A 4 × 4 Array of Complementary Split-Ring Resonators for Label-Free Dielectric Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. CSRR Sensor Design
2.2. Microwell Design
3. Results
3.1. Dielectric Probe Measurements of the Samples
3.2. ADS Simulations and Measurements Loaded CSRRs with Air
3.3. Measurements of Loaded and Interconnected CSRRs with PDMS Microwells
3.4. Dielectric Sensor Calibration and MUT Measurement Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lindström, S.; Eriksson, M.; Vazin, T.; Sandberg, J.; Lundeberg, J.; Frisén, J.; Andersson-Svahn, H. High-Density Microwell Chip for Culture and Analysis of Stem Cells. PLoS ONE 2009, 9, e6997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindström, S.; Larsson, R.; Andersson-Svahn, H. Towards High-Throughput Single Cell/Clone Cultivation and Analysis. Electrophoresis 2008, 6, 1219–1227. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Shen, J.; Silva, A.; Dennis, D.A.; Barrow, C.J. A Simple 96-Well Microplate Method for Estimation of Total Polyphenol Content in Seaweeds. J. Appl. Phycol. 2006, 18, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Fowler, P.W.; Cruz, A.L.G.; Hoosdally, S.J.; Jarrett, L.; Borroni, E.; Chiacchiaretta, M.; Rathod, P.; Lehmann, S.; Molodtsov, N.; Walker, T.M.; et al. Automated Detection of Bacterial Growth on 96-Well Plates for High-Throughput Drug Susceptibility Testing of Mycobacterium Tuberculosis. Microbiology 2018, 164, 1522–1530. [Google Scholar] [CrossRef]
- Pitt, A.M.; Lee, C. High Throughput Screening Protein Kinase Assays Optimized for Reaction, Binding, and Detection Totally Within a 96-Well Plate. J. Biomol. Screen. 1996, 1, 47–51. [Google Scholar] [CrossRef]
- Arain, S.; John, G.T.; Krause, C.; Gerlach, J.; Wolfbeis, O.S.; Klimant, I. Characterization of Microtiterplates with Integrated Optical Sensors for Oxygen and pH, and Their Applications to Enzyme Activity Screening, Respirometry, and Toxicological Assays. Sens. Actuat. B-Chem. 2006, 113, 639–648. [Google Scholar] [CrossRef]
- Marešová, L.; Sychrová, H. Applications of a Microplate Reader in Yeast Physiology Research. Biotechniques 2007, 43, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Joseph, J.A. Quantifying Cellular Oxidative Stress by Dichlorofluorescein Assay Using Microplate Reader. Free Radic. Biol. Med. 1999, 27, 612–616. [Google Scholar] [CrossRef]
- Yang, X.; Janatova, J.; Andrade, J.D. Homogeneous Enzyme Immunoassay Modified for Application to Luminescence-Based Biosensors. Anal. Biochem. 2005, 336, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Dalmay, C.; Pothier, A.; Cheray, M.; Lalloue, F.; Jauberteau, M.O.; Blondy, P. Label-free RF biosensors for human cell dielectric spectroscopy. Int. J. Microw. Wirel. Technol. 2009, 6, 497–504. [Google Scholar] [CrossRef]
- Liu, A.Q.; Huang, H.J.; Chin, L.K.; Yu, Y.F.; Li, X.C. Label-free detection with micro optical fluidic systems (MOFS): A review. Anal. Bioanal. Chem. 2008, 7, 2443–2452. [Google Scholar] [CrossRef]
- Cunningham, B.T.; Li, P.; Schulz, S.; Lin, B.; Baird, C.; Gerstenmaier, J.; Genick, C.; Wang, F.; Fine, E.; Laing, L. Label-free assays on the BIND system. J. Biomol. Screen. 2004, 6, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Ciambrone, G.J.; Liu, V.F.; Lin, D.C.; McGuinness, R.P.; Leung, G.K.; Pitchford, S. Cellular Dielectric Spectroscopy: A Powerful New Approach to Label-Free Cellular Analysis. J. Biomol. Screen. 2004, 9, 467–480. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Agarwal, A.; Trigg, A.D.; Singh, N.; Fang, C.; Tung, C.H.; Fan, Y.; Buddharaju, K.D.; Kong, J. Silicon nanowire arrays for label-free detection of DNA. Anal. Chem. 2007, 9, 3291–3297. [Google Scholar] [CrossRef] [PubMed]
- Washburn, A.L.; Gunn, L.C.; Bailey, R.C. Label-Free Quantitation of a Cancer Biomarker in Complex Media Using Silicon Photonic Microring Resonators. Anal. Chem. 2009, 81, 9499–9506. [Google Scholar] [CrossRef] [Green Version]
- Woodward, W.H. Broadband Dielectric Spectroscopy—A Practical Guide. In Broadband Dielectric Spectroscopy: A Modern Analytical Technique; American Chemical Society: Washington, DC, USA, 2021; pp. 3–59. [Google Scholar]
- Grenier, K.; Dubuc, D.; Chen, T.; Artis, F.; Chretiennot, T.; Poupot, M.; Fournie, J.J. Recent advances in microwave-based dielectric spectroscopy at the cellular level for cancer investigations. IEEE Trans. Microw. Theory Tech. 2013, 5, 2023–2030. [Google Scholar] [CrossRef] [Green Version]
- Dubuc, D.; Mazouffre, O.; Llorens, C.; Taris, T.; Poupot, M.; Fournié, J.J.; Begueret, J.B.; Grenier, K. Microwave-based biosensor for on-chip biological cell analysis. Analog Integr. Circuits Signal Process. 2013, 2, 135–142. [Google Scholar] [CrossRef]
- Artis, F.; Chen, T.; Chretiennot, T.; Fournie, J.J.; Poupot, M.; Dubuc, D.; Grenier, K. Microwaving biological cells: Intracellular analysis with microwave dielectric spectroscopy. IEEE Microw. Mag. 2015, 4, 87–96. [Google Scholar] [CrossRef]
- Morgan, H.; Sun, T.; Holmes, D.; Gawad, S.; Green, N.G. Single cell dielectric spectroscopy. J. Phys. D Appl. Phys. 2006, 1, 61. [Google Scholar] [CrossRef]
- Bao, X.; Ocket, I.; Crupi, G.; Schreurs, D.; Bao, J.; Kil, D.; Puers, B.; Nauwelaers, B. A planar one port microwave microfluidic sensor for microliter liquids characterization. IEEE J. Electromagn. RF Microw. Med. Biol. 2018, 1, 10–17. [Google Scholar] [CrossRef]
- Chen, Q.; McMurdie, J.; Roitman, D.; Knoesen, A. Microwave transmission line dielectric probe to detect biomolecular surface interactions. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1 September 2004. [Google Scholar]
- Go, R.; Bashir, R.; Sarikaya, A.; Ladisch, M.R.; Sturgis, J.; Robinson, J.P.; Geng, T.; Bhunia, A.K.; Apple, H.L.; Wereley, S. Microfluidic biochip for impedance spectroscopy of biological species. Biomed. Microdevices 2001, 3, 201–209. [Google Scholar]
- Rydosz, A.; Brzozowska, E.; Górska, S.; Wincza, K.; Gamian, A.; Gruszczynski, S. A Broadband Capacitive Sensing Method for Label-Free Bacterial LPS Detection. Biosens. Bioelectron. 2016, 75, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Bonincontro, A.; Risuleo, G. Dielectric Spectroscopy as a Probe for the Investigation of Conformational Properties of Proteins. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2003, 59, 2677–2684. [Google Scholar] [CrossRef]
- Narayanan, P.M. Microstrip Transmission Line Method for Broadband Permittivity Measurement of Dielectric Substrates. IEEE Trans. Microw. Theory Tech. 2014, 62, 2784–2790. [Google Scholar] [CrossRef]
- Liu, S.; Ocket, I.; Barmuta, P.; Markovic, T.; Lewandowski, A.; Schreurs, D.; Nauwelaers, B. Broadband dielectric spectroscopy calibration using calibration liquids with unknown permittivity. In Proceedings of the 84th ARFTG Microwave Measurement Conference, Boulder, CO, USA, 4–5 December 2014. [Google Scholar]
- Paredes, J.; Becerro, S.; Arizti, F.; Aguinaga, A.; Del Pozo, J.L.; Arana, S. Interdigitated Microelectrode Biosensor for Bacterial Biofilm Growth Monitoring by Impedance Spectroscopy Technique in 96-Well Microtiter Plates. Sens. Actuat. B-Chem. 2013, 178, 663–670. [Google Scholar] [CrossRef]
- Bao, X.; Ocket, I.; Bao, J.; Doijen, J.; Zheng, J.; Kil, D.; Liu, Z.; Puers, B.; Schreurs, D.; Nauwelaers, B. Broadband dielectric spectroscopy of cell cultures. IEEE Trans. Microw. Theory Tech. 2018, 12, 5750–5759. [Google Scholar] [CrossRef]
- Bao, J.; Maenhout, G.; Markovic, T.; Ocket, I.; Nauwelaers, B. A Microwave Platform for Reliable and Instant Interconnecting Combined with Microwave-Microfluidic Interdigital Capacitor Chips for Sensing Applications. Sensors 2020, 20, 1687. [Google Scholar] [CrossRef] [Green Version]
- Grenier, K.; Dubuc, D.; Poleni, P.E.; Kumemura, M.; Toshiyoshi, H.; Fujii, T.; Fujita, H. Resonant Based Microwave Biosensor for Biological Cells Discrimination. In Proceedings of the 2010 IEEE Radio and Wireless Symposium (RWS), New Orleans, LA, USA, 10–14 January 2010. [Google Scholar]
- Abduljabar, A.A.; Rowe, D.J.; Porch, A.; Barrow, D.A. Novel Microwave Microfluidic Sensor Using a Microstrip Split-Ring Resonator. IEEE Trans. Microw. Theory Tech. 2014, 62, 679–688. [Google Scholar] [CrossRef]
- Jha, A.K.; Akhtar, M.J. A Generalized Rectangular Cavity Approach for Determination of Complex Permittivity of Materials. IEEE Trans. Microw. Theory Tech. 2014, 63, 2632–2641. [Google Scholar] [CrossRef]
- Bao, J.; Yan, S.; Markovic, T.; Ocket, I.; Kil, D.; Brancato, L.; Puers, R.; Nauwelaers, B. A 20-GHz microwave miniaturized ring resonator for nL microfluidic sensing applications. IEEE Sens. Lett. 2019, 6, 1–4. [Google Scholar] [CrossRef]
- Suster, M.A.; Mohseni, P. An RF/microwave microfluidic sensor based on a center-gapped microstrip line for miniaturized dielectric spectroscopy. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013; IEEE: Manhattan, NY, USA, 2013; pp. 1–3. [Google Scholar]
- Veselago, V.G. Electrodynamics of Substances with Simultaneously Negative Values of ε and µ. Sov. Phys. Uspekhi 1967, 10, 509. [Google Scholar] [CrossRef]
- RoyChoudhury, S.; Rawat, V.; Jalal, A.H.; Kale, S.N.; Bhansali, S. Recent Advances in Metamaterial Split-Ring-Resonator Circuits as Biosensors and Therapeutic Agents. Biosens. Bioelectron. 2016, 86, 595–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baena, J.D.; Bonache, J.; Martín, F.; Sillero, R.M.; Falcone, F.; Lopetegi, T.; Laso, M.A.; Garcia-Garcia, J.; Gil, I.; Portillo, M.F.; et al. Equivalent-Circuit Models for Split-Ring Resonators and Complementary Split-Ring Resonators Coupled to Planar Transmission Lines. IEEE Trans. Microw. Theory Tech. 2005, 53, 1451–1461. [Google Scholar] [CrossRef]
- García-García, J.; Martin, F.; Falcone, F.; Bonache, J.; Gil, I.; Lopetegi, T.; Laso, M.A.; Sorolla, M.; Marqués, R. Spurious Passband Suppression in Microstrip Coupled Line Band Pass Filters by Means of Split Ring Resonators. IEEE Microw. Wirel. Compon. Lett. 2004, 4, 416–418. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.; Abbott, D. High-Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization. IEEE Sens. J. 2013, 14, 1345–1351. [Google Scholar] [CrossRef] [Green Version]
- Puentes, M.; Maasch, M.; Schubler, M.; Jakoby, R. Frequency Multiplexed 2-Dimensional Sensor Array Based on Split-Ring Resonators for Organic Tissue Analysis. IEEE Trans. Microw. Theory Tech. 2012, 60, 1720–1727. [Google Scholar] [CrossRef]
- Ansari, M.A.; Jha, A.K.; Akhter, Z.; Akhtar, M.J. Multi-Band RF Planar Sensor Using Complementary Split-Ring Resonator for Testing of Dielectric Materials. IEEE Sens. J. 2018, 18, 6596–6606. [Google Scholar] [CrossRef]
- Ansari, M.A.; Jha, A.K.; Akhtar, M.J. Design and Application of the CSRR-Based Planar Sensor for Noninvasive Measurement of Complex Permittivity. IEEE Sens. J. 2015, 15, 7181–7189. [Google Scholar] [CrossRef]
- Ansari, M.A.; Jha, A.K.; Akhtar, M.J. Dual Band Microwave Sensor for Dielectric Characterization of Dispersive Materials. In Proceedings of the 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 6–9 December 2015. [Google Scholar]
- Lee, C.S.; Yang, C.L. Thickness and Permittivity Measurement in Multi-Layered Dielectric Structures Using Complementary Split-Ring Resonators. IEEE Sens. J. 2013, 14, 695–700. [Google Scholar] [CrossRef]
- Maenhout, G.; Markovic, T.; Ocket, I.; Nauwelaers, B. Complementary Split-Ring Resonator with Improved Dielectric Spatial Resolution. IEEE Sens. J. 2020, 21, 4543–4552. [Google Scholar] [CrossRef]
CSRR1 | CSRR2 | CSRR3 | CSRR4 | |
---|---|---|---|---|
Resonant frequency [GHz] | 6.9 | 7.9 | 8.9 | 9.8 |
R [mm] | 2 | 2 | 2 | 2 |
A and B [mm] | 0.2 | 0.2 | 0.2 | 0.6 |
C and D [mm] | 0.8 | 0.5 | 0.2 | 0.2 |
E [mm] | 0.8 | 0.5 | 0.2 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinic, M.; Markovic, T.; Baric, A.; Nauwelaers, B. A 4 × 4 Array of Complementary Split-Ring Resonators for Label-Free Dielectric Spectroscopy. Chemosensors 2021, 9, 348. https://doi.org/10.3390/chemosensors9120348
Martinic M, Markovic T, Baric A, Nauwelaers B. A 4 × 4 Array of Complementary Split-Ring Resonators for Label-Free Dielectric Spectroscopy. Chemosensors. 2021; 9(12):348. https://doi.org/10.3390/chemosensors9120348
Chicago/Turabian StyleMartinic, Matko, Tomislav Markovic, Adrijan Baric, and Bart Nauwelaers. 2021. "A 4 × 4 Array of Complementary Split-Ring Resonators for Label-Free Dielectric Spectroscopy" Chemosensors 9, no. 12: 348. https://doi.org/10.3390/chemosensors9120348
APA StyleMartinic, M., Markovic, T., Baric, A., & Nauwelaers, B. (2021). A 4 × 4 Array of Complementary Split-Ring Resonators for Label-Free Dielectric Spectroscopy. Chemosensors, 9(12), 348. https://doi.org/10.3390/chemosensors9120348