Tissue Engineering as a Promising Treatment for Glottic Insufficiency: A Review on Biomolecules and Cell-Laden Hydrogel
Abstract
:1. Introduction
1.1. Structure of Vocal Fold
1.2. Etiologies of Glottic Insufficiency
2. Current Treatment for Glottic Insufficiency and Limitations
2.1. Surgery and Complementary Treatment
2.2. In-Office Injection: Injectate Type
3. Tissue Engineering as a Promising Treatment for Glottic Insufficiency
3.1. Tissue Engineering in Vocal Fold Injection
3.2. Injectable Hydrogel as Cell Delivery Vehicle
3.3. Injectable Hydrogel as Biomolecule Delivery Vehicle
4. Future Study and Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASCs | Adipose stem cells |
BDNF | Brain-derived neurotrophic factor |
bFGF | Basic fibroblast growth factor |
BMMSCs | Bone marrow mesenchymal stem cells |
BMP4 | Bone morphogenetic protein 4 |
CaHA | Calcium hydroxyapatite |
CMC | Carboxymethylcellulose |
CNF | Ciliary neurotrophic factor |
CT | Cricothyroid |
DNA | Deoxyribonucleic acid |
ECFCs | Endothelial colony-forming cells |
ECM | Extracellular matrix |
EGF | Epidermal growth factor |
ESC | Embryonic stem cell |
EV | Extracellular vesicle |
FGF2 | Fibroblast growth factor 2 |
GAG | Glycosaminoglycans |
GFOGER | Collagen-derived ligands |
HA | Hyaluronic acid |
HGF | Hepatocyte growth factor |
HUVEC | Human umbilical vein endothelial cell |
IA | Interarytenoid |
IGF-1 | Insulin growth factor-1 |
IL | Interleukin |
iPSCs | Induced pluripotent stem cells |
LCA | Lateral-cricoarytenoid |
MMP | Matrix metalloproteinase |
MSC | Mesenchymal stem cell |
NF-ĸB | Nuclear factor-kappa beta |
NGF | Nerve growth factor |
NK | Natural killer |
NSLR | Non-selective laryngeal reinnervation |
PCA | Posterior cricoarytenoid |
PDGF-AB | Platelet-derived growth factor AB |
PG | Proteoglycans |
PHD2 | prolyl hydroxylase domain-containing protein 2 |
PRP | Platelet-rich plasma |
PSP | Progressive supranuclear palsy |
RGD | Ripeptide arginine-glycine-aspartic acid |
RLN | Recurrent laryngeal nerve |
RNA | Ribonucleic acid |
SDF-1 | Stromal cell-derived factor-1 |
SLN | Superior laryngeal nerve |
TA | Thyroarytenoid |
TA-LCA | Thyroarytenoid-lateral cricoarytenoid |
TGF-β | Transforming growth factor beta |
UVFP | Unilateral vocal fold paralysis |
VEGF | Vascular endothelial growth factor |
VHI | Voice Handicap Index |
WJMSCs | Wharton’s Jelly mesenchymal stem cells |
YIGSR | Laminin-derived ligands |
References
- Rosow, D.E.; Pan, D.R. Presbyphonia and Minimal Glottic Insufficiency. Otolaryngol. Clin. N. Am. 2019, 52, 617–625. [Google Scholar] [CrossRef] [PubMed]
- De Araújo Pernambuco, L.; Espelt, A.; Balata, P.M.M.; de Lima, K.C. Prevalence of voice disorders in the elderly: A systematic review of population-based studies. Eur. Arch. Oto-Rhino-Laryngol. 2015, 272, 2601–2609. [Google Scholar] [CrossRef] [PubMed]
- Lyberg-Åhlander, V.; Rydell, R.; Fredlund, P.; Magnusson, C.; Wilén, S. Prevalence of Voice Disorders in the General Population, Based on the Stockholm Public Health Cohort. J. Voice 2019, 33, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Onwordi, L.N.; Al Yaghchi, C. Airway Glottic Insufficiency; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Lee, S.W.; Park, K.N. A long-term comparative prospective study between reinnervation and injection laryngoplasty. Laryngoscope 2018, 128, 1893–1897. [Google Scholar] [CrossRef] [PubMed]
- Ban, M.J.; Lee, S.C.; Park, J.H.; Park, K.N.; Kim, H.K.; Lee, S.W. Regenerative efficacy of fibroblast growth factor for the treatment of aged vocal fold: From animal model to clinical application. Clin. Otolaryngol. 2021, 46, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Dash, S.K.; Govarthanan, K.; Gahtori, R.; Negi, N.; Barani, M.; Tomar, R.; Chakraborty, S.; Mathapati, S.; Bishi, D.K.; et al. Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells 2021, 10, 2538. [Google Scholar] [CrossRef] [PubMed]
- Walczak, P.A.; Perez-Esteban, P.; Bassett, D.C.; Hill, E.J. Modelling the central nervous system: Tissue engineering of the cellular microenvironment. Emerg. Top. life Sci. 2021, 5, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Pedrero, S.G.; Llamas-Sillero, P.; Serrano-López, J. A Multidisciplinary Journey towards Bone Tissue Engineering. Materials 2021, 14, 4896. [Google Scholar] [CrossRef] [PubMed]
- Stampoultzis, T.; Karami, P.; Pioletti, D.P. Thoughts on cartilage tissue engineering: A 21st century perspective. Curr. Res. Transl. Med. 2021, 69, 103299. [Google Scholar] [CrossRef]
- Fishman, J.M.; Long, J.; Gugatschka, M.; De Coppi, P.; Hirano, S.; Hertegard, S.; Thibeault, S.L.; Birchall, M.A. Stem cell approaches for vocal fold regeneration. Laryngoscope 2016, 126, 1865–1870. [Google Scholar] [CrossRef]
- Kumai, Y. Pathophysiology of Fibrosis in the Vocal Fold: Current Research, Future Treatment Strategies, and Obstacles to Restoring Vocal Fold Pliability. Int. J. Mol. Sci. 2019, 20, 2551. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Pan, J.; Chen, L.; Wu, Y. A narrative review of current therapies in unilateral recurrent laryngeal nerve injury caused by thyroid surgery. Gland Surg. 2022, 11, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Mattei, A.; Magalon, J.; Bertrand, B.; Philandrianos, C.; Veran, J.; Giovanni, A. Cell therapy and vocal fold scarring. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2017, 134, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Benboujja, F.; Greenberg, M.; Nourmahnad, A.; Rath, N.; Hartnick, C. Evaluation of the Human Vocal Fold Lamina Propria Development Using Optical Coherence Tomography. Laryngoscope 2021, 131, E2558–E2565. [Google Scholar] [CrossRef] [PubMed]
- Wrona, E.A.; Peng, R.; Amin, M.R.; Branski, R.C.; Freytes, D.O. Extracellular Matrix for Vocal Fold Lamina Propria Replacement: A Review. Tissue Eng. Part B Rev. 2016, 22, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Saran, M.; Georgakopoulos, B.; Bordoni, B. Anatomy, Head and Neck, Larynx Vocal Cords; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Tang, S.S.; Mohad, V.; Gowda, M.; Thibeault, S.L. Insights Into the Role of Collagen in Vocal Fold Health and Disease. J. Voice 2017, 31, 520–527. [Google Scholar] [CrossRef]
- Moore, J.; Thibeault, S. Insights into the role of elastin in vocal fold health and disease. J. Voice 2012, 26, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Levendoski, E.E.; Leydon, C.; Thibeault, S.L. Vocal fold epithelial barrier in health and injury: A research review. J. Speech Lang. Hear. Res. 2014, 57, 1679–1691. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Chitose, S.-I.; Sato, K.; Sato, F.; Ono, T.; Umeno, H. Epithelium of the human vocal fold as a vibrating tissue. Auris Nasus Larynx 2021, 48, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Sato, K. Pericytes in the Human Vocal Fold Mucosa. Adv. Exp. Med. Biol. 2018, 1109, 79–93. [Google Scholar] [CrossRef]
- Jones, C.L.; Achuthan, A.; Erath, B.D. Modal response of a computational vocal fold model with a substrate layer of adipose tissue. J. Acoust. Soc. Am. 2015, 137, EL158–EL164. [Google Scholar] [CrossRef]
- Chhetri, D.K.; Neubauer, J.; Sofer, E. Posterior cricoarytenoid muscle dynamics in canines and humans. Laryngoscope 2014, 124, 2363–2367. [Google Scholar] [CrossRef] [Green Version]
- Manriquez, R.; Peterson, S.D.; Prado, P.; Orio, P.; Galindo, G.E.; Zanartu, M. Neurophysiological Muscle Activation Scheme for Controlling Vocal Fold Models. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Ivey, C.M. Vocal Fold Paresis. Otolaryngol. Clin. N. Am. 2019, 52, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Weissbrod, P.; Pitman, M.J.; Sharma, S.; Bender, A.; Schaefer, S.D. Quantity and three-dimensional position of the recurrent and superior laryngeal nerve lower motor neurons in a rat model. Ann. Otol. Rhinol. Laryngol. 2011, 120, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Dekhou, A.S.; Morrison, R.J.; Gemechu, J.M. The Superior Laryngeal Nerve and Its Vulnerability in Surgeries of the Neck. Diagnostics 2021, 11, 1243. [Google Scholar] [CrossRef] [PubMed]
- Dewan, K.; Vahabzadeh-Hagh, A.; Soofer, D.; Chhetri, D.K. Neuromuscular compensation mechanisms in vocal fold paralysis and paresis. Laryngoscope 2017, 127, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Marina, M.B.; Marie, J.-P.; Birchall, M.A. Laryngeal reinnervation for bilateral vocal fold paralysis. Curr. Opin. Otolaryngol. Head Neck Surg. 2011, 19, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Salik, I.; Winters, R. Bilateral Vocal Cord Paralysis; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Carroll, T.L.; Rosen, C.A. Trial vocal fold injection. J. Voice 2010, 24, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.H.G.; Gonçalvez, T.M.; Pessin, A.B.B.; Branco, A. Aging voice: Presbyphonia. Aging Clin. Exp. Res. 2014, 26, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Samlan, R.A.; Kunduk, M.; Ikuma, T.; Black, M.; Lane, C. Vocal Fold Vibration in Older Adults With and Without Age-Related Dysphonia. Am. J. Speech-Lang. Pathol. 2018, 27, 1039–1050. [Google Scholar] [CrossRef] [PubMed]
- Bouhabel, S.; Hartnick, C.J. Current trends in practices in the treatment of pediatric unilateral vocal fold immobility: A survey on injections, thyroplasty and nerve reinnervation. Int. J. Pediatr. Otorhinolaryngol. 2018, 109, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Padia, R.; Smith, M.E. Posterior Glottic Insufficiency in Children. Ann. Otol. Rhinol. Laryngol. 2017, 126, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Bruzzi, C.; Salsi, D.; Minghetti, D.; Negri, M.; Casolino, D.; Sessa, M. Presbiphonya. Acta Biomed. 2017, 88, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Thibeault, S.L. Characteristics of age-related changes in cultured human vocal fold fibroblasts. Laryngoscope 2008, 118, 1700–1704. [Google Scholar] [CrossRef] [Green Version]
- Dayangku, N.P.; Marina, M.B.; Mawaddah, A.; WP, S.E.; Abdullah, S. Gore-Tex Medialisation Thyroplasty for Unilateral Vocal Cord Palsy: A Tertiary Centre 7 Years Experience. IIUM Med. J. Malaysia 2016, 15, 13–17. [Google Scholar] [CrossRef]
- Wilson, A.; Kimball, E.E.; Sayce, L.; Luo, H.; Khosla, S.M.; Rousseau, B. Medialization Laryngoplasty: A Review for Speech-Language Pathologists. J. Speech. Lang. Hear. Res. 2021, 64, 481–490. [Google Scholar] [CrossRef]
- Ab Rani, A.; Azman, M.; Ubaidah, M.A.; Mohamad Yunus, M.R.; Sani, A.; Mat Baki, M. Nonselective Laryngeal Reinnervation versus Type 1 Thyroplasty in Patients with Unilateral Vocal Fold Paralysis: A Single Tertiary Centre Experience. J. Voice 2021, 35, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Mawaddah, A.; Marina, M.B.; Halimuddin, S.; Mohd Razif, M.Y.; Abdullah, S. A Ten-Year Kuala Lumpur Review on Laser Posterior Cordectomy for Bilateral Vocal Fold Immobility. Malays. J. Med. Sci. 2016, 23, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Bick, E.; Dumberger, L.D.; Farquhar, D.R.; Davis, H.; Ramsey, E.; Buckmire, R.A.; Shah, R.N. Does Voice Therapy Improve Vocal Outcomes in Vocal Fold Atrophy? Ann. Otol. Rhinol. Laryngol. 2021, 130, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Dion, G.R.; Nielsen, S.W. In-Office Laryngology Injections. Otolaryngol. Clin. N. Am. 2019, 52, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Chow, X.H.; Johari, S.F.; Rosla, L.; Wahab, A.F.A.; Azman, M.; Baki, M.M. Early Transthyrohyoid Injection Laryngoplasty Under Local Anaesthesia in a Single Tertiary Center of Southeast Asia: Multidimensional Voice Outcomes. Turkish Arch. Otorhinolaryngol. 2021, 59, 271–281. [Google Scholar] [CrossRef]
- Cohen, J.T.; Benyamini, L. Voice outcome after vocal fold injection augmentation with carboxymethyl cellulose versus calcium hydroxyapatite. J. Laryngol. Otol. 2020, 134, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Lahav, Y.; Malka-Yosef, L.; Shapira-Galitz, Y.; Cohen, O.; Halperin, D.; Shoffel-Havakuk, H. Vocal Fold Fat Augmentation for Atrophy, Scarring, and Unilateral Paralysis: Long-term Functional Outcomes. Otolaryngol. Head Neck Surg. 2021, 164, 631–638. [Google Scholar] [CrossRef]
- Tsou, Y.-A.; Tien, V.H.; Chen, S.-H.; Shih, L.-C.; Lin, T.-C.; Chiu, C.-J.; Chang, W.-D. Autologous Fat Plus Platelet-Rich Plasma versus Autologous Fat Alone on Sulcus Vocalis. J. Clin. Med. 2022, 11, 725. [Google Scholar] [CrossRef] [PubMed]
- Cantarella, G.; Mazzola, R.F.; Gaffuri, M.; Iofrida, E.; Biondetti, P.; Forzenigo, L.V.; Pignataro, L.; Torretta, S. Structural Fat Grafting to Improve Outcomes of Vocal Folds’ Fat Augmentation: Long-term Results. Otolaryngol. Head Neck Surg. 2018, 158, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Seria, E.; Galea, G.; Borg, J.; Schembri, K.; Grech, G.; Tagliaferro, S.S.; Felice, A. Novel leukocyte-depleted platelet-rich plasma-based skin equivalent as an in vitro model of chronic wounds: A preliminary study. BMC Mol. Cell Biol. 2021, 22, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.; Yaghoubi, Y.; Movassaghpour, A.; Shakouri, K.; Mehdizadeh, A.; Pishgahi, A.; Yousefi, M. Novel therapeutic approaches in utilizing platelet lysate in regenerative medicine: Are we ready for clinical use? J. Cell. Physiol. 2019, 234, 17172–17186. [Google Scholar] [CrossRef] [PubMed]
- Baptista, P.M.; Atala, A. Chapter 1—Regenerative Medicine: The Hurdles and Hopes; Academic Press: Boston, MA, USA, 2016; pp. 3–7. ISBN 978-0-12-800548-4. [Google Scholar]
- Furth, M.E.; Atala, A. Chapter 6—Tissue Engineering: Future Perspectives; Academic Press: Boston, MA, USA, 2014; pp. 83–123. ISBN 978-0-12-398358-9. [Google Scholar]
- Walimbe, T.; Panitch, A.; Sivasankar, P.M. A Review of Hyaluronic Acid and Hyaluronic Acid-based Hydrogels for Vocal Fold Tissue Engineering. J. Voice 2017, 31, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Bakhshandeh, B.; Zarrintaj, P.; Oftadeh, M.O.; Keramati, F.; Fouladiha, H.; Sohrabi-Jahromi, S.; Ziraksaz, Z. Tissue engineering; strategies, tissues, and biomaterials. Biotechnol. Genet. Eng. Rev. 2017, 33, 144–172. [Google Scholar] [CrossRef] [PubMed]
- Akter, F. Chapter 2—Principles of Tissue Engineering; Academic Press: Cambridge, MA, USA, 2016; pp. 3–16. ISBN 978-0-12-805361-4. [Google Scholar]
- Koh, B.; Sulaiman, N.; Fauzi, M.B.; Law, J.X.; Ng, M.H.; Idrus, R.B.H.; Yazid, M.D. Three dimensional microcarrier system in mesenchymal stem cell culture: A systematic review. Cell Biosci. 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Sheikh, I.; Dahman, Y. Chapter 2—Applications of Nanobiomaterials in Hard Tissue Engineering; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 33–62. ISBN 978-0-323-42862-0. [Google Scholar]
- Li, L.; Stiadle, J.M.; Lau, H.K.; Zerdoum, A.B.; Jia, X.; Thibeault, S.L.; Kiick, K.L. Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration. Biomaterials 2016, 108, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Kannan, R.; Wei, G.; Ma, P.X. Chapter 2—Synthetic polymeric biomaterials for tissue engineering. In Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2022; pp. 41–74. ISBN 978-0-12-820508-2. [Google Scholar]
- Heris, H.K.; Latifi, N.; Vali, H.; Li, N.; Mongeau, L. Investigation of Chitosan-glycol/glyoxal as an Injectable Biomaterial for Vocal Fold Tissue Engineering. Procedia Eng. 2015, 110, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Stiadle, J.M.; Levendoski, E.E.; Lau, H.K.; Susan, L.; Kiick, K.L.; Surgery, N. Biocompatibility of Injectable Resilin-based Hydrogels. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 2229–2242. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Choi, H.; Park, C.; Choi, S.; Kim, E.; Kim, S.W.; Kim, C.-S.; Koo, H. In vivo vocal fold augmentation using an injectable polyethylene glycol hydrogel based on click chemistry. Biomater. Sci. 2021, 9, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Yap, L.-S.; Yang, M.-C. Thermo-reversible injectable hydrogel composing of pluronic F127 and carboxymethyl hexanoyl chitosan for cell-encapsulation. Colloids Surf. B Biointerfaces 2020, 185, 110606. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Yang, F. Recent Progress in Developing Injectable Matrices for Enhancing Cell Delivery and Tissue Regeneration. Adv. Healthc. Mater. 2018, 7, e1701065. [Google Scholar] [CrossRef]
- Oliva, N.; Conde, J.; Wang, K.; Artzi, N. Designing Hydrogels for On-Demand Therapy. Acc. Chem. Res. 2017, 50, 669–679. [Google Scholar] [CrossRef]
- Ma, J.; Huang, C. Composition and Mechanism of Three-Dimensional Hydrogel System in Regulating Stem Cell Fate. Tissue Eng. Part B Rev. 2020, 26, 498–518. [Google Scholar] [CrossRef]
- Hamilton, M.; Harrington, S.; Dhar, P.; Stehno-Bittel, L. Hyaluronic Acid Hydrogel Microspheres for Slow Release Stem Cell Delivery. ACS Biomater. Sci. Eng. 2021, 7, 3754–3763. [Google Scholar] [CrossRef]
- Young, S.A.; Riahinezhad, H.; Amsden, B.G. In situ-forming, mechanically resilient hydrogels for cell delivery. J. Mater. Chem. B 2019, 7, 5742–5761. [Google Scholar] [CrossRef]
- Imaizumi, M.; Nakamura, R.; Nakaegawa, Y.; Dirja, B.T.; Tada, Y.; Tani, A.; Sugino, T.; Tabata, Y.; Omori, K. Regenerative potential of basic fibroblast growth factor contained in biodegradable gelatin hydrogel microspheres applied following vocal fold injury: Early effect on tissue repair in a rabbit model. Braz. J. Otorhinolaryngol. 2021, 87, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, S.; Shariati, K.; Ma, M. Specialty Tough Hydrogels and Their Biomedical Applications. Adv. Healthc. Mater. 2020, 9, 1901396. [Google Scholar] [CrossRef] [PubMed]
- Boddupalli, A.; Zhu, L.; Bratlie, K.M. Methods for Implant Acceptance and Wound Healing: Material Selection and Implant Location Modulate Macrophage and Fibroblast Phenotypes. Adv. Healthc. Mater. 2016, 5, 2575–2594. [Google Scholar] [CrossRef] [PubMed]
- Hinz, B. Matrix mechanics and regulation of the fibroblast phenotype. Periodontology 2000 2013, 63, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Aregueta-Robles, U.A.; Martens, P.J.; Poole-Warren, L.A.; Green, R.A. Tissue engineered hydrogels supporting 3D neural networks. Acta Biomater. 2019, 95, 269–284. [Google Scholar] [CrossRef]
- Dang, L.H.; Doan, P.; Nhi, T.T.Y.; Nguyen, D.T.; Nguyen, B.T.; Nguyen, T.P.; Tran, N.Q. Multifunctional injectable pluronic-cystamine-alginate-based hydrogel as a novel cellular delivery system towards tissue regeneration. Int. J. Biol. Macromol. 2021, 185, 592–603. [Google Scholar] [CrossRef]
- Madl, C.M.; Heilshorn, S.C. Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche. Annu. Rev. Biomed. Eng. 2018, 20, 21–47. [Google Scholar] [CrossRef]
- Vernerey, F.J.; Lalitha Sridhar, S.; Muralidharan, A.; Bryant, S.J. Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem. Rev. 2021, 121, 11085–11148. [Google Scholar] [CrossRef]
- Ho, M.T.; Teal, C.J.; Shoichet, M.S. A hyaluronan/methylcellulose-based hydrogel for local cell and biomolecule delivery to the central nervous system. Brain Res. Bull. 2019, 148, 46–54. [Google Scholar] [CrossRef]
- Xu, Q.; Sigen, A.; Gao, Y.; Guo, L.; Creagh-Flynn, J.; Zhou, D.; Greiser, U.; Dong, Y.; Wang, F.; Tai, H.; et al. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomater. 2018, 75, 63–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, H.; Yan, Z.; Bauer, R.J.; Peng, J.; Schieker, M.; Nerlich, M.; Docheva, D. Functionalized thermosensitive hydrogel combined with tendon stem/progenitor cells as injectable cell delivery carrier for tendon tissue engineering. Biomed. Mater. 2018, 13, 34107. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Rameshbabu, A.P.; Bankoti, K.; Jana, S.; Roy, S.; Sen, R.; Dhara, S. Microsphere embedded hydrogel construct—Binary delivery of alendronate and BMP-2 for superior bone regeneration. J. Mater. Chem. B 2021, 9, 6856–6869. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Yuan, W.; Ding, L.; Shi, M.; Luo, L.; Wan, Y.; Oh, J.; Zhou, Y.; Bian, L.; Deng, D.Y.B. Cell-adaptable dynamic hydrogel reinforced with stem cells improves the functional repair of spinal cord injury by alleviating neuroinflammation. Biomaterials 2021, 279, 121190. [Google Scholar] [CrossRef]
- Lev, R.; Seliktar, D. Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies. J. R. Soc. Interface 2018, 15, 20170380. [Google Scholar] [CrossRef]
- Mattei, A.; Bertrand, B.; Jouve, E.; Blaise, T.; Philandrianos, C.; Grimaud, F.; Giraudo, L.; Aboudou, H.; Dumoulin, C.; Arnaud, L.; et al. Feasibility of First Injection of Autologous Adipose Tissue-Derived Stromal Vascular Fraction in Human Scarred Vocal Folds: A Nonrandomized Controlled Trial. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 355–363. [Google Scholar] [CrossRef]
- Lasso, J.M.; Poletti, D.; Scola, B.; Gómez-Vilda, P.; García-Martín, A.I.; Fernández-Santos, M.E. Injection Laryngoplasty Using Autologous Fat Enriched with Adipose-Derived Regenerative Stem Cells: A Safe Therapeutic Option for the Functional Reconstruction of the Glottal Gap after Unilateral Vocal Fold Paralysis. Stem Cells Int. 2018, 2018, 8917913. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, H.; Xu, W. HGF and bFGF Secreted by Adipose-Derived Mesenchymal Stem Cells Revert the Fibroblast Phenotype Caused by Vocal Fold Injury in a Rat Model. J. Voice 2020, 36, 622–629. [Google Scholar] [CrossRef]
- Valerie, A.; Vassiliki, K.; Irini, M.; Nikolaos, P.; Karampela, E.; Apostolos, P. Adipose-Derived Mesenchymal Stem Cells in the Regeneration of Vocal Folds: A Study on a Chronic Vocal Fold Scar. Stem Cells Int. 2016, 2016, 9010279. [Google Scholar] [CrossRef] [Green Version]
- Morisaki, T.; Kishimoto, Y.; Tateya, I.; Kawai, Y.; Suzuki, R.; Tsuji, T.; Hiwatashi, N.; Nakamura, T.; Omori, K.; Kitano, H.; et al. Adipose-derived mesenchymal stromal cells prevented rat vocal fold scarring. Laryngoscope 2018, 128, E33–E40. [Google Scholar] [CrossRef]
- Huang, D.; Wang, R.; Yang, S. Cogels of Hyaluronic Acid and Acellular Matrix for Cultivation of Adipose-Derived Stem Cells: Potential Application for Vocal Fold Tissue Engineering. BioMed Res. Int. 2016, 2016, 6584054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goel, A.N.; Gowda, B.S.; Veena, M.S.; Shiba, T.L.; Long, J.L. Adipose-Derived Mesenchymal Stromal Cells Persist in Tissue-Engineered Vocal Fold Replacement in Rabbits. Ann. Otol. Rhinol. Laryngol. 2018, 127, 962–968. [Google Scholar] [CrossRef]
- Hiwatashi, N.; Hirano, S.; Suzuki, R.; Kawai, Y.; Mizuta, M.; Kishimoto, Y.; Tateya, I.; Kanemaru, S.-I.; Nakamura, T.; Dezawa, M.; et al. Comparison of ASCs and BMSCs combined with atelocollagen for vocal fold scar regeneration. Laryngoscope 2016, 126, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, R.S.; Gaston, J.D.; Ye, S.; Kendziorski, C.; Thibeault, S.L. Mechanotransduction of vocal fold fibroblasts and mesenchymal stromal cells in the context of the vocal fold mechanome. J. Biomech. 2019, 83, 227–234. [Google Scholar] [CrossRef]
- Hiwatashi, N.; Bing, R.; Kraja, I.; Branski, R.C. Mesenchymal stem cells have antifibrotic effects on transforming growth factor-β1-stimulated vocal fold fibroblasts. Laryngoscope 2017, 127, E35–E41. [Google Scholar] [CrossRef] [Green Version]
- Strioga, M.; Viswanathan, S.; Darinskas, A.; Slaby, O.; Michalek, J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012, 21, 2724–2752. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Lin, J.; Zhao, K.; Jin, K.; He, Q.; Hu, Y.; Feng, G.; Cai, Y.; Xia, C.; Liu, H.; et al. Single-Cell Profiles and Clinically Useful Properties of Human Mesenchymal Stem Cells of Adipose and Bone Marrow Origin. Am. J. Sports Med. 2019, 47, 1722–1733. [Google Scholar] [CrossRef]
- Bacakova, L.; Zarubova, J.; Travnickova, M.; Musilkova, J.; Pajorova, J.; Slepicka, P.; Kasalkova, N.S.; Svorcik, V.; Kolska, Z.; Motarjemi, H.; et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review. Biotechnol. Adv. 2018, 36, 1111–1126. [Google Scholar] [CrossRef]
- Si, Z.; Wang, X.; Sun, C.; Kang, Y.; Xu, J.; Wang, X.; Hui, Y. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomed. Pharmacother. 2019, 114, 108765. [Google Scholar] [CrossRef]
- Nagamura-Inoue, T.; He, H. Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J. Stem Cells 2014, 6, 195–202. [Google Scholar] [CrossRef]
- Ding, D.-C.; Chang, Y.-H.; Shyu, W.-C.; Lin, S.-Z. Human umbilical cord mesenchymal stem cells: A new era for stem cell therapy. Cell Transplant. 2015, 24, 339–347. [Google Scholar] [CrossRef]
- Pan, Y.; Jiao, G.; Yang, J.; Guo, R.; Li, J.; Wang, C. Insights into the Therapeutic Potential of Heparinized Collagen Scaffolds Loading Human Umbilical Cord Mesenchymal Stem Cells and Nerve Growth Factor for the Repair of Recurrent Laryngeal Nerve Injury. Tissue Eng. Regen. Med. 2017, 14, 317–326. [Google Scholar] [CrossRef]
- Li, N.; Hua, J. Interactions between mesenchymal stem cells and the immune system. Cell. Mol. Life Sci. 2017, 74, 2345–2360. [Google Scholar] [CrossRef]
- Han, K.-H.; Kim, A.-K.; Kim, M.-H.; Kim, D.-H.; Go, H.-N.; Kim, D.-I. Enhancement of angiogenic effects by hypoxia-preconditioned human umbilical cord-derived mesenchymal stem cells in a mouse model of hindlimb ischemia. Cell Biol. Int. 2016, 40, 27–35. [Google Scholar] [CrossRef]
- Mishra, S.; Sevak, J.K.; Das, A.; Arimbasseri, G.A.; Bhatnagar, S.; Gopinath, S.D. Umbilical cord tissue is a robust source for mesenchymal stem cells with enhanced myogenic differentiation potential compared to cord blood. Sci. Rep. 2020, 10, 18978. [Google Scholar] [CrossRef]
- Li, J.; Gao, F.; Ma, S.; Zhang, Y.; Zhang, J.; Guan, F.; Yao, M. Control the fate of human umbilical cord mesenchymal stem cells with dual-enzymatically cross-linked gelatin hydrogels for potential applications in nerve regeneration. J. Tissue Eng. Regen. Med. 2020, 14, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, J.; Fu, G.; Zhou, P.; Liu, Y.; Li, Z.; Jiao, G. Human umbilical cord mesenchymal stem cells differentiate into neuron-like cells after induction with B27-supplemented serum-free medium. J. South. Med. Univ. 2020, 40, 1340–1345. [Google Scholar] [CrossRef]
- Guo, Z.-Y.; Sun, X.; Xu, X.-L.; Zhao, Q.; Peng, J.; Wang, Y. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms. Neural Regen. Res. 2015, 10, 651–658. [Google Scholar] [CrossRef] [PubMed]
- DIrja, B.T.; Yoshie, S.; Ikeda, M.; Imaizumi, M.; Nakamura, R.; Otsuki, K.; Nomoto, Y.; Wada, I.; Hazama, A.; Omori, K. Potential of laryngeal muscle regeneration using induced pluripotent stem cell-derived skeletal muscle cells. Acta Otolaryngol. 2016, 136, 391–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imaizumi, M.; Li-Jessen, N.Y.K.; Sato, Y.; Yang, D.T.; Thibeault, S.L. Retention of Human-Induced Pluripotent Stem Cells (hiPS) With Injectable HA Hydrogels for Vocal Fold Engineering. Ann. Otol. Rhinol. Laryngol. 2017, 126, 304–314. [Google Scholar] [CrossRef]
- Imaizumi, M.; Sato, Y.; Yang, D.T.; Thibeault, S.L. In vitro epithelial differentiation of human induced pluripotent stem cells for vocal fold tissue engineering. Ann. Otol. Rhinol. Laryngol. 2013, 122, 737–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Powell, R.; Phillips, J.B.; Haastert-Talini, K. Perspective on Schwann Cells Derived from Induced Pluripotent Stem Cells in Peripheral Nerve Tissue Engineering. Cells 2020, 9, 2497. [Google Scholar] [CrossRef] [PubMed]
- Rao, L.; Qian, Y.; Khodabukus, A.; Ribar, T.; Bursac, N. Engineering human pluripotent stem cells into a functional skeletal muscle tissue. Nat. Commun. 2018, 9, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboul-Soud, M.A.M.; Alzahrani, A.J.; Mahmoud, A. Induced Pluripotent Stem Cells (iPSCs)-Roles in Regenerative Therapies, Disease Modelling and Drug Screening. Cells 2021, 10, 2319. [Google Scholar] [CrossRef]
- Mora-Navarro, C.; Badileanu, A.; Gracioso Martins, A.M.; Ozpinar, E.W.; Gaffney, L.; Huntress, I.; Harrell, E.; Enders, J.R.; Peng, X.; Branski, R.C.; et al. Porcine Vocal Fold Lamina Propria-Derived Biomaterials Modulate TGF-β1-Mediated Fibroblast Activation in Vitro. ACS Biomater. Sci. Eng. 2020, 6, 1690–1703. [Google Scholar] [CrossRef] [PubMed]
- Leydon, C.; Imaizumi, M.; Bartlett, R.S.; Wang, S.F.; Thibeault, S.L. Epithelial cells are active participants in vocal fold wound healing: An in vivo animal model of injury. PLoS ONE 2014, 9, e115389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, R.; Katsuno, T.; Kishimoto, Y.; Nakamura, R.; Mizuta, M.; Suehiro, A.; Yamashita, M.; Nakamura, T.; Tateya, I.; Omori, K. Process of tight junction recovery in the injured vocal fold epithelium: Morphological and paracellular permeability analysis. Laryngoscope 2018, 128, E150–E156. [Google Scholar] [CrossRef]
- Branco, A.; Todorovic Fabro, A.; Gonçalves, T.M.; Garcia Martins, R.H. Alterations in extracellular matrix composition in the aging larynx. Otolaryngol. Head Neck Surg. 2015, 152, 302–307. [Google Scholar] [CrossRef]
- Caballero Aguilar, L.M.; Silva, S.M.; Moulton, S.E. Growth factor delivery: Defining the next generation platforms for tissue engineering. J. Control. Release 2019, 306, 40–58. [Google Scholar] [CrossRef]
- Buie, T.; McCune, J.; Cosgriff-Hernandez, E. Gelatin Matrices for Growth Factor Sequestration. Trends Biotechnol. 2020, 38, 546–557. [Google Scholar] [CrossRef]
- Sarrigiannidis, S.O.; Rey, J.M.; Dobre, O.; González-García, C.; Dalby, M.J.; Salmeron-Sanchez, M. A tough act to follow: Collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater. Today Bio 2021, 10, 100098. [Google Scholar] [CrossRef] [PubMed]
- Walters, B.; Turner, P.A.; Rolauffs, B.; Hart, M.L.; Stegemann, J.P. Controlled Growth Factor Delivery and Cyclic Stretch Induces a Smooth Muscle Cell-like Phenotype in Adipose-Derived Stem Cells. Cells 2021, 10, 3123. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, Y.; Wu, Y.; Zhao, Y.; Chen, H.; Yuan, Y.; Xu, K.; Zhang, H.; Lu, Y.; Wang, J.; et al. Heparin-Poloxamer Thermosensitive Hydrogel Loaded with bFGF and NGF Enhances Peripheral Nerve Regeneration in Diabetic Rats. Biomaterials 2018, 168, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, R.; Ruehle, M.A.; Klosterhoff, B.S.; Lin, A.S.P.; Hettiaratchi, M.H.; Willett, N.J.; Bertassoni, L.E.; García, A.J.; Guldberg, R.E. Triple growth factor delivery promotes functional bone regeneration following composite musculoskeletal trauma. Acta Biomater. 2021, 127, 180–192. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, J.; Huang, T.; Zhang, Z.; Xing, Q.; Zhou, X.; Zhang, K.; Yao, M.; Cheng, T.; Wang, X.; et al. Sodium alginate/collagen/stromal cell-derived factor-1 neural scaffold loaded with BMSCs promotes neurological function recovery after traumatic brain injury. Acta Biomater. 2021, 131, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Said, M.F.; Islam, A.A.; Massi, M.N. Prihantono Effect of erythropoietin administration on the expression of brain-derived neurotrophic factor, stromal cell-derived Factor-1, and neuron-specific enolase in traumatic brain injury: A literature review. Ann. Med. Surg. 2021, 69, 102666. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Spearry, R.P.; Rydyznski, C.E.; MacLennan, A.J. Muscle ciliary neurotrophic factor receptor α contributes to motor neuron STAT3 activation following peripheral nerve lesion. Eur. J. Neurosci. 2019, 49, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Takeharu, K.; Kurakami, K.; Konomi, U.; Komazawa, D.; Misawa, K.; Imayoshi, S.; Watanabe, Y. Safety and short-term outcomes of basic fibroblast growth factor injection for sulcus vocalis. Acta Otolaryngol. 2018, 138, 1014–1019. [Google Scholar] [CrossRef]
- Hirano, S.; Tateya, I.; Kishimoto, Y.; Kanemaru, S.; Ito, J. Clinical trial of regeneration of aged vocal folds with growth factor therapy. Laryngoscope 2012, 122, 327–331. [Google Scholar] [CrossRef]
- Kanazawa, T.; Komazawa, D.; Indo, K.; Akagi, Y.; Lee, Y.; Nakamura, K.; Matsushima, K.; Kunieda, C.; Misawa, K.; Nishino, H.; et al. Single injection of basic fibroblast growth factor to treat severe vocal fold lesions and vocal fold paralysis. Laryngoscope 2015, 125, E338–E344. [Google Scholar] [CrossRef]
- Sueyoshi, S.; Umeno, H.; Kurita, T.; Fukahori, M.; Chitose, S.-I. Long-term outcomes of basic fibroblast growth factor treatments in patients with vocal fold scarring, aged vocal fold, and sulcus vocalis. Auris Nasus Larynx 2021, 48, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Okui, A.; Konomi, U.; Kanazawa, T.; Komazawa, D.; Nakamura, K.; Matsushima, K.; Watanabe, Y. Therapeutic Efficacy of Basic Fibroblast Growth Factor in Patients With Vocal Fold Atrophy. Laryngoscope 2020, 130, 2847–2852. [Google Scholar] [CrossRef] [PubMed]
- Hirano, S.; Kawamoto, A.; Tateya, I.; Mizuta, M.; Kishimoto, Y.; Hiwatashi, N.; Kawai, Y.; Tsuji, T.; Suzuki, R.; Kaneko, M.; et al. A phase I/II exploratory clinical trial for intracordal injection of recombinant hepatocyte growth factor for vocal fold scar and sulcus. J. Tissue Eng. Regen. Med. 2018, 12, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-S.; Heang Oh, S.; Kim, Y.-M.; Lim, J.-Y. Hyaluronic Acid/Alginate Hydrogel Containing Hepatocyte Growth Factor and Promotion of Vocal Fold Wound Healing. Tissue Eng. Regen. Med. 2020, 17, 651–658. [Google Scholar] [CrossRef]
- Dias Garcia, R.I.; Tsuji, D.H.; Imamura, R.; Mauad, T.; Ferraz da Silva, L.F. Effects of hepatocyte growth factor injection and reinjection on healing in the rabbit vocal fold. J. Voice 2012, 26, e7–e12. [Google Scholar] [CrossRef]
- Minardi, S.; Pandolfi, L.; Taraballi, F.; Wang, X.; De Rosa, E.; Mills, Z.D.; Liu, X.; Ferrari, M.; Tasciotti, E. Enhancing Vascularization through the Controlled Release of Platelet-Derived Growth Factor-BB. ACS Appl. Mater. Interfaces 2017, 9, 14566–14575. [Google Scholar] [CrossRef]
- Pan, S.-C.; Lee, C.-H.; Chen, C.-L.; Fang, W.-Y.; Wu, L.-W. Angiogenin Attenuates Scar Formation in Burn Patients by Reducing Fibroblast Proliferation and Transforming Growth Factor β1 Secretion. Ann. Plast. Surg. 2018, 80, S79–S83. [Google Scholar] [CrossRef] [PubMed]
- Li, X.W.; Sun, H.C.; Liu, X.H. Vascular endothelial growth factor-loaded microspheres promote dental pulp regeneration and vascularization. Zhonghua Kou Qiang Yi Xue Za Zhi 2018, 53, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Dissanayaka, W.L.; Zhang, C. Dental pulp stem cells overexpressing stromal-derived factor-1α and vascular endothelial growth factor in dental pulp regeneration. Clin. Oral Investig. 2019, 23, 2497–2509. [Google Scholar] [CrossRef] [PubMed]
- Räsänen, M.; Sultan, I.; Paech, J.; Hemanthakumar, K.A.; Yu, W.; He, L.; Tang, J.; Sun, Y.; Hlushchuk, R.; Huan, X.; et al. VEGF-B Promotes Endocardium-Derived Coronary Vessel Development and Cardiac Regeneration. Circulation 2021, 143, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Rao, F.; Wang, Y.; Zhang, D.; Lu, C.; Cao, Z.; Sui, J.; Wu, M.; Zhang, Y.; Pi, W.; Wang, B.; et al. Aligned chitosan nanofiber hydrogel grafted with peptides mimicking bioactive brain-derived neurotrophic factor and vascular endothelial growth factor repair long-distance sciatic nerve defects in rats. Theranostics 2020, 10, 1590–1603. [Google Scholar] [CrossRef]
- Hu, K.; Olsen, B.R. Vascular endothelial growth factor control mechanisms in skeletal growth and repair. Dev. Dyn. 2017, 246, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Gnavi, S.; di Blasio, L.; Tonda-Turo, C.; Mancardi, A.; Primo, L.; Ciardelli, G.; Gambarotta, G.; Geuna, S.; Perroteau, I. Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering. J. Tissue Eng. Regen. Med. 2017, 11, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Delafontaine, P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020, 9, 1970. [Google Scholar] [CrossRef]
- Baht, G.S.; Bareja, A.; Lee, D.E.; Rao, R.R.; Huang, R.; Huebner, J.L.; Bartlett, D.B.; Hart, C.R.; Gibson, J.R.; Lanza, I.R.; et al. Meteorin-like facilitates skeletal muscle repair through a Stat3/IGF-1 mechanism. Nat. Metab. 2020, 2, 278–289. [Google Scholar] [CrossRef] [Green Version]
- Yaghoubi, Y.; Movassaghpour, A.; Zamani, M.; Talebi, M.; Mehdizadeh, A.; Yousefi, M. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment. Life Sci. 2019, 233, 116733. [Google Scholar] [CrossRef] [PubMed]
- Abbaszadeh, H.; Ghorbani, F.; Derakhshani, M.; Movassaghpour, A.; Yousefi, M. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: A novel therapeutic paradigm. J. Cell. Physiol. 2020, 235, 706–717. [Google Scholar] [CrossRef]
- Ma, Y.; Dong, L.; Zhou, D.; Li, L.; Zhang, W.; Zhen, Y.; Wang, T.; Su, J.; Chen, D.; Mao, C.; et al. Extracellular vesicles from human umbilical cord mesenchymal stem cells improve nerve regeneration after sciatic nerve transection in rats. J. Cell. Mol. Med. 2019, 23, 2822–2835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Li, M.; Chen, Z.; Xu, L.; Chang, M.; Wang, K.; Deng, C.; Gu, Y.; Zhou, S.; Shen, Y.; et al. Biogenesis and function of extracellular vesicles in pathophysiological processes of skeletal muscle atrophy. Biochem. Pharmacol. 2022, 198, 114954. [Google Scholar] [CrossRef] [PubMed]
- Vechetti, I.J.J.; Valentino, T.; Mobley, C.B.; McCarthy, J.J. The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise. J. Physiol. 2021, 599, 845–861. [Google Scholar] [CrossRef]
- Upadhya, R.; Zingg, W.; Shetty, S.; Shetty, A.K. Astrocyte-derived extracellular vesicles: Neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J. Control. Release 2020, 323, 225–239. [Google Scholar] [CrossRef]
- Delpech, J.-C.; Herron, S.; Botros, M.B.; Ikezu, T. Neuroimmune Crosstalk through Extracellular Vesicles in Health and Disease. Trends Neurosci. 2019, 42, 361–372. [Google Scholar] [CrossRef]
- Andjus, P.; Kosanović, M.; Milićević, K.; Gautam, M.; Vainio, S.J.; Jagečić, D.; Kozlova, E.N.; Pivoriūnas, A.; Chachques, J.-C.; Sakaj, M.; et al. Extracellular Vesicles as Innovative Tool for Diagnosis, Regeneration and Protection against Neurological Damage. Int. J. Mol. Sci. 2020, 21, 6859. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.; Murry, T. Short-Term Voice Improvement after Repeated Office-Based Platelet-Rich Plasma PRP Injection in Patients with Vocal Fold Scar, Sulcus, and Atrophy. J. Voice 2021. [Google Scholar] [CrossRef]
- Woo, S.H.; Jeong, H.-S.; Kim, J.P.; Koh, E.-H.; Lee, S.U.; Jin, S.M.; Kim, D.H.; Sohn, J.H.; Lee, S.H. Favorable vocal fold wound healing induced by platelet-rich plasma injection. Clin. Exp. Otorhinolaryngol. 2014, 7, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Cobden, S.B.; Oztürk, K.; Duman, S.; Esen, H.; Aktan, T.M.; Avunduk, M.C.; Elsurer, C. Treatment of Acute Vocal Fold Injury With Platelet-Rich Plasma. J. Voice 2016, 30, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Xu, Z. Gene therapy: A double-edged sword with great powers. Mol. Cell. Biochem. 2020, 474, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Anguela, X.M.; High, K.A. Entering the Modern Era of Gene Therapy. Annu. Rev. Med. 2019, 70, 273–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, C.E.; Kim, A.J.; Adolph, E.J.; Gupta, M.K.; Yu, F.; Hocking, K.M.; Davidson, J.M.; Guelcher, S.A.; Duvall, C.L. Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo. Adv. Mater. 2014, 26, 607–614. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.; Mao, H.; Xie, L.; Pi, X. Prolyl Hydroxylase Domain-2 Protein Regulates Lipopolysaccharide-Induced Vascular Inflammation. Am. J. Pathol. 2019, 189, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, N.; Xu, F.-J. pH-Responsive Degradable Dextran-Quantum Dot Nanohybrids for Enhanced Gene Delivery. ACS Appl. Mater. Interfaces 2019, 11, 34707–34716. [Google Scholar] [CrossRef]
- Lara-Velazquez, M.; Alkharboosh, R.; Norton, E.S.; Ramirez-Loera, C.; Freeman, W.D.; Guerrero-Cazares, H.; Forte, A.J.; Quiñones-Hinojosa, A.; Sarabia-Estrada, R. Chitosan-Based Non-viral Gene and Drug Delivery Systems for Brain Cancer. Front. Neurol. 2020, 11, 740. [Google Scholar] [CrossRef] [PubMed]
- Kolosova, K.; Gao, Q.; Tuznik, M.; Bouhabel, S.; Kost, K.M.; Wang, H.; Li-Jessen, N.Y.K.; Mongeau, L.; Wiseman, P.W. Characterizing Vocal Fold Injury Recovery in a Rabbit Model With Three-Dimensional Virtual Histology. Laryngoscope 2021, 131, 1578–1587. [Google Scholar] [CrossRef] [PubMed]
- Mattei, A.; Magalon, J.; Velier, M.; Dignat-George, F.; Giovanni, A.; Sabatier, F. Commentary about mesenchymal stem cells and scarred vocal folds. Stem Cell Res. Ther. 2020, 11, 173. [Google Scholar] [CrossRef] [PubMed]
- Abbaszadeh, H.; Ghorbani, F.; Derakhshani, M.; Movassaghpour, A.A.; Yousefi, M.; Talebi, M.; Shamsasenjan, K. Regenerative potential of Wharton’s jelly-derived mesenchymal stem cells: A new horizon of stem cell therapy. J. Cell. Physiol. 2020, 235, 9230–9240. [Google Scholar] [CrossRef]
- Pappas, J.J.; Yang, P.C. Human ESC vs. iPSC—Pros and Cons. J. Cardiovasc. Transl. Res. 2008, 1, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Halevy, T.; Urbach, A. Comparing ESC and iPSC-Based Models for Human Genetic Disorders. J. Clin. Med. 2014, 3, 1146–1162. [Google Scholar] [CrossRef] [Green Version]
- Kaboodkhani, R.; Mehrabani, D.; Karimi-Busheri, F. Achievements and Challenges in Transplantation of Mesenchymal Stem Cells in Otorhinolaryngology. J. Clin. Med. 2021, 10, 2940. [Google Scholar] [CrossRef] [PubMed]
- Ntege, E.H.; Sunami, H.; Shimizu, Y. Advances in regenerative therapy: A review of the literature and future directions. Regen. Ther. 2020, 14, 136–153. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, I.; Kolisis, F.N.; Papaevangeliou, D.; Zoumpourlis, V. Comparative Evaluation of Human Mesenchymal Stem Cells of Fetal (Wharton’s Jelly) and Adult (Adipose Tissue) Origin during Prolonged In Vitro Expansion: Considerations for Cytotherapy. Stem Cells Int. 2013, 2013, 246134. [Google Scholar] [CrossRef]
- Suman, S.; Domingues, A.; Ratajczak, J.; Ratajczak, M.Z. Potential Clinical Applications of Stem Cells in Regenerative Medicine. Adv. Exp. Med. Biol. 2019, 1201, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Inoue, H.; Wu, J.C.; Yamanaka, S. Induced pluripotent stem cell technology: A decade of progress. Nat. Rev. Drug Discov. 2017, 16, 115–130. [Google Scholar] [CrossRef]
- Su, H.; Cantrell, A.C.; Zeng, H.; Zhu, S.-H.; Chen, J.-X. Emerging Role of Pericytes and Their Secretome in the Heart. Cells 2021, 10, 548. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, F.; Kanda, T. Pericytes of the Nervous System: Physiological and Pathological Role. Brain Nerve 2020, 72, 151–158. [Google Scholar] [CrossRef]
- Mannino, G.; Gennuso, F.; Giurdanella, G.; Conti, F.; Drago, F.; Salomone, S.; Furno, D.L.; Bucolo, C.; Giuffrida, R. Pericyte-like differentiation of human adipose-derived mesenchymal stem cells: An in vitro study. World J. Stem Cells 2020, 12, 1152–1170. [Google Scholar] [CrossRef]
- Guimarães-Camboa, N.; Cattaneo, P.; Sun, Y.; Moore-Morris, T.; Gu, Y.; Dalton, N.D.; Rockenstein, E.; Masliah, E.; Peterson, K.L.; Stallcup, W.B.; et al. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell 2017, 20, 345–359.e5. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.H.; Kim, S.H.; Kim, I.G.; Lee, J.H.; Kwon, S.K. Injectable basic fibroblast growth factor-loaded alginate/hyaluronic acid hydrogel for rejuvenation of geriatric larynx. Acta Biomater. 2019, 89, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Wiklander, O.P.B.; Brennan, M.Á.; Lötvall, J.; Breakefield, X.O.; El Andaloussi, S. Advances in therapeutic applications of extracellular vesicles. Sci. Transl. Med. 2019, 11, 492. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, Y.; Li, H.-J. Advances in mesenchymal stem cell exosomes: A review. Stem Cell Res. Ther. 2021, 12, 71. [Google Scholar] [CrossRef]
- Zhao, A.G.; Shah, K.; Cromer, B.; Sumer, H. Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Potential. Stem Cells Int. 2020, 2020, 8825771. [Google Scholar] [CrossRef]
- Tsiapalis, D.; O’Driscoll, L. Mesenchymal Stem Cell Derived Extracellular Vesicles for Tissue Engineering and Regenerative Medicine Applications. Cells 2020, 9, 991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alqurashi, H.; Ortega Asencio, I.; Lambert, D.W. The Emerging Potential of Extracellular Vesicles in Cell-Free Tissue Engineering and Regenerative Medicine. Tissue Eng. Part B Rev. 2021, 27, 530–538. [Google Scholar] [CrossRef]
- Hirano, S.; Sugiyama, Y.; Kaneko, M.; Mukudai, S.; Fuse, S.; Hashimoto, K. Intracordal Injection of Basic Fibroblast Growth Factor in 100 Cases of Vocal Fold Atrophy and Scar. Laryngoscope 2021, 131, 2059–2064. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.G.; Park, M.R.; Choi, Y.H.; Choi, J.S.; Ahn, H.J.; Kwon, S.K.; Lee, J.H. Regeneration of Paralyzed Vocal Fold by the Injection of Plasmid DNA Complex-Loaded Hydrogel Bulking Agent. ACS Biomater. Sci. Eng. 2019, 5, 1497–1508. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Ahn, H.J.; Park, M.R.; Han, M.J.; Lee, J.H.; Kwon, S.K. Dual growth factor-immobilized bioactive injection material for enhanced treatment of glottal insufficiency. Acta Biomater. 2019, 86, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, Z.; Khan, M.; Tamama, K.; Kuppusamy, P.; Wagner, W.R.; Sen, C.K.; Guan, J. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomater. 2010, 6, 1978–1991. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, T.M.; Li, H.; Kwee, B.J.; Kinsley, S.; Budina, E.; Anderson, E.M.; Doherty, E.J.; Talbot, S.G.; Mooney, D.J. Combined delivery of VEGF and IGF-1 promotes functional innervation in mice and improves muscle transplantation in rabbits. Biomaterials 2019, 216, 119246. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, S.; Zhao, M.; Wang, C.; Li, L.; Yuan, Y.; Li, L.; Liao, G.; Bresette, W.; Zhang, J.; et al. Injectable extracellular vesicle-released self-assembling peptide nanofiber hydrogel as an enhanced cell-free therapy for tissue regeneration. J. Control. Release 2019, 316, 93–104. [Google Scholar] [CrossRef]
No. | Type of Encapsulation | Type of Treatment | Study Design/Study Outcome | ClinicalTrials.gov Number (accessed on 23 October 2022)/Reference |
---|---|---|---|---|
1 | Autologous BMMSCs | Encapsulation with hyaluronan gel | Pilot study. Scarred vocal fold is improved. | NCT01981330 |
Direct injection | Clinical trial phase 1/2. | NCT04290182 | ||
Limitation: Difficult to source and expand for clinical application. | ||||
2 | Autologous ASCs | Encapsulated with injectable collagen scaffold | Clinical trial phase 2. | NCT04164485 |
Direct injection | Clinical trial phase 1/2. | NCT02904824 | ||
Direct injection | Improved ECM regeneration in rat model. | [88] | ||
Direct injection | Clinical trial. Overall voice outcome was improved. | [84,85] | ||
Limitation: Direct injection yielded short cell retention in providing regenerative effect. It had slower cell proliferation and lesser immunophenotypic indicators than WJMSCs. | ||||
3 | bFGF | Direct injection | Clinical trial. Overall voice outcome was improved. | [126,127,128,181] |
Limitation: Single injection was insufficient to obtain satisfactory improvement. | ||||
4 | HGF | Direct injection | Clinical trial. Overall voice outcome was improved. | [131] |
Encapsulated with injectable HA/ALG scaffold | HGF in HA/ALG had greater sustained release than direct injection in rabbit model. | [132] | ||
Direct injection | Re-injection of HGF in rabbit with injured vocal fold reduced collagen expression more significantly. | [133] | ||
Limitation: Direct injection of HGF had limited retention time for regenerative effect. | ||||
4 | PRP & autologous fat | Direct injection | Clinical trial phase 4 | NCT04839276 |
PRP | Direct injection | N/A | NCT03749863 | |
Limitation: Applied in short augmentation purpose. | ||||
5 | Autologous fibroblast | Direct injection | Clinical trial phase 2 | NCT02120781 |
Limitation: Difficulty in sourcing available dermal fibroblast for treatment and possible delayed treatment. | ||||
6 | Plasmic DNA (pDNA) | Encapsulated in injectable ALG/HA with PCL microspheres | Collagen and HA composition were improved in rabbit with injured vocal fold. | [182] |
Limitation: Complicated components in building suitable hydrogel for pDNA. |
No. | Type of Encapsulation | Type of Treatment | Study Design/Study Outcome | Reference |
---|---|---|---|---|
1 | Human umbilical cord WJMSCs with NGF | Encapsulated in heparinized collagen scaffold | Damaged RLN regenerated in in vivo (rabbit) Scaffold with WJMSCs/NGF had better histomorphological outcome than no WJMSCs/NGF or alone. | [100] |
2 | iPSCs | Direct injection | iPSCs able to differentiate into skeletal muscle tissue and implanted in thyroarytenoid muscle of rat model. More work needed to ensure safety of iPSCs. | [111] |
Encapsulated in HA hydrogel with EGF | Hydrogel with iPSCs and EGF had less fibrosis in injured vocal fold cells in vitro & rat model. | [108,109] | ||
3 | bFGF & HGF | Encapsulated in polycaprolactone (PCL)/pluronic F127 microspheres | Sustained release of bFGF and HGF reduced muscle degeneration and increased muscle regeneration in injured vocal fold of rabbit model. | [183] |
4 | bFGF | Encapsulated in gelatin microsphere | Scarred formation was reduced in rabbit model. Long term study and inflammation study needed for future study. | [70] |
5 | VEGF | Encapsulated in microsphere | Improved dental pulp regeneration in mice model. | [136] |
6 | BDNF & VEGF | Encapsulated in chitosan nanofiber hydrogel | Hydrogel with VEGF provided microenvironment and improved nerve regeneration in rat model. | [139] |
7 | IGF-1 & MSC | Encapsulated in thermosensitive type 1 collagen | Release of IGF-1 was sustained (2 weeks) and improved MSCs cell proliferation in the hydrogel. | [184] |
8 | IGF-1 & VEGF | Encapsulated in alginate hydrogel | Release of IGF-1 and VEGF were sustained and improved muscle function in mice and rabbit models. | [185] |
9 | EVs | Source: WJMSCs Direct injection | Improved nerve regeneration in rat model. | [146] |
Source: BMMSCs Encapsulated in matrix metalloproteinase-2 sensitive self- assembling peptide | Sustained release of EVs in hydrogel and had better outcome of renal function in mice model than direct injection. | [186] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, W.-C.; Lokanathan, Y.; Baki, M.M.; Fauzi, M.B.; Zainuddin, A.A.; Azman, M. Tissue Engineering as a Promising Treatment for Glottic Insufficiency: A Review on Biomolecules and Cell-Laden Hydrogel. Biomedicines 2022, 10, 3082. https://doi.org/10.3390/biomedicines10123082
Ng W-C, Lokanathan Y, Baki MM, Fauzi MB, Zainuddin AA, Azman M. Tissue Engineering as a Promising Treatment for Glottic Insufficiency: A Review on Biomolecules and Cell-Laden Hydrogel. Biomedicines. 2022; 10(12):3082. https://doi.org/10.3390/biomedicines10123082
Chicago/Turabian StyleNg, Wan-Chiew, Yogeswaran Lokanathan, Marina Mat Baki, Mh Busra Fauzi, Ani Amelia Zainuddin, and Mawaddah Azman. 2022. "Tissue Engineering as a Promising Treatment for Glottic Insufficiency: A Review on Biomolecules and Cell-Laden Hydrogel" Biomedicines 10, no. 12: 3082. https://doi.org/10.3390/biomedicines10123082
APA StyleNg, W. -C., Lokanathan, Y., Baki, M. M., Fauzi, M. B., Zainuddin, A. A., & Azman, M. (2022). Tissue Engineering as a Promising Treatment for Glottic Insufficiency: A Review on Biomolecules and Cell-Laden Hydrogel. Biomedicines, 10(12), 3082. https://doi.org/10.3390/biomedicines10123082