Artificial Neural Network for the Rapid Detection of Aflatoxin B1 and Fumonisins in Maize. Food Control 2021, 123, 107722. [Google Scholar] [CrossRef]
- Tan, J.; Kerr, W.L. Determining Degree of Roasting in Cocoa Beans by Artificial Neural Network (ANN)-based Electronic Nose System and Gas Chromatography/Mass Spectrometry (GC/MS). J. Sci. Food Agric. 2018, 98, 3851–3859. [Google Scholar] [CrossRef]
- Panigrahi, S.; Balasubramanian, S.; Gu, H.; Logue, C.; Marchello, M. Neural-Network-Integrated Electronic Nose System for Identification of Spoiled Beef. LWT 2006, 39, 135–145. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, J.; Jiang, C.; Liu, A.; Xia, B. Quantitative Detection of Formaldehyde and Ammonia Gas via Metal Oxide-Modified Graphene-Based Sensor Array Combining with Neural Network Model. Sens. Actuators B Chem. 2017, 240, 55–65. [Google Scholar] [CrossRef]
- Aghilinategh, N.; Dalvand, M.J.; Anvar, A. Detection of Ripeness Grades of Berries Using an Electronic Nose. Food Sci. Nutr. 2020, 8, 4919–4928. [Google Scholar] [CrossRef]
- Zakaria, A.; Shakaff, A.Y.M.; Masnan, M.J.; Ahmad, M.N.; Adom, A.H.; Jaafar, M.N.; Ghani, S.A.; Abdullah, A.H.; Aziz, A.H.A.; Kamarudin, L.M.; et al. A Biomimetic Sensor for the Classification of Honeys of Different Floral Origin and the Detection of Adulteration. Sensors 2011, 11, 7799–7822. [Google Scholar] [CrossRef]
- Machado, R.F.; Laskowski, D.; Deffenderfer, O.; Burch, T.; Zheng, S.; Mazzone, P.J.; Mekhail, T.; Jennings, C.; Stoller, J.K.; Pyle, J.; et al. Detection of Lung Cancer by Sensor Array Analyses of Exhaled Breath. Am. J. Respir. Crit. Care Med. 2005, 171, 1286–1291. [Google Scholar] [CrossRef]
- Chen, X.; Cao, M.; Li, Y.; Hu, W.; Wang, P.; Ying, K.; Pan, H. A Study of an Electronic Nose for Detection of Lung Cancer Based on a Virtual SAW Gas Sensors Array and Imaging Recognition Method. Meas. Sci. Technol. 2005, 16, 1535–1546. [Google Scholar] [CrossRef]
- Nurputra, D.K.; Kusumaatmaja, A.; Hakim, M.S.; Hidayat, S.N.; Julian, T.; Sumanto, B.; Mahendradhata, Y.; Saktiawati, A.M.I.; Wasisto, H.S.; Triyana, K. Fast and Noninvasive Electronic Nose for Sniffing out COVID-19 Based on Exhaled Breath-Print Recognition. NPJ Digit. Med. 2022, 5, 115. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, A.; Borys, S.; Sikorska, K.; Drozdowska, K.; Smulko, J.M. Clinical Studies of Detecting COVID-19 from Exhaled Breath with Electronic Nose. Sci. Rep. 2022, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wei, X.; Zhou, Y.; Wang, J.; You, R. Research Progress of Electronic Nose Technology in Exhaled Breath Disease Analysis. Microsyst. Nanoeng. 2023, 9, 129. [Google Scholar] [CrossRef]
- Bochenkov, V.E.; Sergeev, G.B. Sensitivity, Selectivity, and Stability of Gas-Sensitive Metal-Oxide Nanostructures. In Metal Oxide Nanostructures & Their Applications; American Scientific Publishers: Santa Clarita, CA, USA, 2010; Volume 3, pp. 31–52. ISBN 1588831760. [Google Scholar]
- Persaud, K.; Khaffaf, S.M.; Payne, J.S.; Pisanelli, A.M.; Lee, D.H.; Byun, H.G. Sensor Array Techniques for Mimicking the Mammalian Olfactory System. Sens. Actuators B 1996, 35, 267–273. [Google Scholar] [CrossRef]
- Shurmer, H.V.; Gardner, J.W.; Corcoran, P. Intelligent Vapour Discrimination Using a Composite 12-Element Sensor Array. Sens. Actuators B Chem. 1990, 1, 256–260. [Google Scholar] [CrossRef]
- Wilson, A.D. Review of Electronic-Nose Technologies and Algorithms to Detect Hazardous Chemicals in the Environment. Procedia Technol. 2012, 1, 453–463. [Google Scholar] [CrossRef]
- Wilson, A.D. Recent applications of electronic-nose technologies for the noninvasive early diagnosis of gastrointestinal diseases. Proceedings 2018, 2, 147. [Google Scholar] [CrossRef]
- Wilson, A.D. Applications of Electronic-Nose Technologies for Noninvasive Early Detection of Plant, Animal and Human Diseases. Chemosensors 2018, 6, 45. [Google Scholar] [CrossRef]
- Ryan, M.A.; Zhou, H.; Buehler, M.G.; Manatt, K.S.; Mowrey, V.S.; Jackson, S.P.; Kisor, A.K.; Shevade, A.V.; Homer, M.L. Monitoring Space Shuttle Air Quality Using the Jet Propulsion Laboratory Electronic Nose. IEEE Sens. J. 2004, 4, 337–347. [Google Scholar] [CrossRef]
- Covington, J.; Westenbrink, E.; Ouaret, N.; Harbord, R.; Bailey, C.; O’Connell, N.; Cullis, J.; Williams, N.; Nwokolo, C.; Bardhan, K.; et al. Application of a Novel Tool for Diagnosing Bile Acid Diarrhoea. Sensors 2013, 13, 11899–11912. [Google Scholar] [CrossRef] [PubMed]
- Shuster, G.; Gallimidi, Z.; Heyman Reiss, A.; Dovgolevsky, E.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Engel, A.; Shiban, A.; Tisch, U.; et al. Classification of breast cancer precursors through exhaled. Breast Cancer Res. Treat. 2011, 126, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Haick, H.; Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A. Assessment, Origin, and Implementation of Breath Volatile Cancer Markers. Chem. Soc. Rev. 2014, 43, 1423–1449. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Wang, J.; Wang, B.; Zhu, L.; Hong, X. Ripeness Prediction of Post Harvest Kiwifruit Using a MOS E-Nose Combined with Chemometrics. Sensors 2019, 19, 419. [Google Scholar] [CrossRef]
- Miller, T.C.; Morgera, S.D.; Saddow, S.E.; Takshi, A.; Mullarkey, M.; Palm, M. Neurological Connections and Endogenous Biochemistry—Potentially Useful in Electronic-Nose Diagnostics for Coronavirus Diseases. Neurosciences 2021, 8, 284. [Google Scholar] [CrossRef]
- Bikov, A.; Lázár, Z.; Horvath, I. Established Methodological Issues in Electronic Nose Research: How Far Are We from Using These Instruments in Clinical Settings of Breath Analysis? J. Breath Res. 2015, 9, 034001. [Google Scholar] [CrossRef]
- Dragonieri, S.; van der Schee, M.P.; Massaro, T.; Schiavulli, N.; Brinkman, P.; Pinca, A.; Carratú, P.; Spanevello, A.; Resta, O.; Musti, M.; et al. An Electronic Nose Distinguishes Exhaled Breath of Patients with Malignant Pleural Mesothelioma from Controls. Lung Cancer 2012, 75, 326–331. [Google Scholar] [CrossRef]
- Chapman, E.A.; Thomas, P.S.; Stone, E.; Lewis, C.; Yates, D.H. A Breath Test for Malignant Mesothelioma Using an Electronic Nose. Eur. Respir. J. 2012, 40, 448–454. [Google Scholar] [CrossRef]
- Dragonieri, S.; Schot, R.; Mertens, B.J.A.; Le Cessie, S.; Gauw, S.A.; Spanevello, A.; Resta, O.; Willard, N.P.; Vink, T.J.; Rabe, K.F.; et al. An Electronic Nose in the Discrimination of Patients with Asthma and Controls. J. Allergy Clin. Immunol. 2007, 120, 856–862. [Google Scholar] [CrossRef]
- Sensigent Technical Characteristics of the Cyranose 320 Electronic Nose. Available online: https://www.sensigent.com/cyranose-320.html (accessed on 7 January 2025).
- Montuschi, P.; Santonico, M.; Mondino, C.; Pennazza, G.; Maritini, G.; Martinelli, E.; Capuano, R.; Ciabattoni, G.; Paolesse, R.; Di Natale, C.; et al. Diagnostic Performance of an Electronic Nose, Fractional Exhaled Nitric Oxide, and Lung Function Testing in Asthma. Chest 2010, 137, 790–796. [Google Scholar] [CrossRef]
- Kaloumenou, M.; Skotadis, E.; Lagopati, N.; Efstathopoulos, E.; Tsoukalas, D. Breath Analysis: A Promising Tool for Disease Diagnosis—The Role of Sensors. Sensors 2022, 22, 1238. [Google Scholar] [CrossRef] [PubMed]
- Di Natale, C.; Macagnano, A.; Martinelli, E.; Paolesse, R.; D’Arcangelo, G.; Roscioni, C.; Finazzi-Agrò, A.; D’Amico, A. Lung Cancer Identification by the Analysis of Breath by Means of an Array of Non-Selective Gas Sensors. Biosens. Bioelectron. 2003, 18, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, P.J.; Hammel, J.; Dweik, R.; Na, J.; Czich, C.; Laskowski, D.; Mekhail, T. Diagnosis of Lung Cancer by the Analysis of Exhaled Breath with a Colorimetric Sensor Array. Thorax 2007, 62, 565–568. [Google Scholar] [CrossRef]
- Mazzone, P.J.; Wang, X.-F.; Xu, Y.; Mekhail, T.; Beukemann, M.C.; Na, J.; Kemling, J.W.; Suslick, K.S.; Sasidhar, M. Exhaled Breath Analysis with a Colorimetric Sensor Array for the Identification and Characterization of Lung Cancer. J. Thorac. Oncol. 2012, 7, 137–142. [Google Scholar] [CrossRef]
- Pavlou, A.K.; Magan, N.; Jones, J.M.; Brown, J.; Klatser, P.; Turner, A.P.F. Detection of Mycobacterium Tuberculosis (TB) in Vitro and in Situ Using an Electronic Nose in Combination with a Neural Network System. Biosens. Bioelectron. 2004, 20, 538–544. [Google Scholar] [CrossRef]
- Fend, R.; Kolk, A.H.J.; Bessant, C.; Buijtels, P.; Klatser, P.R.; Woodman, A.C. Prospects for Clinical Application of Electronic-Nose Technology to Early Detection of Mycobacterium Tuberculosis in Culture and Sputum. J. Clin. Microbiol. 2006, 44, 2039–2045. [Google Scholar] [CrossRef]
- Phillips, M.; Basa-Dalay, V.; Blais, J.; Bothamley, G.; Chaturvedi, A.; Modi, K.D.; Pandya, M.; Natividad, M.P.R.; Patel, U.; Ramraje, N.N.; et al. Point-of-Care Breath Test for Biomarkers of Active Pulmonary Tuberculosis. Tuberculosis 2012, 92, 314–320. [Google Scholar] [CrossRef]
- Lorwongtragool, P.; Sowade, E.; Watthanawisuth, N.; Baumann, R.; Kerdcharoen, T. A Novel Wearable Electronic Nose for Healthcare Based on Flexible Pinted Chemical Sensor Array. Sensors 2014, 14, 19700–19712. [Google Scholar] [CrossRef]
- Mansour, E.; Palzur, E.; Broza, Y.Y.; Saliba, W.; Kaisari, S.; Goldstein, P.; Shamir, A.; Haick, H. Noninvasive Detection of Stress by Biochemical Profiles from the Skin. ACS Sens. 2023, 8, 1339–1347. [Google Scholar] [CrossRef]
- Tai, H.; Wang, S.; Duan, Z.; Jiang, Y. Evolution of Breath Analysis Based on Humidity and Gas Sensors: Potential and Challenges. Sens. Actuators B Chem. 2020, 318, 128104. [Google Scholar] [CrossRef]
- Feller, J.F. Smart Plastics Group. Available online: http://www.smartplasticsgroup.com (accessed on 7 January 2025).
- Kumar, B.; Castro, M.; Feller, J.F. Controlled Conductive Junction Gap for Chitosan-Carbon Nanotube Quantum Resistive Vapour Sensors. J. Mater. Chem. 2012, 22, 10656–10664. [Google Scholar] [CrossRef]
- Kumar, B.; Castro, M.; Feller, J.F. Tailoring the Chemo-Resistive Response of Self-Assembled Polysaccharide-CNT Sensors by Chain Conformation at Tunnel Junctions. Carbon 2012, 50, 3627–3634. [Google Scholar] [CrossRef]
- Kumar, B.; Feller, J.F.; Castro, M.; Lu, J. Conductive Bio-Polymer Nano-Composites (CPC): Chitosan-Carbon Nanotube Transducers Assembled via Spray Layer-by-Layer for Volatile Organic Compound Sensing. Talanta 2010, 81, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Castro, M.; Feller, J.F. Quantum Resistive Vapour Sensors Made of Polymer Coated Carbon Nanotubes Random Networks for Biomarkers Detection. Chem. Sens. 2013, 3, 20. [Google Scholar]
- Feller, J.F.; Lu, J.; Zhang, K.; Kumar, B.; Castro, M.; Gatt, N.; Choi, H.J. Novel Architecture of Carbon Nanotube Decorated Poly(Methyl Methacrylate) Microbead Vapour Sensors Assembled by Spray Layer by Layer. J. Mater. Chem. 2011, 21, 4142–4149. [Google Scholar] [CrossRef]
- Lu, J.; Feller, J.F.; Kumar, B.; Castro, M.; Kim, Y.S.; Park, Y.T.; Grunlan, J.C. Chemo-Sensitivity of Latex-Based Films Containing Segregated Networks of Carbon Nanotubes. Sens. Actuators B Chem. 2011, 155, 28–36. [Google Scholar] [CrossRef]
- Lu, J.; Park, B.J.; Kumar, B.; Castro, M.; Choi, H.J.; Feller, J.F. Polyaniline Nanoparticle-Carbon Nanotube Hybrid Network Vapour Sensors with Switchable Chemo-Electrical Polarity. Nanotechnology 2010, 21, 255501. [Google Scholar] [CrossRef]
- Lu, J.; Kumar, B.; Castro, M.; Feller, J.F. Vapour Sensing with Conductive Polymer Nanocomposites (CPC): Polycarbonate-Carbon Nanotubes Transducers with Hierarchical Structure Processed by Spray Layer by Layer. Sens. Actuators B Chem. 2009, 140, 451–460. [Google Scholar] [CrossRef]
- Chatterjee, S.; Castro, M.; Feller, J.F. An E-Nose Made of Carbon Nanotube Based Quantum Resistive Sensors for the Detection of Eighteen Polar/Nonpolar VOC Biomarkers of Lung Cancer. J. Mater. Chem. B 2013, 1, 4563. [Google Scholar] [CrossRef]
- Chatterjee, S.; Castro, M.; Feller, J.F. Tailoring Selectivity of Sprayed Carbon Nanotube Sensors (CNT) towards Volatile Organic Compounds (VOC) with Surfactants. Sens. Actuators B Chem. 2015, 220, 840–849. [Google Scholar] [CrossRef]
- Nag, S.; Duarte, L.; Bertrand, E.; Celton, V.; Castro, M.; Choudhary, V.; Guégan, P.; Feller, J.F. Ultrasensitive QRS Made by Supramolecular Assembly of Functionalized Cyclodextrins and Graphene for the Detection of Lung Cancer VOC Biomarkers. J. Mater. Chem. B Biol. Med. 2014, 2, 6571–6579. [Google Scholar] [CrossRef] [PubMed]
- Nag, S.; Castro, M.; Choudhary, V.; Feller, J.F. Sulfonated Poly(Ether Ether Ketone) [SPEEK] Nanocomposites Based on Hybrid Nanocarbons for the Detection and Discrimination of Some Lung Cancer VOC Biomarkers. J. Mater. Chem. B Biol. Med. 2017, 5, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Nag-Chowdhury, S.; Tung, T.T.; Ta, Q.T.H.; Kumar, G.; Castro, M.; Feller, J.F.; Sonkar, S.K.; Tripathi, K.M. Upgrading of Diesel Engine Exhaust Waste into Onion-like Carbon Nanoparticles for Integrated Degradation Sensing in Nano-Biocomposites. New J. Chem. 2021, 45, 3675–3682. [Google Scholar] [CrossRef]
- Duan, Y.; Pirolli, L.; Teplyakov, A.V. Investigation of the H2S Poisoning Process for Sensing Composite Material Based on Carbon Nanotubes and Metal Oxides. Sens. Actuators B Chem. 2016, 235, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Gathright, R.; Mejia, I.; Gonzalez, J.M.; Hernandez Torres, S.I.; Berard, D.; Snider, E.J. Overview of Wearable Healthcare Devices for Clinical Decision Support in the Prehospital Setting. Sensors 2024, 24, 8204. [Google Scholar] [CrossRef]
- Jin, H.; Yu, J.; Lin, S.; Gao, S.; Yang, H.; Haick, H.; Hua, C.; Deng, S.; Yang, T.; Liu, Y.; et al. Nanosensor-Based Flexible Electronic Assisted with Light Fidelity Communicating Technology for Volatolomics-Based Telemedicine. ACS Nano 2020, 14, 15517–15532. [Google Scholar] [CrossRef]
- Sood, A.; Granick, M.S.; Trial, C.; Lano, J.; Palmier, S.; Ribal, E.; Téot, L. The Role of Telemedicine in Wound Care: A Review and Analysis of a Database of 5795 Patients from a Mobile Wound-Healing Center in Languedoc-Roussillon, France. Plast. Reconstr. Surg. 2016, 138, 248S–256S. [Google Scholar] [CrossRef]
Biomarker | Structure | Disease/Disorder/Condition |
---|---|---|
Acetaldehyde | AFDL, URTI | |
Acetoin | Lung cancer, NSCLC | |
Acetone | ARDS, lung cancer, CIP, CPD, diabetes mellitus, hepatic cirrhosis, starvation, PLC | |
Ethane | AHI, asthma, COPD, cystic fibrosis, lung cancer, oxidative stress, schizophrenia | |
1-butanol | Lung cancer, NSCLC | |
Carbon disulphide | Cystic fibrosis, schizophrenia | |
Dimethyl sulphide | Lung cancer, hepatitis, cystic fibrosis, hepatic cirrhosis, hepatic coma | |
Ethanol | CPD, cystic fibrosis, diabetes mellitus | |
Hydrogen sulphide | Endocarditis, hepatic cirrhosis | |
Isoprene | AFDL, ARDS, asthma, cystic fibrosis, lung cancer | |
Methanol | Cystic fibrosis, lung cancer | |
Methyl nitrate | Diabetes mellitus, hyperglycaemia | |
Methyl mercaptan | Chronic hepatitis, endocarditis, hepatic cirrhosis, hepatic coma | |
Isobutene | Breast cancer, IHD, lung cancer, oxidative stress | |
Nitric oxide | Asthma, COPD | |
Pentane | AHI, ARDS, asthma, CIP, cystic fibrosis, lung cancer, schizophrenia | |
Propane | Cystic fibrosis, IBD | |
o-Toluidine | Lung cancer, PLC |
Characteristics | Definition |
---|---|
Sensitivity | Change in the measured signal per unit of the vapor concentration and it can be calculated from the slope of response vs. concentration. |
Selectivity | The response towards a specific solvent or family of solvents. |
Stability | Ability of sensors to give reproducible results including sensitivity, selectivity, and response over a period. |
Detection limit | The lowest limit of vapor conc. which can be detected at a given temperature. |
Dynamic range | Full range of solvent vapor conc. from detection limit to highest limiting conc. at a given temperature. |
Resolution | Lowest conc. of the difference in solvent vapor conc. detected. |
Response time | Time required to achieve a certain value from the baseline when step changes in solvent vapor conc. is applied. |
Recovery time | Time taken by the sensor to return to the initial baseline when a step change in the vapor conc. is removed. |
Hysteresis | The maximum difference in responses when the same vapor conc. is approached by increasing and decreasing the vapor conc. during the testing. |
Life cycle | Total time over which the sensor is operating well. |
Disease | Type of E-Nose | Nb of Sensors | Place of Tests | References |
---|---|---|---|---|
Asthma | Conducting polymer, quartz crystal microbalance | 8–32 | Australia, Italy, and The Netherlands | [287,288,290] |
Lung cancer | Conducting polymer, quartz crystal microbalance, and calorimetric | 8–36 | USA and Italy | [211,268,292,293,294] |
Tuberculosis | Surface acoustic wave and conducting polymer nanocomposite | 1–14 | Philippines, UK, and India | [295,296,297] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sachan, A.; Castro, M.; Feller, J.-F. Volatolomics for Anticipated Diagnosis of Cancers with Chemoresistive Vapour Sensors: A Review. Chemosensors 2025, 13, 15. https://doi.org/10.3390/chemosensors13010015
Sachan A, Castro M, Feller J-F. Volatolomics for Anticipated Diagnosis of Cancers with Chemoresistive Vapour Sensors: A Review. Chemosensors. 2025; 13(1):15. https://doi.org/10.3390/chemosensors13010015
Chicago/Turabian StyleSachan, Abhishek, Mickaël Castro, and Jean-François Feller. 2025. "Volatolomics for Anticipated Diagnosis of Cancers with Chemoresistive Vapour Sensors: A Review" Chemosensors 13, no. 1: 15. https://doi.org/10.3390/chemosensors13010015
APA StyleSachan, A., Castro, M., & Feller, J.-F. (2025). Volatolomics for Anticipated Diagnosis of Cancers with Chemoresistive Vapour Sensors: A Review. Chemosensors, 13(1), 15. https://doi.org/10.3390/chemosensors13010015