Carbon Quantum Dots from Lemon Waste Enable Communication among Biodevices
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farsad, N.; Eckford, A.W.; Hiyama, S.; Moritani, Y. On-Chip Molecular Communication: Analysis and Design. IEEE Trans. Nanobioscience 2012, 11, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.D.; Morgan, E.D. Insect chemical communication: Pheromones and exocrine glands of ants. Chemoecology 1993, 4, 125–144. [Google Scholar] [CrossRef]
- Granström, K.M. Wood processing as a source of terpene emissions compared to natural sources. In Air Pollution XV; WIT Press: Southampton, UK, 2007; Volume I, pp. 263–272. [Google Scholar]
- Darragh, K.; Orteu, A.; Black, D.; Byers, K.J.R.P.; Szczerbowski, D.; Warren, I.A.; Rastas, P.; Pinharanda, A.; Davey, J.W.; Garza, S.F.; et al. A novel terpene synthase controls differences in anti-aphrodisiac pheromone production between closely related Heliconius butterflies. PLoS Biol. 2021, 19, e3001022. [Google Scholar] [CrossRef] [PubMed]
- Fichera, L.; Li-Destri, G.; Tuccitto, N. Nanoparticles as suitable messengers for molecular communication. Nanoscale 2020, 12, 22386–22397. [Google Scholar] [CrossRef]
- Fichera, L.; Li-Destri, G.; Tuccitto, N. Fluorescent nanoparticle-based Internet of things. Nanoscale 2020, 12, 9817–9823. [Google Scholar] [CrossRef] [PubMed]
- Moritani, Y.; Hiyama, S.; Suda, T. Molecular communication for health care applications. In Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW’06), Pisa, Italy, 13–17 March 2006; p. 5553. [Google Scholar]
- Unluturk, B.D.; Akyildiz, I.F. An End-to-End Model of Plant Pheromone Channel for Long Range Molecular Communication. IEEE Trans. Nanobioscience 2017, 16, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.-S.; Yeh, P.-C.; Chen, K.-C.; Akyildiz, I.F. On Receiver Design for Diffusion-Based Molecular Communication. IEEE Trans. Signal Process. 2014, 62, 6032–6044. [Google Scholar] [CrossRef]
- McGuiness, D.T.; Giannoukos, S.; Marshall, A.; Taylor, S. Experimental Results on the Open-Air Transmission of Macro-Molecular Communication Using Membrane Inlet Mass Spectrometry. IEEE Commun. Lett. 2018, 22, 2567–2570. [Google Scholar] [CrossRef]
- Moore, M.J.; Nakano, T.; Enomoto, A.; Suda, T. Measuring Distance From Single Spike Feedback Signals in Molecular Communication. IEEE Trans. Signal Process. 2012, 60, 3576–3587. [Google Scholar] [CrossRef]
- ShahMohammadian, H.; Messier, G.G.; Magierowski, S. Blind Synchronization in Diffusion-Based Molecular Communication Channels. IEEE Commun. Lett. 2013, 17, 2156–2159. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, M.; Yang, L.-L.; Chae, C.-B.; Ji, F. Spatial Modulation for Molecular Communication. IEEE Trans. Nanobiosci. 2019, 18, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Kuran, M.S.; Yilmaz, H.B.; Demirkol, I.; Farsad, N.; Goldsmith, A. A Survey on Modulation Techniques in Molecular Communication via Diffusion. IEEE Commun. Surv. Tutorials 2021, 23, 7–28. [Google Scholar] [CrossRef]
- Qiu, S.; Guo, W.; Wang, S.; Farsad, N.; Eckford, A. A molecular communication link for monitoring in confined environments. In Proceedings of the 2014 IEEE International Conference on Communications Workshops (ICC), Sydney, NSW, Australia, 10–14 June 2014; pp. 718–723. [Google Scholar]
- Akdeniz, B.C.; Pusane, A.E.; Tugcu, T. Optimal Reception Delay in Diffusion-Based Molecular Communication. IEEE Commun. Lett. 2018, 22, 57–60. [Google Scholar] [CrossRef]
- Tuccitto, N.; Li-Destri, G.; Messina, G.M.L.; Marletta, G. Fluorescent Quantum Dots Make Feasible Long-Range Transmission of Molecular Bits. J. Phys. Chem. Lett. 2017, 8, 3861–3866. [Google Scholar] [CrossRef]
- Thiyagarajan, S.K.; Raghupathy, S.; Palanivel, D.; Raji, K.; Ramamurthy, P. Fluorescent carbon nano dots from lignite: Unveiling the impeccable evidence for quantum confinement. Phys. Chem. Chem. Phys. 2016, 18, 12065–12073. [Google Scholar] [CrossRef] [Green Version]
- Chatzimitakos, T.G.; Stalikas, C.D. Carbon nanodots from natural (re)sources: A new perspective on analytical chemistry. In Handbook of Nanomaterials in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–28. [Google Scholar]
- Zhang, Z.; Sun, W.; Wu, P. Highly Photoluminescent Carbon Dots Derived from Egg White: Facile and Green Synthesis, Photoluminescence Properties, and Multiple Applications. ACS Sustain. Chem. Eng. 2015, 3, 1412–1418. [Google Scholar] [CrossRef]
- Liang, Q.; Ma, W.; Shi, Y.; Li, Z.; Yang, X. Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon N. Y. 2013, 60, 421–428. [Google Scholar] [CrossRef]
- Liu, M.; Xu, Y.; Niu, F.; Gooding, J.J.; Liu, J. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst 2016, 141, 2657–2664. [Google Scholar] [CrossRef]
- Sahu, S.; Behera, B.; Maiti, T.K.; Mohapatra, S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents. Chem. Commun. 2012, 48, 8835–8837. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Citrus: World Markets and Trade; United States Department of Agriculture Foreign Agricultural Service: Washington, DC, USA, 2017; pp. 1–13.
- Singh, V.; Deverall, B.J. Bacillus subtilis as a control agent against fungal pathogens of citrus fruit. Trans. Br. Mycol. Soc. 1984, 83, 487–490. [Google Scholar] [CrossRef]
- Gerez, C.L.; Carbajo, M.S.; Rollán, G.; Leal, G.T.; de Valdez, G.F. Inhibition of Citrus Fungal Pathogens by Using Lactic Acid Bacteria. J. Food Sci. 2010, 75, M354–M359. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhu, S.; Xiang, S.; Zhao, X.; Zhang, J.; Zhang, H.; Fu, Y.; Yang, B. Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale 2014, 6, 4676–4682. [Google Scholar] [CrossRef]
- Yao, Y.; Niu, D.; Lee, C.H.; Li, Y.; Li, P. Aqueous Synthesis of Multi-Carbon Dot Cross-Linked Polyethyleneimine Particles with Enhanced Photoluminescent Properties. Macromol. Rapid Commun. 2019, 40, e1800869. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xu, Z.; Zhang, C. Polyethyleneimine-Functionalized Fluorescent Carbon Dots: Water Stability, pH Sensing, and Cellular Imaging. ChemNanoMat 2015, 1, 122–127. [Google Scholar] [CrossRef]
- Wu, X.; Wu, L.; Cao, X.; Li, Y.; Liu, A.; Liu, S. Nitrogen-doped carbon quantum dots for fluorescence detection of Cu2+ and electrochemical monitoring of bisphenol A. RSC Adv. 2018, 8, 20000–20006. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Yoo, J.; Lim, B.; Kwon, W.; Rhee, S.-W. Improving the functionality of carbon nanodots: Doping and surface functionalization. J. Mater. Chem. A 2016, 4, 11582–11603. [Google Scholar] [CrossRef]
- Zhu, X.; Liao, Q.; Liu, Q.; Wang, H.; Ding, Y.; Zeng, F. Synthesis of polyethylenimine-impregnated Al-fumarate metal-organic framework and its CO2 adsorption characteristics. Chin. Sci. Bull. 2019, 64, 2441–2449. [Google Scholar] [CrossRef] [Green Version]
- Quang, D.V.; Dindi, A.; Rayer, A.V.; Hadri, N.E.; Abdulkadir, A.; Abu-Zahra, M.R.M. Impregnation of Amines Onto Porous Precipitated Silica for CO2 capture. Energy Procedia 2014, 63, 2122–2128. [Google Scholar] [CrossRef] [Green Version]
- Manioudakis, J.; Victoria, F.; Thompson, C.A.; Brown, L.; Movsum, M.; Lucifero, R.; Naccache, R. Effects of nitrogen-doping on the photophysical properties of carbon dots. J. Mater. Chem. C 2019, 7, 853–862. [Google Scholar] [CrossRef]
- Barman, M.K.; Jana, B.; Bhattacharyya, S.; Patra, A. Photophysical Properties of Doped Carbon Dots (N, P, and B) and Their Influence on Electron/Hole Transfer in Carbon Dots–Nickel (II) Phthalocyanine Conjugates. J. Phys. Chem. C 2014, 118, 20034–20041. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, P.; Zhai, X.; Tian, F.; Li, W.; Yang, J.; Liu, Y.; Wang, H.; Wang, W.; Liu, W. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 2012, 33, 3604–3613. [Google Scholar] [CrossRef]
- Yang, Y.; Kong, W.; Li, H.; Liu, J.; Yang, M.; Huang, H.; Liu, Y.; Wang, Z.; Wang, Z.; Sham, T.-K.; et al. Fluorescent N-Doped Carbon Dots as in Vitro and in Vivo Nanothermometer. ACS Appl. Mater. Interfaces 2015, 7, 27324–27330. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Li, S.; Hessel, V.; Lin, L.; Meskers, S.; Gallucci, F. Synthesis of N-doped carbon dots via a microplasma process. Chem. Eng. Sci. 2020, 220, 115648. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Zheng, B.; Yan, L.; Dai, J.; Zhuang, Z.; Du, J.; Guo, Y.; Xiao, D. N-Doped carbon dots: Green and efficient synthesis on a large-scale and their application in fluorescent pH sensing. New J. Chem. 2017, 41, 10607–10612. [Google Scholar] [CrossRef]
- Lu, S.; Guo, S.; Xu, P.; Li, X.; Zhao, Y.; Gu, W.; Xue, M. Hydrothermal synthesis of nitrogen-doped carbon dots with real-time live-cell imaging and blood–brain barrier penetration capabilities. Int. J. Nanomed. 2016, 11, 6325–6336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanakis, D.; Philippidis, A.; Sygellou, L.; Filippidis, G.; Ghanotakis, D.; Anglos, D. Synthesis of fluorescent carbon dots by a microwave heating process: Structural characterization and cell imaging applications. J. Nanoparticle Res. 2014, 16, 2646. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, L.; Liu, Y.; Meng, X.; Xu, H.; Xu, Y.; Liu, B.; Fang, X.; Li, H.-B.; Ding, T. Supramolecular interactions via hydrogen bonding contributing to citric-acid derived carbon dots with high quantum yield and sensitive photoluminescence. RSC Adv. 2017, 7, 20345–20353. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Liu, D.; Mao, H.; You, T. Multifunctional solid-state electrochemiluminescence sensing platform based on poly(ethylenimine) capped N-doped carbon dots as novel co-reactant. Biosens. Bioelectron. 2017, 89, 489–495. [Google Scholar] [CrossRef]
- Dong, X.; Su, Y.; Geng, H.; Li, Z.; Yang, C.; Li, X.; Zhang, Y. Fast one-step synthesis of N-doped carbon dots by pyrolyzing ethanolamine. J. Mater. Chem. C 2014, 2, 7477–7481. [Google Scholar] [CrossRef]
- Xu, M.; He, G.; Li, Z.; He, F.; Gao, F.; Su, Y.; Zhang, L.; Yang, Z.; Zhang, Y. A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states. Nanoscale 2014, 6, 10307–10315. [Google Scholar] [CrossRef]
- Wang, W.; Damm, C.; Walter, J.; Nacken, T.J.; Peukert, W. Photobleaching and stabilization of carbon nanodots produced by solvothermal synthesis. Phys. Chem. Chem. Phys. 2016, 18, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Tuccitto, N.; Li-Destri, G.; Messina, G.M.L.; Marletta, G. Reactive messengers for digital molecular communication with variable transmitter—Receiver distance. Phys. Chem. Chem. Phys. 2018, 20, 30312–30320. [Google Scholar] [CrossRef]
- Brannon, J.H.; Magde, D. Absolute quantum yield determination by thermal blooming. Fluorescein. J. Phys. Chem. 1978, 82, 705–709. [Google Scholar] [CrossRef]
- Thakur, M.S.; Bhatia, V. Performance Analysis of Flow Assisted Diffusion Based Molecular Communication for D-MoSK. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–6. [Google Scholar]
- Pierobon, M.; Akyildiz, I.F. Noise Analysis in Ligand-Binding Reception for Molecular Communication in Nanonetworks. IEEE Trans. Signal Process. 2011, 59, 4168–4182. [Google Scholar] [CrossRef] [Green Version]
- Kadloor, S.; Adve, R.S.; Eckford, A.W. Molecular Communication Using Brownian Motion with Drift. IEEE Trans. Nanobioscience 2012, 11, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Chude-Okonkwo, U.A.K.; Malekian, R.; Maharaj, B.T.; Vasilakos, A.V. Molecular Communication and Nanonetwork for Targeted Drug Delivery: A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 3046–3096. [Google Scholar] [CrossRef]
- Jamali, V.; Ahmadzadeh, A.; Wicke, W.; Noel, A.; Schober, R. Channel Modeling for Diffusive Molecular Communication—A Tutorial Review. Proc. IEEE 2019, 107, 1256–1301. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Bi, D.; Deng, Y.; Zhang, R.; Ur Rahman, M.M.; Ali, N.A.; Imran, M.A.; Jornet, J.M.; Abbasi, Q.H.; Alomainy, A. A comprehensive survey on hybrid communication for internet of nano-things in context of body-centric communications. arXiv 2019, arXiv:1912.09424. [Google Scholar]
- Berman, A.S. Laminar Flow in Channels with Porous Walls. J. Appl. Phys. 1953, 24, 1232–1235. [Google Scholar] [CrossRef]
- Bicen, A.O.; Akyildiz, I.F. System-Theoretic Analysis and Least-Squares Design of Microfluidic Channels for Flow-Induced Molecular Communication. IEEE Trans. Signal Process. 2013, 61, 5000–5013. [Google Scholar] [CrossRef] [Green Version]
- Arjmandi, H.; Ahmadzadeh, A.; Schober, R.; Kenari, M.N. Ion Channel Based Bio-Synthetic Modulator for Diffusive Molecular Communication. IEEE Trans. Nanobioscience 2016, 15, 418–432. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calì, F.; Cantaro, V.; Fichera, L.; Ruffino, R.; Trusso Sfrazzetto, G.; Li-Destri, G.; Tuccitto, N. Carbon Quantum Dots from Lemon Waste Enable Communication among Biodevices. Chemosensors 2021, 9, 202. https://doi.org/10.3390/chemosensors9080202
Calì F, Cantaro V, Fichera L, Ruffino R, Trusso Sfrazzetto G, Li-Destri G, Tuccitto N. Carbon Quantum Dots from Lemon Waste Enable Communication among Biodevices. Chemosensors. 2021; 9(8):202. https://doi.org/10.3390/chemosensors9080202
Chicago/Turabian StyleCalì, Federico, Valentina Cantaro, Luca Fichera, Roberta Ruffino, Giuseppe Trusso Sfrazzetto, Giovanni Li-Destri, and Nunzio Tuccitto. 2021. "Carbon Quantum Dots from Lemon Waste Enable Communication among Biodevices" Chemosensors 9, no. 8: 202. https://doi.org/10.3390/chemosensors9080202
APA StyleCalì, F., Cantaro, V., Fichera, L., Ruffino, R., Trusso Sfrazzetto, G., Li-Destri, G., & Tuccitto, N. (2021). Carbon Quantum Dots from Lemon Waste Enable Communication among Biodevices. Chemosensors, 9(8), 202. https://doi.org/10.3390/chemosensors9080202