Bioanalytical Detection of Steroid Abuse in Sports Based on the Androgenic Activity Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Samples Collected
2.3. Sample Preparation
2.4. AR CALUX®
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lissavetzky, J. Química y deporte: La lucha contra el dopaje en el horizonte del siglo XXI. Arbor 2011, 187, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Reardon, C.L.; Creado, S. Drug abuse in athletes. Subst. Abus. Rehabil. 2014, 5, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.; Muñoz-Guerra, J.; Plata, M.D.M.; Del Coso, J. Thirteen years of the fight against doping in figures. Drug Test. Anal. 2017, 9, 866–869. [Google Scholar] [CrossRef] [PubMed]
- Baron, D.; Martin, D.; Magd, S. El dopaje en el deporte y su propagación a las poblaciones en riesgo: Una revisión internacional. Rev. Of. De La Asoc. Mund. De Psiquiatr. (WPA) 2007, 5, 118–123. [Google Scholar]
- WADA. Technical Document for the Harmonization of Analysis and Reporting of 19-Norsteroids Related to Nandrolone. WADA Technical Document—TD2019NA. March 2019. Available online: https://www.wada-ama.org/en/resources/science-medicine/td2019na-0. (accessed on 17 November 2020).
- WADA. Detection of Synthetic Forms of Endogenous Anabolic Androgenic Steroids by GC/C/IRMS. 2019. Available online: https://www.wada-ama.org/sites/default/files/td2019irms_final_eng_clean.pdf. (accessed on 17 November 2020).
- WADA. Endogenous Anabolic Androgenic Steroids: Measurement and Reporting. Technical Document TD2018EAAS. 2018. Available online: https://www.wada-ama.org/sites/default/files/resources/files/td2018eaas_final_eng.pdf (accessed on 17 November 2020).
- Parr, M.K.; Schänzer, W. Detection of the misuse of steroids in doping control. J. Steroid Biochem. Mol. Biol. 2010, 121, 528–537. [Google Scholar] [CrossRef]
- Thevis, M.; Walpurgis, K.; Thomas, A. Analytical Approaches in Human Sports Drug Testing Recent Advances, Challenges, and Solutions. Anal. Chem. 2019, 92, 506–523. [Google Scholar] [CrossRef] [PubMed]
- Bailey, K.; Yazdi, T.; Masharani, U.; Tyrrell, B.; Butch, A.; Schaufele, F. Advantages and limitations of androgen receptor-based methods for detecting anabolic androgenic steroid abuse as performance enhancing drugs. PLoS ONE 2016, 11, e0151860. [Google Scholar] [CrossRef] [PubMed]
- Mareck, U.; Geyer, H.; Opfermann, G.; Thevis, M.; Schänzer, W. Factors influencing the steroid profile in doping control analysis. J. Mass Spectrom. 2008, 43, 877–891. [Google Scholar] [CrossRef]
- Baume, N.; Geyer, H.; Vouillamoz, M.; Grisdale, R.; Earl, M.; Aguilera, R.; Cowan, D.A.; Ericsson, M.; Gmeiner, G.; Kwiatkowska, D.; et al. Evaluation of longitudinal steroid profiles from male football players in UEFA competitions between 2008 and 2013. Drug Test. Anal. 2016, 8, 603–612. [Google Scholar] [CrossRef]
- Jakobsson, J.; Ekström, L.; Inotsume, N.; Garle, M.; Lorentzon, M.; Ohlsson, C.; Roh, H.-K.; Carlström, K.; Rane, A. Large differences in testosterone excretion in Korean and Swedish men are strongly associated with a UDP-glucuronosyl transferase 2B17 polymorphism. J. Clin. Endocrinol. Metab. 2006, 91, 687–693. [Google Scholar] [CrossRef] [Green Version]
- Ekström, L.; Cevenini, L.; Michelini, E.; Schulze, J.; Thörngren, J.-O.; Belanger, A.; Guillemette, C.; Garle, M.; Roda, A.; Rane, A. Testosterone challenge and androgen receptor activity in relation to UGT 2B17 genotypes. Eur. J. Clin. Investig. 2013, 43, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Strahm, E.; Mullen, J.E.; Ericsson, M.; Schulze, J.J.; Rane, A.; Gårevik, N.; Ekstrom, L. Dose-dependent testosterone sensitivity of the steroidal passport and GC-C-IRMS analysis in relation to the UGT2B17 deletion polymorphism. Drug Test. Anal. 2015, 7, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Martín-Escudero, P.; Muñoz-Guerra, J.; Del Prado, N.; Canales, M.G.; Ferrer, M.F.; Vargas, S.; Soldevilla, A.B.; Serrano-Garde, E.; Miguel-Tobal, F.; Casas, M.M.D.L.; et al. Impact of UGT 2B17 gene deletion on the steroid profile of an athlete. Physiol. Rep. 2015, 3, e12645. [Google Scholar] [CrossRef]
- Martín-Escudero, P.; Muñoz-Guerra, J.A.; García-Tenorio, S.V.; Garde, E.S.; Soldevilla-Navarro, A.B.; Canales, M.G.; Prado, N.; Ferrer, M.E.F.; Pérez, C.F. Impact of the UGT2B17 polymorphism on the steroid profile. Results of a crossover clinical trial in athletes submitted to testosterone administration. Steroids 2018, 141, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Kuuranne, T.; Saugy, M.; Baume, N. Confounding factors, and genetic polymorphism in the evaluation of individual steroid profiling. Br. J. Sports Med. 2014, 48, 848–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponzetto, F.; Baume, N.; Schweizer, C.; Saugy, M.; Kuuranne, T. Steroidal module of the athlete biological passport. Curr. Opin. Endocr. Metab. Res. 2019, 9, 14–21. [Google Scholar] [CrossRef]
- Juul, A.; Sørensen, K.; Aksglaede, L.; Garn, I.; Meyts, E.R.-D.; Hullstein, I.; Hemmersbach, P.; Ottesen, A.M. A common deletion in the uridine diphosphate glucuronyltransferase (UGT) 2B17 gene is a strong determinant of androgen excretion in healthy pubertal boys. J. Clin. Endocrinol. Metab. 2009, 94, 1005–1011. [Google Scholar] [CrossRef] [Green Version]
- Sonneveld, E.; Jansen, H.J.; Riteco, J.A.C.; Brouwer, A.; Van Der Burg, B. Development of androgen-and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol. Sci. 2004, 83, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, E.; Riteco, J.A.C.; Jansen, H.J.; Pieterse, B.; Brouwer, A.; Schoonen, W.G.; Van Der Burg, B. Comparison of in vitro and in vivo screening models for androgenic and estrogenic activities. Toxicol. Sci. 2005, 89, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Van der Burg, B.; Winter, R.; Man, H.; Vangenechten, C.; Berckmans, P.; Weimer, M.; Witters, H.; van der Lindena, S. Optimization and prevalidation of the in vitro AR CALUX® method to test androgenic and antiandrogenic activity of compounds. Reprod. Toxicol. 2010, 30, 18–24. [Google Scholar] [CrossRef]
- Cooper, E.; McGrath, K.C.Y.; Li, X.; Akram, O.; Kasz, R.; Kazlauskas, R.; McLeod, M.D.; Handelsman, D.J.; Heather, A.K. The use of tandem yeast and mammalian cell in vitro androgen bioassays to detect androgens in internet-sourced sport supplements. Drug Test. Anal. 2016, 9, 545–552. [Google Scholar] [CrossRef]
- Cooper, E.; McGrath, K.; Heather, A. In vitro androgen bioassays as a detection method for designer androgens. Sensors 2013, 13, 2148–2163. [Google Scholar] [CrossRef] [Green Version]
- Houtman, C.; Sterk, S.S.; van de Heijning, M.P.M.; Brouwer, A.; Stephany, R.W.; van der Burg, B.; Sonnevelda, E. Detection of anabolic androgenic steroid abuse in doping control using mammalian reporter gene bioassays. Anal. Chim. Acta 2009, 637, 247–258. [Google Scholar] [CrossRef]
- Bird, S.R.; Goebel, C.; Burke, L.M.; Greaves, R.F. Doping in sport and exercise: Anabolic, ergogenic, health and clinical issues. Ann. Clin. Biochem. 2016, 53, 196–221. [Google Scholar] [CrossRef] [Green Version]
- Schulze, J.J.; Lundmark, J.; Garle, M.; Skilving, I.; Ekstroöm, L.; Rane, A. Doping test results dependent on genotype of uridine diphospho-glucuronosyl transferase 2B17, the major enzyme for testosterone glucuronidation. J. Clin. Endocrinol. Metab. 2008, 93, 2500–2506. [Google Scholar] [CrossRef] [Green Version]
- Strano-Rossi, S.; Fiore, C.; Chiarotti, M.; Centini, F. Analytical techniques in androgen anabolic steroids (AASs) analysis for antidoping and forensic purposes. Mini Rev. Med. Chem. 2011, 11, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Peng, Y.; Sheng, S.; Lin, Q. Assessment of Urinary Total Testosterone Production by a Highly Sensitive Time-Resolved Fluorescence Immunoassay. J. Clin. Lab. Anal. 2008, 22, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Duntas, L.H.; Popovic, V. Hormones as doping in sports. Endocrine 2013, 43, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Durward-Akhurst, S.A.; Schultz, N.E.; Norton, E.M.; Rendahl, A.; McCue, M.E.; Mickelson, J.R.; Geor, R.J.; Brouwer, A.E.; Behnisch, P.A.; Besselink, H.T. Associations between endocrine disrupting chemicals and equine metabolic syndrome phenotypes. Chemosphere 2019, 218, 652–661. [Google Scholar] [CrossRef]
- Sonneveld, E.; Van der Burg, B.; Brouwer, A.; Stephany, R.; Sterk, S. The Development and application of a tight bioassay-based control system for steroids and other prohibited substances in sport doping. R. WADA 2015. Available online: https://www.wada-ama.org/en/resources/science-medicine/development-and-application-of-a-tight-bioassay-based-control-system-for (accessed on 30 November 2020).
- Cadwallader, A.B.; Lim, C.S.; Rollins, U.E.; Botrè, F. The androgen receptor and its use in biological assays: Looking toward effect-based testing and its applications. J. Anal. Toxicol. 2011, 35, 594–607. [Google Scholar] [CrossRef] [Green Version]
- Calabretta, M.M.; Lopreside, A.; Montali, L.; Cevenini, L.; Roda, A.; Michelini, E.A. Genetically Encoded Bioluminescence Intracellular Nanosensor for Androgen Receptor Activation Monitoring in 3D Cell Models. Sensors 2021, 21, 893. [Google Scholar] [CrossRef] [PubMed]
- Aqai, P.; Cevik, E.; Gerssen, A.; Haasnoot, W.; Nielen, M.W.F. High-throughput bioaffinity mass spectrometry for screening and identification of designer anabolic steroids in dietary supplements. Anal. Chem. 2013, 85, 3255–3262. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.; Herrlich, P.; Schütz, G. Steroid hormone receptors: Many actors in search of a plot. Cell 1995, 83, 851–857. [Google Scholar] [CrossRef] [Green Version]
- McKenna, N.J.; O’Malley, B.W. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 2002, 108, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Matsumoto, T.; Yamada, T.; Watanabe, T.; Kawano, H.; Kato, S. Late onset of obesity in male androgen receptor-deficient (AR KO) mice. Biochem. Biophys. Res. Commun. 2003, 300, 167–171. [Google Scholar] [CrossRef]
- Ekstrom, L.; Schulze, J.J.; Guillemette, C.; Belanger, A.; Rane, A. Bioavailability of testosterone enanthate dependent on genetic variation in the phosphodiesterase 7B but not on the uridine 5′-diphospho-glucuronosyltransferase (UGT2B17) gene. Pharm. Genom. 2011, 21, 325–332. [Google Scholar] [CrossRef] [Green Version]
c1 | c2 | c3 | |||
---|---|---|---|---|---|
With Hydrolysis | ins/ins | n | 30 | 30 | 10 |
median | 0.9 | 3.2 | 1.0 | ||
IQR | 0.6–1.5 | 2.3–4.4 | 0.4–1.7 | ||
ins/del | n | 40 | 40 | 13 | |
median | 0.8 | 5.4 | 1.3 | ||
IQR | 0.5–2.6 | 3.2–10 | 1.3–2.0 | ||
del/del | n | 40 | 39 | 16 | |
median | 0.6 | 2.1 | 0.7 | ||
IQR | 0.4–1.5 | 1.5–2.9 | 0.4–1.0 | ||
Without Hydrolysis | ins/ins | n | 27 | 30 | 10 |
Median | 0.2 | 0.6 | 0.2 | ||
IQR | 0.1–0.4 | 0.5–1.3 | 0.2–0.5 | ||
ins/del | n | 40 | 40 | 13 | |
Median | 0.3 | 0.8 | 0.3 | ||
IQR | 0.1–1.7 | 0.3–1.8 | 0.1–0.8 | ||
del/del | n | 37 | 39 | 16 | |
Median | 0.1 | 0.4 | 0.2 | ||
IQR | 0.1–0.2 | 0.3–0.6 | 0.1–0.3 |
With Hydrolysis | Ratio of Means | Inter Quartile 95% Range | p | |
---|---|---|---|---|
(ins/del) vs. (ins/ins) | 1.37 | 0.44 | 4.28 | 0.578 |
(del/del) vs. (ins/ins) | 0.79 | 0.26 | 2.47 | 0.690 |
Without Hydrolysis | ||||
(ins/del) vs. (ins/ins) | 2.21 | 0.41 | 12.03 | 0.355 |
(del/del) vs. (ins/ins) | 0.53 | 0.10 | 2.89 | 0.464 |
Ratio of Means | Inter Quartile Range C 95% | p | |||
---|---|---|---|---|---|
With Hydrolysis | ins/ins | 3.31 | 2.07 | 5.29 | <0.001 |
ins/del | 4.15 | 3.05 | 5.67 | <0.001 | |
del/del | 2.89 | 2.42 | 3.46 | <0.001 | |
Without Hydrolysis | ins/ins | 4.10 | 2.96 | 5.67 | <0.001 |
ins/del | 2.02 | 1.43 | 2.84 | <0.001 | |
del/del | 3.95 | 3.01 | 5.19 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Escudero, P.; Muñoz-Guerra, J.A.; García-Tenorio, S.V.; Serrano-Garde, E.; Soldevilla-Navarro, A.B.; Cortes-Carrillo, N.; Galindo-Canales, M.; del Prado, N.; Fuentes-Ferrer, M.; Fernández-Pérez, C.; et al. Bioanalytical Detection of Steroid Abuse in Sports Based on the Androgenic Activity Measurement. Chemosensors 2021, 9, 62. https://doi.org/10.3390/chemosensors9040062
Martín-Escudero P, Muñoz-Guerra JA, García-Tenorio SV, Serrano-Garde E, Soldevilla-Navarro AB, Cortes-Carrillo N, Galindo-Canales M, del Prado N, Fuentes-Ferrer M, Fernández-Pérez C, et al. Bioanalytical Detection of Steroid Abuse in Sports Based on the Androgenic Activity Measurement. Chemosensors. 2021; 9(4):62. https://doi.org/10.3390/chemosensors9040062
Chicago/Turabian StyleMartín-Escudero, Pilar, Jesus A. Muñoz-Guerra, Soledad Vargas García-Tenorio, Ester Serrano-Garde, Ana Belén Soldevilla-Navarro, Nuria Cortes-Carrillo, Mercedes Galindo-Canales, Nayade del Prado, Manuel Fuentes-Ferrer, Cristina Fernández-Pérez, and et al. 2021. "Bioanalytical Detection of Steroid Abuse in Sports Based on the Androgenic Activity Measurement" Chemosensors 9, no. 4: 62. https://doi.org/10.3390/chemosensors9040062
APA StyleMartín-Escudero, P., Muñoz-Guerra, J. A., García-Tenorio, S. V., Serrano-Garde, E., Soldevilla-Navarro, A. B., Cortes-Carrillo, N., Galindo-Canales, M., del Prado, N., Fuentes-Ferrer, M., Fernández-Pérez, C., Behnisch, P. A., & Brouwer, A. (2021). Bioanalytical Detection of Steroid Abuse in Sports Based on the Androgenic Activity Measurement. Chemosensors, 9(4), 62. https://doi.org/10.3390/chemosensors9040062