Bottom-Up Synthesis of Mesoporous TiO2 Films for the Development of Optical Sensing Layers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of TiO2 Sol
2.1.1. F127-Templated TiO2 Sol
2.1.2. P123-Templated TiO2 Sol
2.2. Preparation of Mesoporous TiO2 Films
2.2.1. F127-Templated Mesoporous TiO2 Films
2.2.2. P123-Templated Mesoporous TiO2 Films
2.3. Characterization of TiO2 Films
3. Results and Discussion
3.1. F127-Templated Mesoporous TiO2 Films
3.2. Sensing Experiments with F127-Templated Mesoporous TiO2 Films
3.3. P123-Templated Mesoporous TiO2 Films
3.4. Sensing Experiments with P123-Templated Mesoporous TiO2 Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Murillo, A.M.M.; Tomé-Amat, J.; Ramírez, Y.; Garrido-Arandia, M.; Valle, L.G.; Hernández-Ramírez, G.; Tramarin, L.; Herreros, P.; Santamaría, B.; Díaz-Perales, A.; et al. Developing an Optical Interferometric Detection Method based biosensor for detecting specific SARS-CoV-2 immunoglobulins in Serum and Saliva, and their corresponding ELISA correlation. Sens. Actuators B Chem. 2021, 345, 130394. [Google Scholar] [CrossRef]
- Mohankumar, P.; Ajayan, J.; Mohanraj, T.; Yasodharan, R. Recent developments in biosensors for healthcare and biomedical applications: A review. Measurement 2021, 167, 108293. [Google Scholar] [CrossRef]
- Al Mamun, M.A.; Yuce, M.R. Recent Progress in Nanomaterial Enabled Chemical Sensors for Wearable Environmental Monitoring Applications. Adv. Funct. Mater. 2020, 30, 2005703. [Google Scholar] [CrossRef]
- Gonzalez, L.F.; Montes, G.A.; Puig, E.; Johnson, S.; Mengersen, K.; Gaston, K.J. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation. Sensors 2016, 16, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basnet, B.; Bang, J. The State-of-the-Art of Knowledge-Intensive Agriculture: A Review on Applied Sensing Systems and Data Analytics. J. Sens. 2018, 2018, 3528296. [Google Scholar]
- Mehrotra, P. Biosensors and their applications—A review. J. Oral. Biol. Craniofac. Res. 2016, 6, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Unger, E.K.; Keller, J.P.; Altermatt, M.; Liang, R.; Matsui, A.; Dong, C.; Hon, O.J.; Yao, Z.; Sun, J.; Banala, S.; et al. Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning. Cell 2020, 183, 1986–2002. [Google Scholar] [CrossRef] [PubMed]
- Namkung, Y.; LeGouill, C.; Kumar, S.; Cao, Y.; Teixeira, L.B.; Lukasheva, V.; Giubilaro, J.; Simões, S.C.; Longpré, J.M.; Devost, D.; et al. Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors. Sci. Signal. 2018, 11, eaat1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraga-Lamas, P.; Fernández-Caramés, T.M.; Suárez-Albela, M.; Castedo, L.; González-López, M. A Review on Internet of Things for Defense and Public Safety. Sensors 2016, 16, 1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Mishra, R.G. Implementation of Wireless Sensor Networks in the Field of Military and Defense: A Review. Viewpoint 2015, 6, 23–28. [Google Scholar]
- Osada, Y.; De Rossi, D.E. “Optical sensors”. In Polymer Sensors and Actuators; Springer: Berlin/Heidelberg, Germany; GmbH & Co. KG: Berlin, Germany, 2000; pp. 139–224. [Google Scholar]
- Luan, E.; Shoman, H.; Ratner, D.M.; Cheung, K.C.; Chrostowski, L. Silicon Photonic Biosensors Using Label-Free Detection. Sensors 2018, 18, 3519. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Dong, B.; Lee, C. Progress of infrared guided-wave nanophotonic sensors and devices. Nano Converg. 2020, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretta, R.; De Stefano, L.; Terracciano, M.; Rea, I. Porous Silicon Optical Devices: Recent Advances in Biosensing Applications. Sensors 2021, 21, 1336. [Google Scholar] [CrossRef]
- Pirzada, M.; Altintas, Z. Nanomaterials for Healthcare Biosensing Applications. Sensors 2019, 19, 5311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caroselli, R.; Martín Sánchez, D.; Ponce Alcántara, S.; Prats Quilez, F.; Torrijos Morán, L.; García-Rupérez, J. Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor. Sensors 2017, 17, 2813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Bae, K.; Kang, G.; Choi, M.; Baek, S.; Yoo, D.; Lee, C.; Kim, K. Graded-lattice AAO photonic crystal heterostructure for high Q refractive index sensing. RSC Adv. 2015, 5, 71770–71777. [Google Scholar] [CrossRef]
- Bisi, O.; Ossicini, S.; Pavesi, L. Porous silicon: A quantum sponge structure for silicon based Optoelectronics. Surf. Sci. Rep. 2000, 38, 6–21. [Google Scholar] [CrossRef]
- Balde, M.; Vena, A.; Sorli, B. Fabrication of porous anodic aluminium oxide layers on paper for humidity sensors. Sensor Actuat. Biol. Chem. 2015, 220, 829–839. [Google Scholar] [CrossRef]
- De Stefano, L. Porous Silicon Optical Biosensors: Still a Promise or a Failure? Sensors 2019, 19, 4776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponce-Alcántara, S.; Martín-Sánchez, D.; Pérez-Márquez, A.; Maudes, J.; Murillo, N.; García-Rupérez, J. Optical sensors based on polymeric nanofibers layers created by electrospinning. Opt. Mater. Express 2018, 8, 3163–3175. [Google Scholar] [CrossRef]
- Niu, B.; Wang, X.; Wu, K.; He, X.; Zhang, R. Mesoporous Titanium Dioxide: Synthesis and Applications in Photocatalysis, Energy and Biology. Materials 2018, 11, 1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, F.; Kelly, T.L.; Luo, L.B.; Li, H.; Sailor, M.J.; Li, Y.Y. Self-cleaning organic vapor sensor based on a nanoporous TiO2 interferometer. ACS Appl. Mater. Interfaces 2012, 4, 4177–4183. [Google Scholar] [CrossRef] [PubMed]
- Benkstein, K.D.; Semancik, S. Mesoporous nanoparticle TiO2 thin films for conductometric gas sensing on microhotplate platforms. Sens. Actuators B Chem. 2006, 113, 445–453. [Google Scholar] [CrossRef]
- Amri, F.; Septiani, N.L.W.; Rezki, M.; Iqbal, M.; Yamauchi, Y.; Golberg, D.; Kaneti, Y.V.; Yuliarto, B. Mesoporous TiO2-based architectures as promising sensing materials towards next-generation biosensing applications. J. Mater. Chem. B 2021, 9, 1189–1207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lu, D.-F.; Qi, Z.-M. Application of Porous TiO2 Thin Films as Wavelength-Interrogated Waveguide Resonance Sensors for Bio/Chemical Detection. J. Phys. Chem. C 2012, 116, 3342–3348. [Google Scholar] [CrossRef]
- Wan, X.; Lu, D.-F.; Gao, R.; Cheng, J.; Qi, Z.-M. Metal-Clad Waveguide Resonance Sensor Using a Mesoporous TiO2 Thin Film as the Chemical Sensitive Core Layer. J. Phys. Chem. C 2017, 121, 19173–19181. [Google Scholar] [CrossRef]
- Davies, E.; Viitala, R.; Salomäki, M.; Areva, S.; Zhang, L.; Bennion, I. Sol-gel derived coating applied to long-period gratings for enhanced refractive index sensing properties. J. Opt. A Pure Appl. Opt. 2008, 11, 015501. [Google Scholar] [CrossRef]
- Hawkeye, M.M.; Brett, M.J. Optimized Colorimetric Photonic-Crystal Humidity Sensor Fabricated Using Glancing Angle Deposition. Adv. Funct. Mater. 2011, 21, 3652–3658. [Google Scholar] [CrossRef]
- Hajireza, P.; Krause, K.; Brett, M.; Zemp, R. Glancing angle deposited nanostructured film Fabry-Perot etalons for optical detection of ultrasound. Opt Express 2013, 21, 6391–6400. [Google Scholar] [CrossRef] [PubMed]
- Castillero, P.; Roales, J.; Lopes-Costa, T.; Sánchez-Valencia, J.R.; Barranco, A.; González-Elipe, A.R.; Pedrosa, J.M. Optical Gas Sensing of Ammonia and Amines Based on Protonated Porphyrin/TiO2 Composite Thin Films. Sensors 2017, 17, 24. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.-T.; Choi, W.-Y. Fabrication of TiO2 photonic crystal by anodic oxidation and their optical sensing properties. Sens. Actuator A Phys. 2017, 260, 178–184. [Google Scholar] [CrossRef]
- Ermolaev, G.A.; Kushnir, S.E.; Sapoletova, N.A.; Napolskii, K.S. Titania Photonic Crystals with Precise Photonic Band Gap Position via Anodizing with Voltage versus Optical Path Length Modulation. Nanomaterials 2019, 9, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Xie, W.; Dai, Y.; Lee, D.; Dai, J.; Zhang, Y.; Zhuang, Z. Dielectric multilayer-based fiber optic sensor enabling simultaneous measurement of humidity and temperature. Opt. Express 2014, 22, 11892–11899. [Google Scholar] [CrossRef]
- Huang, C.; Xie, W.; Lee, D.; Qi, C.; Yang, M.; Wang, M.; Tang, J. Optical Fiber Humidity Sensor With Porous TiO2/SiO2/TiO2 Coatings on Fiber Tip. IEEE Photonics Technol. Lett. 2015, 27, 1495–1498. [Google Scholar] [CrossRef]
- Jiang, M.; Li, Q.S.; Wang, J.N.; Jin, Z.; Sui, Q.; Ma, Y.; Shi, J.; Zhang, F.; Jia, L.; Yao, W.G.; et al. TiO2 nanoparticle thin film-coated optical fiber Fabry-Perot sensor. Opt Express 2013, 21, 3083–3090. [Google Scholar] [CrossRef]
- Brinker, C.J.; Scherer, G.W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Yang, P.; Zhao, D.; Margolese, D.I.; Chmelka, B.F.; Stucky, G.D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998, 396, 152. [Google Scholar] [CrossRef]
- Brinker, C.J.; Lu, Y.; Sellinger, A.; Fan, H. Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 1999, 11, 579–585. [Google Scholar] [CrossRef]
- Grosso, D.; Soler Illia, G.A.A.; Babonneau, F.; Sanchez, C.; Albouy, P.A.; Brunet-Bruneau, A.; Balkenende, R. Highly Organized Mesoporous Titania Thin Films Showing Mono-Oriented 2D Hexagonal Channels. Adv. Mater. 2001, 13, 1085. [Google Scholar] [CrossRef]
- Ortiz de Zárate, D.; Boissière, C.; Grosso, D.; Albouy, P.A.; Amenitsch, H.; Amoros, P.; Sanchez, C. Preparation of multi-nanocrystalline transition metal oxide (TiO2–NiTiO3) mesoporous thin films. New J. Chem. 2005, 29, 141–144. [Google Scholar] [CrossRef]
- Choi, S.Y.; Lee, B.; Carew, D.B.; Mamak, M.; Peiris, F.C.; Speakman, S.; Chopra, N.; Ozin, G.A. 3D hexagonal (r-3m) mesostructured nanocrystalline titania thin films: Synthesis and characterization. Adv. Funct. Mater. 2006, 16, 1731–1738. [Google Scholar] [CrossRef]
- Balili, R. Transfer matrix method in nanophotonics. Int. J. Mod. Phys. Conf. Ser. 2012, 17, 159–168. [Google Scholar] [CrossRef]
- Bruggeman, D.A.G. Calculation of various physics constants in heterogeneous substances I: Dielectricity constants and conductivity of mixed bodies from isotropic substances. Ann. Phys. 1935, 416, 636–664. [Google Scholar] [CrossRef]
- Aspnes, D.E. Optical properties of thin films. Thin. Solid Film. 1982, 89, 249–262. [Google Scholar] [CrossRef]
- Crepaldi, E.L.; Soler-Illia, G.J.; Grosso, D.; Cagnol, F.; Ribot, F.; Sanchez, C. Controlled formation of highly organized mesoporous titania thin films: From mesostructured hybrids to mesoporous nanoanatase TiO2. J. Am. Chem. Soc. 2003, 125, 9770–9786. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz de Zárate, D.; Serna, S.; Ponce-Alcántara, S.; Kovylina, M.; García-Rupérez, J. Bottom-Up Synthesis of Mesoporous TiO2 Films for the Development of Optical Sensing Layers. Chemosensors 2021, 9, 329. https://doi.org/10.3390/chemosensors9120329
Ortiz de Zárate D, Serna S, Ponce-Alcántara S, Kovylina M, García-Rupérez J. Bottom-Up Synthesis of Mesoporous TiO2 Films for the Development of Optical Sensing Layers. Chemosensors. 2021; 9(12):329. https://doi.org/10.3390/chemosensors9120329
Chicago/Turabian StyleOrtiz de Zárate, David, Sara Serna, Salvador Ponce-Alcántara, Miroslavna Kovylina, and Jaime García-Rupérez. 2021. "Bottom-Up Synthesis of Mesoporous TiO2 Films for the Development of Optical Sensing Layers" Chemosensors 9, no. 12: 329. https://doi.org/10.3390/chemosensors9120329
APA StyleOrtiz de Zárate, D., Serna, S., Ponce-Alcántara, S., Kovylina, M., & García-Rupérez, J. (2021). Bottom-Up Synthesis of Mesoporous TiO2 Films for the Development of Optical Sensing Layers. Chemosensors, 9(12), 329. https://doi.org/10.3390/chemosensors9120329