Effect of High-Fructose Diet-Induced Metabolic Syndrome on the Pituitary-Gonadal Axis in Male Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Materials
2.3. Preparation of Rat Leydig Cells
2.4. Evaluation of Basal and Evoked Testosterone Release by Rat Leydig Cells
2.5. Testosterone RIA
2.6. Sperm Count and Vitality Assay
2.7. Western Blot Analysis
2.8. Statistical Analysis
3. Results
Effects of Fructose-Fed Diet on Plasma Testosterone Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alves, M.G.; Martins, A.D.; Rato, L.; Moreira, P.I.; Socorro, S.; Oliveira, P.F. Molecular mechanisms beyond glucose transport in diabetes-related male infertility. Biochim. Biophys. Acta-Mol. Basis Dis. 2013, 1832, 626–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Lotti, F.; Maggi, M. Ultrasound of the male genital tract in relation to male reproductive health. Hum. Reprod. Update 2015, 21, 56–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottarsdottir, K.; Nilsson, A.G.; Hellgren, M.; Lindblad, U.; Daka, B. The association between serum testosterone and insulin resistance: A longitudinal study. Endocr. Connect. 2018, 7, 1491–1500. [Google Scholar] [CrossRef]
- Zolla, L.; Grande, G.; Milardi, D. Plasma metabonomics in insulin-resistant hypogonadic patients induced by testosterone treatment. Int. J. Mol. Sci. 2022, 23, 7754. [Google Scholar] [CrossRef]
- La Vignera, S.; Calogero, A.E.; Condorelli, R.; Lanzafame, F.; Giammusso, B.; Vicari, E. Andrological characterization of the patient with diabetes mellitus. Minerva Endocrinol. 2009, 34, 1–9. [Google Scholar]
- Maresch, C.C.; Stute, D.C.; Alves, M.G.; Oliveira, P.F.; de Kretser, D.M.; Linn, T. Diabetes-induced hyperglycemia impairs male reproductive function: A systematic review. Hum. Reprod. Update 2018, 24, 86–105. [Google Scholar] [CrossRef] [Green Version]
- Corona, G.; Mannucci, E.; Petrone, L.; Ricca, V.; Balercia, G.; Mansani, R.; Chiarini, V.; Giommi, R.; Forti, G.; Maggi, M. Association of hypogonadism and type II diabetes in men attending an outpatient erectile dysfunction clinic. Int. J. Impot. Res. 2006, 18, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Ding, G.L.; Liu, Y.; Liu, M.E.; Pan, J.X.; Guo, M.X.; Sheng, J.Z.; Huang, H.F. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian J. Androl. 2015, 17, 948–953. [Google Scholar]
- Zhong, O.; Ji, L.; Wang, J.; Lei, X.; Huang, H. Association of diabetes and obesity with sperm parameters and testosterone levels: A meta-analysis. Diabetol. Metab. Syndr. 2021, 13, 109. [Google Scholar] [CrossRef]
- Leisegang, K.; Sengupta, P.; Agarwal, A.; Henkel, R. Obesity and male infertility: Mechanisms and management. Andrologia 2021, 53, e13617. [Google Scholar] [CrossRef] [PubMed]
- Teerds, K.J.; de Rooij, D.G.; Keijer, J. Functional relationship between obesity and male reproduction: From humans to animal models. Hum. Reprod. Update 2011, 17, 667–683. [Google Scholar] [CrossRef] [PubMed]
- Madhu, S.V.; Aslam, M.; Aiman, A.J.; Siddiqui, A.; Dwivedi, S. Prevalence of hypogonadism in male Type 2 diabetes mellitus patients with and without coronary artery disease. Indian J. Endocrinol. Metab. 2017, 21, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Saluja, M.; Galav, V.; Pillai, D.; Chittora, S. Low serum testosterone levels in male patients with type 2 diabetes mellitus as a risk factor for coronary artery disease. J. Assoc. Physicians India 2021, 69, 11–12. [Google Scholar]
- Stanworth, R.D.; Kapoor, D.; Channer, K.S.; Jones, T.H. Dyslipidaemia is associated with testosterone, oestradiol and androgen receptor CAG repeat polymorphism in men with type 2 diabetes. Clin. Endocrinol. 2011, 74, 624–630. [Google Scholar] [CrossRef]
- Neuzillet, Y.; Thuret, R.; Kleinclauss, F.; Timsit, M.O. Andrologic consequences of chronic renal failure: State of the art for the yearly scientific report of the French National Association of Urology. Prog. Urol. 2016, 26, 1088–1093. [Google Scholar] [CrossRef]
- Skiba, R.; Rymarz, A.; Matyjek, A.; Dymus, J.; Wozniak-Kosek, A.; Syrylo, T.; Zielinski, H.; Niemczyk, S. Testosterone replacement therapy in chronic kidney disease patients. Nutrients 2022, 14, 3444. [Google Scholar] [CrossRef]
- Padiya, R.; Chowdhury, D.; Borkar, R.; Srinivas, R.; Pal Bhadra, M.; Banerjee, S.K. Garlic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat. PLoS ONE 2014, 9, e94228. [Google Scholar] [CrossRef]
- El-Mehi, A.E.; Faried, M.A. Effect of high-fructose diet-induced metabolic syndrome on the pituitary-gonadal axis from adolescence through adulthood in male albino rats and the possible protective role of ginger extract. A biochemical, histological and immunohistochemical study. Folia Morphol. 2020, 79, 690–708. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.M.; Chou, J.C.; Fang, C.M.; Hu, S.; Wang, K.L.; Wang, S.W.; Wang, P.S. Chronic intermittent hypoxia stimulates testosterone production in rat Leydig cells. Life Sci. 2019, 233, 116694. [Google Scholar] [CrossRef]
- Lin, P.H.; Kuo, T.H.; Chen, C.C.; Jian, C.Y.; Chen, C.W.; Wang, K.L.; Kuo, Y.C.; Shen, H.Y.; Hsia, S.M.; Wang, P.S.; et al. Downregulation of testosterone production through luteinizing hormone receptor regulation in male rats exposed to 17alpha-ethynylestradiol. Sci. Rep. 2020, 10, 1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.J.; Wang, K.L.; Wang, S.W.; Hwang, G.S.; Mao, I.F.; Chen, M.L.; Wang, P.S. Differential effects of nonylphenol on testosterone secretion in rat Leydig cells. Toxicology 2010, 268, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Perez-Pozo, S.E.; Schold, J.; Nakagawa, T.; Sanchez-Lozada, L.G.; Johnson, R.J.; Lillo, J.L. Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: Role of uric acid in the hypertensive response. Int. J. Obes. 2010, 34, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Mannucci, E.; Petrone, L.; Balercia, G.; Paggi, F.; Fisher, A.D.; Lotti, F.; Chiarini, V.; Fedele, D.; Forti, G.; et al. NCEP-ATPIII-defined metabolic syndrome, type 2 diabetes mellitus, and prevalence of hypogonadism in male patients with sexual dysfunction. J. Sex. Med. 2007, 4, 1038–1045. [Google Scholar] [CrossRef]
- Roushandeh, A.M.; Salehi, I.; Mortazavi, M. Protective effects of restricted diet and antioxidants on testis tissue in rats fed with high-fat diet. Iran. Biomed. J. 2015, 19, 96–101. [Google Scholar]
- Aksu, E.H.; Kandemir, F.M.; Kucukler, S. Ameliorative effect of hesperidin on streptozotocin-diabetes mellitus-induced testicular DNA damage and sperm quality degradation in Sprague-Dawley rats. J. Food Biochem. 2021, 45, e13938. [Google Scholar] [CrossRef]
- Keyhanmanesh, R.; Hamidian, G.; Alipour, M.R.; Oghbaei, H. Beneficial treatment effects of dietary nitrate supplementation on testicular injury in streptozotocin-induced diabetic male rats. Reprod. BioMed. Online 2019, 39, 357–371. [Google Scholar] [CrossRef]
- Tian, Y.; Song, W.; Xu, D.; Chen, X.; Li, X.; Zhao, Y. Autophagy induced by ROS aggravates testis oxidative damage in diabetes via breaking the feedforward loop linking p62 and Nrf2. Oxidative Med. Cell. Longev. 2020, 2020, 7156579. [Google Scholar] [CrossRef]
- Bugga, P.; Mohammed, S.A.; Alam, M.J.; Katare, P.; Meghwani, H.; Maulik, S.K.; Arava, S.; Banerjee, S.K. Empagliflozin prohibits high-fructose diet-induced cardiac dysfunction in rats via attenuation of mitochondria-driven oxidative stress. Life Sci. 2022, 307, 120862. [Google Scholar] [CrossRef]
- Yildirim, O.G.; Sumlu, E.; Aslan, E.; Koca, H.B.; Pektas, M.B.; Sadi, G.; Akar, F. High-fructose in drinking water initiates activation of inflammatory cytokines and testicular degeneration in rat. Toxicol. Mech. Methods 2019, 29, 224–232. [Google Scholar] [CrossRef]
- Meydanli, E.G.; Gumusel, A.; Ozkan, S.; Tanriverdi, G.; Balci, M.B.C.; Develi Is, S.; Hazar, A.I.; Uysal, M.; Bekpinar, S. Effects of resveratrol on high-fructose-induced testis injury in rats. Ultrastruct. Pathol. 2018, 42, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.H. Testosterone deficiency: A risk factor for cardiovascular disease? Trends Endocrinol. Metab. 2010, 21, 496–503. [Google Scholar] [CrossRef]
- Tkachenko, O.Y.; Shayakhmetova, G.M.; Matvienko, A.V.; Kovalenko, V.M. Reproductive disorders in male rats induced by high-fructose consumption from juvenile age to puberty. Arch. Ind. Hyg. Toxicol. 2020, 71, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Evaul, K.; Hammes, S.R. Cross-talk between G protein-coupled and epidermal growth factor receptors regulates gonadotropin-mediated steroidogenesis in Leydig cells. J. Biol. Chem. 2008, 283, 27525–27533. [Google Scholar] [CrossRef]
- Menon, K.M.; Menon, B. Regulation of luteinizing hormone receptor expression by an RNA binding protein: Role of ERK signaling. Indian J. Med. Res. 2014, 140 (Suppl. 1), S112–S119. [Google Scholar] [PubMed]
- Purvis, K.; Clausen OP, F.; Hansson, V. Regulation of Leydig Cell Sensitivity and Responsiveness to LH/hCG. Int. J. Androl. 1978, 1, 247–263. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsia, S.-M.; Chiang, Y.-F.; Chen, H.-Y.; Ali, M.; Wang, P.S.; Wang, K.-L. Effect of High-Fructose Diet-Induced Metabolic Syndrome on the Pituitary-Gonadal Axis in Male Rats. Biomedicines 2022, 10, 3009. https://doi.org/10.3390/biomedicines10123009
Hsia S-M, Chiang Y-F, Chen H-Y, Ali M, Wang PS, Wang K-L. Effect of High-Fructose Diet-Induced Metabolic Syndrome on the Pituitary-Gonadal Axis in Male Rats. Biomedicines. 2022; 10(12):3009. https://doi.org/10.3390/biomedicines10123009
Chicago/Turabian StyleHsia, Shih-Min, Yi-Fen Chiang, Hsin-Yuan Chen, Mohamed Ali, Paulus S. Wang, and Kai-Lee Wang. 2022. "Effect of High-Fructose Diet-Induced Metabolic Syndrome on the Pituitary-Gonadal Axis in Male Rats" Biomedicines 10, no. 12: 3009. https://doi.org/10.3390/biomedicines10123009
APA StyleHsia, S. -M., Chiang, Y. -F., Chen, H. -Y., Ali, M., Wang, P. S., & Wang, K. -L. (2022). Effect of High-Fructose Diet-Induced Metabolic Syndrome on the Pituitary-Gonadal Axis in Male Rats. Biomedicines, 10(12), 3009. https://doi.org/10.3390/biomedicines10123009