Theragnostic Radionuclide Pairs for Prostate Cancer Management: 64Cu/67Cu, Can Be a Budding Hot Duo
Abstract
:1. Introduction
2. Peptide Receptor Radionuclide Therapy (PRRT)
2.1. Gallium-68-Prostate Specific Membrane Antigen-11 (68Ga-PSMA-11) (Locametz)
2.2. Lutetium-177-Prostate Specific Membrane Antigen-617 (177Lu-PSMA-617) (Pluvicto)
2.3. Lutetium-177-J591 (177Lu-J591)
2.4. Actinium-225-Prostate Specific Membrane Antigen-617 (225Ac-PSMA-617)
Radiopharmaceutical | Trade Name | Indication | Dose | Outcome | |
---|---|---|---|---|---|
1 | Lutetium-177- Prostate specific membrane antigen (PSMA)-617 | Pluvicto | Treatment of PSMA-positive adult metastatic Castration resistant prostate cancer patients (mCRPC), previously treated for androgen receptor pathway inhibition and with taxane-based chemotherapy | 6 cycles of 7.4 GBq every 6 weeks | Progression-free survival—8.7 months, Overall survival (OS)—15.3 months |
2 | Actinium-225-PSMA-617 | - | PSMA expressing mCRPC patients | 100 KBq/kg body weight | Decline in prosate specific antigen level and lesion avidity for Gallium-68-PSMA-11 positron emission tomography/computed tomography |
3 | Radium-223 chloride | Xofigo | Treatment of CRPC patients and symptomatic bone metastases, and no known visceral metastatic disease | 6 cycles, 50 kBq per kg body weight, every 4-week | OS-14.9 months, improved quality of life |
4 | Strontium-89 chloride | Metastron | Patients with painful bone metastases lesions | 148 MBq | Pain relief and improved quality of life |
5 | Samarium-153-ethylenediaminetetramethylenephosphonic acid | Quadramet | Painful metastatic bone lesions | 37 MBq/kg | Pain relief |
3. Radionuclide Therapy for Bone Metastases
3.1. Radium-223-Chloride (223RaCl2) (Xofigo)
3.2. Strontium-89-Chloride (89SrCl2) (Metastron)
3.3. Samarium-153-Ethylenediaminetetramethylenephosphonic Acid (153Sm-EDTMP) (Quadramet)
3.4. Gallium-68/Lutetium-177 [(bis(Phosphonomethyl)Carbamoyl] Methyl-7,10-bis(Carboxymethyl)-1,4,7,10 Tetraazacyclododec-1-Yl) Acetic Acid (68Ga/177Lu-BPAMD)
3.5. Technetium-99m Methyl Diphosphonate/Hydroxy Methylene Diphosphonate/Rhenium-188 Hydroxyethylidine Diphosphonate (99mTc-MDP/HMDP/188Re-HEDP)
4. Copper-64 and Copper-67
4.1. Copper-64
4.2. Production of Copper-64
4.3. Copper-64 Radiopharmaceuticals for Imaging Prostate Cancer
4.3.1. Copper-64-Chloride (64CuCl2)
4.3.2. Copper-64-Diacetyl-bis-N-4-Methylthiosemicarbazone (64Cu-ATSM)
4.3.3. Copper-64-Prostate Specific Membrane Antigen-617 (64Cu-PSMA-617)
4.3.4. Copper-64-Sarcophagine-bisPSMA (64Cu-SAR-bisPSMA)
4.3.5. Copper-64-TP3805 (64Cu-TP3805)
- (i)
- 177Lu-PSMA-617 requires a pre-therapy scan with 68Ga-PSMA-11. On the other hand, VPAC receptors are expressed in all PCa patients, eliminating the need for a patient qualifying pre-therapy scan.
- (ii)
- 177Lu-PSMA-617 therapy may requires amino acid and botulinum toxin pretreatment. However, 67Cu-TP3805 has no uptake in salivary glands. Hence, can treat patients without undergoing multiple pretreatment procedures.
- (iii)
- 67Cu-TP3805 has no urinary excretion and can treat bladder cancer, primary PCa their metastatic lesions as well as involved lymph nodes.
- (iv)
Characteristics | 177Lu-PSMA | 67Cu-TP3805 | Advantages of 67Cu-TP3805 |
---|---|---|---|
Tissue range (mm) | 0.6 | 0.6 |
|
Receptor expression on prostate cancer (PCa) | 80–85% | 100% |
|
Tissue distribution | |||
Salivary glands | Yes | No |
|
Renal | Yes (cortex and medulla) | Cortex only |
|
Bladder | Yes | No |
|
Metastatic lesions | Yes | Yes |
|
Cancer stem cells | No | Yes [69,70] |
|
4.4. Production of Copper-67
4.5. Copper-67 Radiopharmaceutical for Prostate Cancer Therapy
Copper-67-Sarcophagine-bis-Prostate Specific Membrane Antigen (67Cu-SAR-bisPSMA)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leslie, S.W.; Soon-Sutton, T.L.; Sajjad, H.; Siref, L.E. Prostate cancer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Taitt, H. Global trends and prostate cancer: A review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. Am. J. Mens Health 2018, 12, 1807–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Cancer Institute. Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database: Populations—Total U.S. (1969–2020). Available online: www.seer.cancer.gov (accessed on 8 September 2022).
- He, L.; Fang, H.; Chen, C.; Wu, Y.; Wang, Y.; Ge, H.; Wang, L.; Wan, Y.; He, H. Metastatic castration-resistant prostate cancer: Academic insights and perspectives through bibliometric analysis. Medicine 2020, 99, e19760. [Google Scholar] [CrossRef] [PubMed]
- O’Dwyer EB, L.; Morris, M.J. The role of theranostics in prostate cancer. Semin. Radiat. Oncol. 2021, 31, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Yeong, C.H.; Cheng, M.H.; Ng, K.H. Therapeutic radionuclides in nuclear medicine: Current and future prospects. J. Zhejiang Univ. Sci. B 2014, 15, 845–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballinger, J.R. Theranostic radiopharmaceuticals: Established agents in current use. Br. J. Radiol. 2018, 91, 20170969. [Google Scholar] [CrossRef]
- Gomes Marin, J.F.; Nunes, R.F.; Coutinho, A.M.; Zaniboni, E.C.; Costa, L.B.; Barbosa, F.G.; Queiroz, M.A.; Cerri, G.G.; Buchpiguel, C.A. Theranostics in nuclear medicine: Emerging and re-emerging integrated imaging and therapies in the era of precision oncology. Radiographics 2020, 40, 1715–1740. [Google Scholar] [CrossRef]
- Luster, M.; Clarke, S.E.; Dietlein, M.; Lassmann, M.; Lind, P.; Oyen, W.J.; Tennvall, J.; Bombardieri, E. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1941–1959. [Google Scholar]
- Stokkel, M.P.; Handkiewicz Junak, D.; Lassmann, M.; Dietlein, M.; Luster, M. EANM procedure guidelines for therapy of benign thyroid disease. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 2218–2228. [Google Scholar] [CrossRef]
- Giammarile, F.; Chiti, A.; Lassmann, M.; Brans, B.; Flux, G. EANM procedure guidelines for 131I-metaiodobenzylguanidine (131I-mIBG) therapy. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1039–1047. [Google Scholar] [CrossRef]
- Morgan, K.A.; Donnelly, P.S. Metallic Radionuclides for Diagnostic Imaging and Cancer Radiotherapy: The Development of Theragnostic Matched Pairs and Targeted Alpha Therapy; Hubbard, C.D., van Eldik, R., Eds.; Academic Press: Washington, DC, USA, 2021; pp. 37–63. [Google Scholar]
- Duan, H.; Iagaru, A.; Aparici, C.M. Radiotheranostics—Precision medicine in nuclear medicine and molecular imaging. Nanotheranostics 2022, 6, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Virgolini, I.; Decristoforo, C.; Haug, A.; Fanti, S.; Uprimny, C. Current status of theranostics in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 471–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bubendorf, L.; Schöpfer, A.; Wagner, U.; Sauter, G.; Moch, H.; Willi, N.; Gasser, T.C.; Mihatsch, M.J. Metastatic patterns of prostate cancer: An autopsy study of 1589 patients. Hum. Pathol. 2000, 31, 578–583. [Google Scholar] [CrossRef]
- Novak-Hofer, I.; Schubiger, P.A. Copper-67 as a therapeutic nuclide for radioimmunotherapy. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, 821–830. [Google Scholar] [CrossRef]
- Hesten, W.D. Characterization and glutamyl preferring carboxypeptidase function of prostate specific membrane antigen: A novel folate hydrolase. Urology 1997, 49, 104–112. [Google Scholar] [CrossRef]
- Demirci, E.; Sahin, O.E.; Ocak, M.; Akovali, B.; Nematyazar, J.; Kabasakal, L. Normal distribution pattern and physiological variants of 68Ga-PSMA-11 PET/CT imaging. Nucl. Med. Commun. 2016, 37, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Silver, D.A.; Pellicer, I.; Fair, W.R.; Heston, W.D.; Cordon-Cardo, C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 1997, 3, 81–85. [Google Scholar] [PubMed]
- Mhawech-Fauceglia, P.; Zhang, S.; Terracciano, L.; Sauter, G.; Chadhuri, A.; Herrmann, F.R.; Penetrante, R. Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: An immunohistochemical study using mutiple tumour tissue microarray technique. Histopathology 2007, 50, 472–483. [Google Scholar] [CrossRef]
- Maffey-Steffan, J.; Scarpa, L.; Svirydenka, A.; Nilica, B.; Mair, C.; Buxbaum, S.; Bektic, J.; von Guggenberg, E.; Uprimny, C.; Horninger, W.; et al. The 68Ga/177Lu-theragnostic concept in PSMA-targeting of metastatic castration-resistant prostate cancer: Impact of post-therapeutic whole-body scintigraphy in the follow-up. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 695–712. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration. Novartis. LOCAMETZTM (Gallium Ga-68 Gozetotide) Injection. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/215841s000lbl.pdf (accessed on 14 August 2022).
- Bois, F.; Noirot, C.; Dietemann, S.; Mainta, I.C.; Zilli, T.; Garibotto, V.; Walter, M.A. [68Ga]Ga-PSMA-11 in prostate cancer: A comprehensive review. Am. J. Nucl. Med. Mol. Imaging 2020, 10, 349–374. [Google Scholar] [PubMed]
- Food and Drug Administration. Novartis. PLUVICTOTM (Lutetium Lu-177 Vipivotide Tetraxetan) Injection. Available online: https://www.accessdata.fda.gov/drugsatfdadocs/label/2022/215833s000lbl.pdf (accessed on 14 August 2022).
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, K.; Rahbar, K.; Eiber, M.; Krause, B.J.; Lassmann, M.; Jentzen, W.; Blumenstein, L.; Klein, P.; Basque, J.R.; Jens, K. Dosimetry of 177Lu-PSMA-617 for the treatment of metastatic castration-resistant prostate cancer: Results from the VISION trial sub-study. J. Clin. Oncol. 2022, 40, 97. [Google Scholar] [CrossRef]
- Nguyen Ngoc, C.M.; Davis, K. Risk and concomitant factors of renal insufficiency throughout radioligand treatment with 177Lu-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, S490. [Google Scholar]
- Rosar, F.; Kochems, N.; Bartholoma, M.; Maus, S.; Stemler, T.; Linxweiler, J.; Khreish, F.; Ezziddin, S. Renal safety of 177Lu-PSMA-617 radioligand therapy in patients with compromised baseline kidney function. Cancers 2021, 13, 3095. [Google Scholar] [CrossRef] [PubMed]
- Tagawa, S.T.; Vallabhajosula, S.; Christos, P.J.; Jhanwar, Y.S.; Batra, J.S.; Lam, L.; Osborne, J.; Beltran, H.; Molina, A.M.; Goldsmith, S.J.; et al. Phase 1/2 study of fractionated dose lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) for metastatic castration-resistant prostate cancer. Cancer Biother. Radiopharm. 2019, 125, 2561–2569. [Google Scholar]
- Morgenstern, A.; Apostolidis, C.; Kratochwil, C.; Sathekge, M.; Krolicki, L.; Bruchertseifer, F. An overview of targeted alpha therapy with (225)Actinium and (213)Bismuth. Curr. Radiopharm. 2018, 11, 200–208. [Google Scholar] [CrossRef]
- Agrawal, S. The role of 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: Is it the new beginning. Indian J. Urol. 2020, 36, 69–70. [Google Scholar] [CrossRef]
- Bayer HealthCare Pharmaceuticals Inc. Xofigo (Radium Ra-223 Dichloride). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/203971lbl.pdf (accessed on 16 August 2022).
- GE Healthcare. METASTRON™ (Strontium-89-Chloride Injection). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/020134s012lbl.pdf (accessed on 16 August 2022).
- Lantheus Medical Imaging. Quadramet®. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/020570s008lbl.pdf (accessed on 5 September 2022).
- Wong, S.K.; Mohamad, N.V.; Giaze, T.R.; Chin, K.Y.; Mohamed, N.; Ima-Nirwana, S. Prostate cancer and bone metastases: The underlying mechanisms. Int. J. Mol. Sci. 2019, 20, 2587. [Google Scholar] [CrossRef] [Green Version]
- Harrison, M.R.; Wong, T.Z.; Armstrong, A.J.; George, D.J. Radium-223 chloride: A potential new treatment for castration-resistant prostate cancer patients with metastatic bone disease. Cancer Manag. Res. 2013, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.J.; Corey, E.; Guise, T.A.; Gulley, J.L.; Kevin Kelly, W.; Quinn, D.I.; Scholz, A.; Sgouros, G. Radium-223 mechanism of action: Implications for use in treatment combinations. Nat. Rev. Urol. 2019, 16, 745–756. [Google Scholar]
- Choudhury, A.D.; Kantoff, P.W. New agents in metastatic prostate cancer. J. Natl. Compr. Cancer Netw. 2012, 10, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Serafini, A.N.; Houston, S.J.; Resche, I.; Quick, D.P.; Grund, F.M.; Ell, P.J.; Bertrand, A.; Ahmann, F.R.; Orihuela, E.; Reid, R.H.; et al. Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: A double-blind placebo-controlled clinical trial. J. Clin. Oncol. 1998, 16, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- Logan, K.W.; Volkert, W.A.; Holmes, R.A. Radiation dose calculations in persons receiving injection of samarium-153 EDTMP. J. Nucl. Med. 1987, 28, 505–509. [Google Scholar]
- Turner, J.H.; Claringbold, P.G.; Hetherington, E.L. A phase I study of samarium-153 ethylenediaminetetramethylene phosphonate therapy for disseminated skeletal metastases. J. Clin. Oncol. 1989, 7, 1926–1931. [Google Scholar] [CrossRef] [PubMed]
- Sartor, O.; Reid, R.H.; Bushnell, D.L.; Quick, D.P.; Ell, P.J. Safety and efficacy of repeat administration of samarium 153Sm-lexidronam to patients with metastatic bone pain. Cancer 2007, 109, 637–643. [Google Scholar] [CrossRef]
- Heron, D.E.; Brufsky, A.; Beriwal, S.; Kurman, M. Myelotoxicity of samarium Sm 153 lexidronam in patients receiving prior treatment with chemotherapy or radiotherapy. Ann. Oncol. 2008, 19, 1639–1643. [Google Scholar] [CrossRef] [PubMed]
- Askari, E.; Harsini, S.; Vahidfar, N.; Divband, G.; Sadeghi, R. 177Lu-EDTMP for metastatic bone pain palliation: A systematic review and meta-analysis. Cancer Biother. Radiopharm. 2021, 36, 383–390. [Google Scholar] [CrossRef]
- Fellner, M.; Biesalski, B.; Bausbacher, N.; Kubícek, V.; Hermann, P.; Rosch, F.; Thews, O. 68Ga-BPAMD:PET-imaging of bone metastases with a generator-based positron emitter. Nucl. Med. Biol. 2012, 39, 993–999. [Google Scholar] [CrossRef]
- Lepareur, N.; Lacœuille, F.; Bouvry, C.; Hindre, F.; Garcion, E.; Cherel, M.; Noiret, N.; Garin, E.; Knapp, F.F. Rhenium-188 labeled radiopharmaceuticals: Current clinical applications in oncology and promising perspectives. Front. Med. 2019, 6, 132. [Google Scholar] [CrossRef] [Green Version]
- Blower, P.J.; Kettle, A.G.; O’Doherty, M.J.; Coakley, A.J.; Knapp, F.F. 99mTc(V)DMSA quantitatively predicts 188Re(V)DMSA distribution in patients with prostate cancer metastatic to bone. Eur. J. Nucl. Med. 2000, 27, 1405–1409. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Zhang, H.; Tian, M.; Wang, J.; Zheng, X. Rhenium-188 HEDP to treat painful bone metastases. Clin. Nucl. Med. 2001, 26, 919–922. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, P.T.; Misra, S.R.; Hussain, M. Nutritional aspects of essential trace elements in oral health and disease: An extensive review. Scientifica 2016, 2016, 5464373. [Google Scholar] [CrossRef] [Green Version]
- Chakravarty, R.; Chakraborty, S.; Dash, A. 64Cu 2+ Ions as PET probe: An emerging paradigm in molecular imaging of cancer. Mol. Pharm. 2016, 13, 3601–3612. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.A.; Robinson, S.; Julyan, P.; Zweit, J.; Hastings, D. A comparison of PET imaging characteristics of various copper radioisotopes. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 1473–1480. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.P.; Ferdani, R.; Anderson, C.J.; Lewis, J.S. Copper-64 radiopharmaceuticals for oncologic imaging. PET Clin. 2009, 4, 49–67. [Google Scholar] [CrossRef]
- Sun, X.; Anderson, C.J. Production and applications of copper-64 radiopharmaceuticals. Methods Enzymol. 2004, 386, 237–261. [Google Scholar] [PubMed]
- Al Rayyes, A.H.; Ailouti, Y. Production and quality control of 64Cu from high current Ni target. WJNST 2013, 3, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Piccardo, A.; Paparo, F.; Puntoni, M.; Righi, S.; Bottoni, G.; Bacigalupo, L.; Zanardi, S.; DeCensi, A.; Ferrarazzo, G.; Gambaro, M.; et al. 64CuCl2 PET/CT in prostate cancer relapse. J. Nucl. Med. 2018, 59, 444–451. [Google Scholar] [CrossRef] [Green Version]
- Ahmedova, A.; Todorov, B.; Burdzhiev, N.; Goze, C. Copper radiopharmaceuticals for theragnostic applications. Eur. J. Med. Chem. 2018, 157, 1406–1425. [Google Scholar] [CrossRef]
- Lopci, E.; Grassi, I.; Rubello, D.; Colletti, P.M.; Cambioli, S.; Gamboni, A.; Salvi, F.; Cicoria, G.; Lodi, F.; Dazzi, C.; et al. Prognostic evaluation of disease outcome in solid tumors investigated with 64Cu-ATSM PET/CT. Clin. Nucl. Med. 2016, 41, e87–e92. [Google Scholar] [CrossRef]
- Lewis, J.S.; Sharp, T.L.; Laforest, R.; Fujibayashi, Y.; Welch, M.J. Tumor uptake of copper-diacetyl-bis(N(4)-methylthiosemicarbazone): Effect of changes in tissue oxygenation. J. Nucl. Med. 2001, 42, 655–661. [Google Scholar] [PubMed]
- Lewis, J.; Laforest, R.; Buettner, T.; Song, S.; Fujibayashi, Y.; Connett, J.; Welch, M. Copper-64-diacetyl-bis(N4-methylthiosemicarbazone): An agent for radiotherapy. Proc. Natl. Acad. Sci. USA 2001, 98, 1206–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grubmuller, B.; Baum, R.P.; Capasso, E.; Singh, A.; Ahmadi, Y.; Knoll, P.; Floth, A.; Righi, S.; Zandieh, S.; Meleddu, C.; et al. 64Cu-PSMA-617 PET/CT imaging of prostate adenocarcinoma: First in-human studies. Cancer Biother. Radiopharm. 2016, 31, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Sevcenco, S.; Klingler, H.C.; Eredics, K.; Friedl, A.; Schneeweiss, J.; Knoll, P.; Kunit, T.; Lusuardi, L.; Mirzaei, S. Application of Cu-64-NODAGA-PSMA PET in prostate cancer. Adv. Ther. 2018, 35, 779–784. [Google Scholar] [CrossRef]
- Clarity Pharmaceuticals Ltd. 64Cu-SAR-bisPSMA and 67Cu-SAR-bisPSMA for Identification and Treatment of PSMA-Expressing Metastatic Castrate Resistant Prostate Cancer (SECuRE) (SECuRE). NCT04868604. Available online: https://clinicaltrials.gov/ct2/show/NCT04868604 (accessed on 28 August 2022).
- Tripathi, S.K.; Kumar, P.; Trabulsi, E.J.; Kim, S.; McCue, P.A.; Intenzo, C.; Berger, A.; Gomella, L.; Thakur, M.L. VPAC1 targeted (64)Cu-TP3805 kit preparation and its evaluation. Nucl. Med. Biol. 2017, 51, 55–61. [Google Scholar] [CrossRef]
- Tripathi, S.; Trabulsi, E.J.; Gomella, L.; Kim, S.; McCue, P.; Intenzo, C.; Birbe, R.; Gandhe, A.; Kumar, P.; Thakur, M. VPAC1 targeted 64Cu-TP3805 positron emission tomography imaging of prostate cancer: Preliminary evaluation in man. Urology 2016, 88, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Thakur, M.L.; Tripathi, S.K.; Gomella, L.G.; Salmanoglu, E.; Kim, S.; Kelly, W.K.; Keith, S.W.; Intenzo, C.; McCue, P.; Hoffman-Censits, J.; et al. Imaging urothelial bladder cancer: A VPAC PET targeted approach. Can. J. Urol. 2021, 28, 10596–10602. [Google Scholar]
- Thakur, M.L.; Zhang, K.; Berger, A.; Cavanaugh, B.; Kim, S.; Channappa, C.; Frangos, A.J.; Wickstrom, E.; Intenzo, C.M. VPAC1 receptors for imaging breast cancer: A feasibility study. J. Nucl. Med. 2013, 54, 1019–1025. [Google Scholar] [CrossRef] [Green Version]
- Moody, T.B.; Berenguer, B.N.; Jensen, R.T. Vasoactive intestinal peptide/pituitary adenylate cyclase activating polypeptide, and their receptors and cancer. Curr. Opin. Endocrinol. Diabetes Obes. 2016, 23, 38–47. [Google Scholar]
- Dorsam, G.B.; Benton, K.; Failing, J.; Batra, S. Vasoactive intestinal peptide signaling axis in human leukemia. World J. Biol. Chem. 2011, 2, 146–160. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Therapeutic Radiopharmaceuticals Labelled with Copper-67, Rhenium-186 and Scandium-47; IAEA: Vienna, Austria, 2021. [Google Scholar]
- Mou, L.; Martini, P.; Pupillo, G.; Cieszykowska, I.; Cutler, C.S.; Mikolajczak, R. (67)Cu production capabilities: A mini review. Molecules 2022, 27, 1501. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, D.G.; Mausner, L.F.; Meinken, G.E.; Kurczak, S.O.; Schnakenberg, H.; Dodge, C.J.; Korach, E.M.; Srivastava, S.C. Development of a large-scale production of 67Cu from 68Zn at the high energy proton accelerator: Closing the 68Zn cycle. Appl. Radiat. Isot. 2012, 70, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Qaim, S.M. Medical Radionuclide Production: Science and Technology; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- NDS-IAEA. Recommended Cross Sections for 70Zn(p,α)67Cu Reaction. Available online: https://www-nds.iaea.org/medical/zn067cu0.html (accessed on 28 August 2022).
- Pupillo, G.; Mou, L.; Martini, P.; Pasquali, M.; Boschi, A.; Cicoria, G.; Duatti, A.; Haddad, F.; Esposito, J. Production of 67Cu by enriched 70Zn targets: First measurements of formation cross sections of 67Cu, 64Cu, 67Ga, 66Ga, 69mZn and 65Zn in interactions of 70Zn with protons above 45 MeV. Radiochim. Acta 2020, 108, 593–602. [Google Scholar] [CrossRef]
- Qaim, S.M.; Hussain, M.; Spahn, I.; Neumaier, B. Continuing nuclear data research for production of accelerator-based novel radionuclides for medical use: A mini-review. Front. Phys. 2021, 9, 639290. [Google Scholar] [CrossRef]
- Nigron, E.; Guertin, A.; Haddad, F.; Sounalet, T. Is 70Zn(d,x)67Cu the best way to produce 67Cu for medical applications? Front. Med. 2021, 8, 1059. [Google Scholar] [CrossRef]
- Merrick, M.J.; Rotsch, D.A.; Tiwari, A.; Nolen, J.; Brossard, T.; Song, J.; Wadas, T.J.; Sunderland, J.; Graves, S. Imaging and dosimetric characteristics of 67Cu. Phys. Med. Biol. 2021, 66, 035002. [Google Scholar] [CrossRef]
S.No | Radionuclide | Half-Life | Energies in MeV | |||
---|---|---|---|---|---|---|
Alpha | Beta (Max) | Gamma | Positron | |||
1 | 68Ga | 68 min | - | - | - | 1.92 |
177Lu | 6.7 d | - | 0.496 | 0.208 | - | |
225Ac | 9.9 d | 6 | - | - | - | |
2 | 99mTc | 6.0 h | - | - | 0.140 | - |
188Re | 16.9 h | - | 2.1 | 0.155 | - | |
3 | 64Cu | 12.7 h | - | 0.579 | - | 0.653 |
67Cu | 2.57 d | - | 0.561 | 0.184 | - | |
4 | 223Ra | 11.4 d | 6 | - | - | - |
5 | 89Sr | 50.5 d | - | 1.463 | - | - |
6 | 153Sm | 46.3 h | - | 0.807 | - | - |
67Cu | 177Lu | |
---|---|---|
Half-life (d) | 2.6 | 6.7 |
Beta tissue range (mm) | 0.6 | 0.6 |
Energies (MeV) | Eβ−max—0.561 Eγ—0.184 | Eβ−max—0.496 Eγ—0.208 |
Hospitalization required | No | No |
Production method | Accelerator | Reactor |
Nuclear Reaction | Energy Range (MeV) | 67Cu (MBq/µA) | |
---|---|---|---|
End of Bombardment | After 72 h Cooling Time | ||
68Zn(p,2p)67Cu | 50–38 | 166 | 74 |
70Zn(p,α)67Cu | 24–8 | 113 | 50.6 |
70Zn(d,x)67Cu | 25–7 | 123 | 54.9 |
64Ni(α,p)67Cu | 33–9 | 18.9 | 8.4 |
71Ga(p,x)67Cu | 40–20 | 12.5 | 5.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chhabra, A.; Thakur, M.L. Theragnostic Radionuclide Pairs for Prostate Cancer Management: 64Cu/67Cu, Can Be a Budding Hot Duo. Biomedicines 2022, 10, 2787. https://doi.org/10.3390/biomedicines10112787
Chhabra A, Thakur ML. Theragnostic Radionuclide Pairs for Prostate Cancer Management: 64Cu/67Cu, Can Be a Budding Hot Duo. Biomedicines. 2022; 10(11):2787. https://doi.org/10.3390/biomedicines10112787
Chicago/Turabian StyleChhabra, Anupriya, and Mathew L. Thakur. 2022. "Theragnostic Radionuclide Pairs for Prostate Cancer Management: 64Cu/67Cu, Can Be a Budding Hot Duo" Biomedicines 10, no. 11: 2787. https://doi.org/10.3390/biomedicines10112787
APA StyleChhabra, A., & Thakur, M. L. (2022). Theragnostic Radionuclide Pairs for Prostate Cancer Management: 64Cu/67Cu, Can Be a Budding Hot Duo. Biomedicines, 10(11), 2787. https://doi.org/10.3390/biomedicines10112787